

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed/Floating Point
Interface	Host Interface, Link Port, Multi-Processor
Clock Rate	250MHz
Non-Volatile Memory	External
On-Chip RAM	768kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 85°C (TC)
Mounting Type	Surface Mount
Package / Case	484-BFBGA
Supplier Device Package	484-PBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-ts101sab2-000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Debugging both C/C++ and assembly programs with the VisualDSP++ debugger, programmers can:

- View mixed C/C++ and assembly code (interleaved source and object information)
- Insert breakpoints
- Set conditional breakpoints on registers, memory, and stacks
- Trace instruction execution
- Perform linear or statistical profiling of program execution
- Fill, dump, and graphically plot the contents of memory
- Perform source level debugging
- · Create custom debugger windows

The VisualDSP++ integrated development and debugging environment (IDDE) lets programmers define and manage DSP software development. Its dialog boxes and property pages let programmers configure and manage all of the TigerSHARC development tools, including the color syntax highlighting in the VisualDSP++ editor. This capability permits programmers to:

- Control how the development tools process inputs and generate outputs
- Maintain a one-to-one correspondence with the tool's command-line switches

The VisualDSP++ Kernel (VDK) incorporates scheduling and resource management tailored specifically to address the memory and timing constraints of DSP programming. These capabilities enable engineers to develop code more effectively, eliminating the need to start from the very beginning, when developing new application code. The VDK features include threads, critical and unscheduled regions, semaphores, events, and device flags. The VDK also supports priority-based, preemptive, cooperative, and time-sliced scheduling approaches. In addition, the VDK was designed to be scalable. If the application does not use a specific feature, the support code for that feature is excluded from the target system.

Because the VDK is a library, a developer can decide whether to use it or not. The VDK is integrated into the VisualDSP++ development environment, but can also be used via standard command-line tools. When the VDK is used, the development environment assists the developer with many error-prone tasks and assists in managing system resources, automating the generation of various VDK-based objects, and visualizing the system state, when debugging an application that uses the VDK.

Use the Expert Linker to visually manipulate the placement of code and data on the embedded system. View memory utilization in a color-coded graphical form, easily move code and data to different areas of the DSP or external memory with a drag of the mouse, examine run-time stack and heap usage. The Expert Linker is fully compatible with existing linker definition file (LDF), allowing the developer to move between the graphical and textual environments.

Analog Devices DSP emulators use the IEEE 1149.1 JTAG Test Access Port of the ADSP-TS101S processor to monitor and control the target board processor during emulation. The emulator provides full speed emulation, allowing inspection and modification of memory, registers, and processor stacks. Nonintrusive in-circuit emulation is assured by the use of the processor's JTAG interface—the emulator does not affect target system loading or timing.

In addition to the software and hardware development tools available from Analog Devices, third parties provide a wide range of tools supporting the TigerSHARC processor family. Hardware tools include TigerSHARC processor PC plug-in cards. Third-party software tools include DSP libraries, realtime operating systems, and block diagram design tools.

DESIGNING AN EMULATOR-COMPATIBLE DSP BOARD (TARGET)

The Analog Devices family of emulators are tools that every DSP developer needs to test and debug hardware and software systems. Analog Devices has supplied an IEEE 1149.1 JTAG test access port (TAP) on each JTAG DSP. The emulator uses the TAP to access the internal features of the DSP, allowing the developer to load code, set breakpoints, observe variables, observe memory, and examine registers. The DSP must be halted to send data and commands, but once an operation has been completed by the emulator, the DSP system is set running at full speed with no impact on system timing.

To use these emulators, the target board must include a header that connects the DSP's JTAG port to the emulator.

For details on target board design issues including mechanical layout, single processor connections, multiprocessor scan chains, signal buffering, signal termination, and emulator pod logic, see *EE-68: Analog Devices JTAG Emulation Technical Reference* on the Analog Devices website (www.analog.com)—use site search on "EE-68." This document is updated regularly to keep pace with improvements to emulator support.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-TS101S processor's architecture and functionality. For detailed information on the ADSP-TS101S processor's core architecture and instruction set, see the ADSP-TS101 TigerSHARC Processor Programming Reference and the ADSP-TS101 TigerSHARC Processor Hardware Reference. For detailed information on the development tools for this processor, see the VisualDSP++ User's Guide.

PIN FUNCTION DESCRIPTIONS

While most of the ADSP-TS101S processor's input pins are normally synchronous—tied to a specific clock—a few are asynchronous. For these asynchronous signals, an on-chip synchronization circuit prevents metastability problems. The synchronous ac specification for asynchronous signals is used only when predictable cycle-by-cycle behavior is required.

All inputs are sampled by a clock reference, therefore input specifications (asynchronous minimum pulse widths or synchronous input setup and hold) must be met to guarantee recognition.

PIN STATES AT RESET

The output pins can be three-stated during normal operation. The DSP three-states all outputs during reset, allowing these pins to get to their internal pull-up or pull-down state. Some output pins (control signals) have a pull-up or pull-down that maintains a known value during transitions between different drivers.

PIN DEFINITIONS

The Type column in the following pin definitions tables describes the pin type, when the pin is used in the system. The Term (for termination) column describes the pin termination type if the pin is not used by the system. Note that some pins are always used (indicated with au symbol).

Signal	Туре	Term	Description
LCLK_N	1	au	Local Clock Reference. Connect this pin to V_{REF} as shown in Figure 6.
LCLK_P	I	au	Local Clock Input. DSP clock input. The instruction cycle rate = n × LCLK, where n is user- programmable to 2, 2.5, 3, 3.5, 4, 5, or 6. For more information, see Clock Domains on Page 9.
LCLKRAT2-0 ¹	l (pd²)	au	LCLK Ratio. The DSP's core clock (instruction cycle rate) = $n \times LCLK$, where n is user-programmable to 2, 2.5, 3, 3.5, 4, 5, or 6 as shown in Table 4. These pins must have a constant value while the DSP is powered.
SCLK_N	1	au	System Clock Reference. Connect this pin to V _{REF} as shown in Figure 6.
SCLK_P	I	au	System Clock Input. The DSP's system input clock for cluster bus. This pin must be connected to the same clock source as LCLK_P. For more information, see Clock Domains on Page 9.
SCLKFREQ ³	l (pu²)	au	SCLK Frequency. SCLKFREQ = 1 is required. The SCLKFREQ pin must have a constant value while the DSP is powered.
RESET	I/A	au	Reset. Sets the DSP to a known state and causes program to be in idle state. RESET must be asserted at specified time according to the type of reset operation. For details, see Reset and Booting on Page 9.

Table 3. Pin Definitions—Clocks and Reset

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹ The internal pull-down may not be sufficient. A stronger pull-down may be necessary.

²See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

³ The internal pull-up may not be sufficient. A stronger pull-up may be necessary.

Table 4. LCLK Ratio

LCLK	(RAT2-0	Ratio
000	(default)	2
001		2.5
010		3
011		3.5
100		4
101		5
110		6
111		Reserved

Signal	Туре	Term	Description
MSH ²	O/T (pu³)	nc	Memory Select Host. $\overline{\text{MSH}}$ is asserted whenever the DSP accesses the host address space (ADDR31:28 \neq 0b0000). $\overline{\text{MSH}}$ is a decoded memory address pin that changes concurrently with ADDR pins. In a multiprocessor system, the bus master DSP drives $\overline{\text{MSH}}$.
BRST ²	l/O/T (pu³)	nc	Burst. The current bus master (DSP or host) asserts this pin to indicate that it is reading or writing data associated with consecutive addresses. A slave device can ignore addresses after the first one and increment an internal address counter after each transfer. For host-to-DSP burst accesses, the DSP increments the address automatically while BRST is asserted.

 Table 5. Pin Definitions—External Port Bus Controls (Continued)

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹ The address and data buses may float for several cycles during bus mastership transitions between a TigerSHARC processor and a host. Floating in this case means that these inputs are not driven by any source and that dc-biased terminations are not present. It is not necessary to add pull-ups as there are no reliability issues and the worst-case power consumption for these floating inputs is negligible. Unconnected address pins may require pull-ups or pull-downs to avoid erroneous slave accesses, depending on the system. Unconnected data pins may be left floating.

² The internal pull-up may not be sufficient. A stronger pull-up may be necessary.

³See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

⁴ The internal pull-down may not be sufficient. A stronger pull-down may be necessary.

Signal	Туре	Term	Description
BR7-0	I/O	epu	Multiprocessing Bus Request Pins. Used by the DSPs in a multiprocessor system to arbitrate for bus mastership. Each DSP drives its own BRx line (corresponding to the value of its ID2–0 inputs) and monitors all others. In systems with fewer than eight DSPs, set the unused BRx pins high.
ID2-0 ¹	l (pd²)	au	Multiprocessor ID. Indicates the DSP's ID. From the ID, the DSP determines its order in a multiprocessor system. These pins also indicate to the DSP which bus request ($\overline{BR0}-\overline{BR7}$) to assert when requesting the bus: $000 = \overline{BR0}$, $001 = \overline{BR1}$, $010 = \overline{BR2}$, $011 = \overline{BR3}$, $100 = \overline{BR4}$, $101 = \overline{BR5}$, $110 = \overline{BR6}$, or $111 = \overline{BR7}$. ID2–0 must have a constant value during system operation and can change during reset only.
B M ¹	O (pd ²)	au	Bus Master. The current bus master DSP asserts BM. For debugging only. At reset this is a strap pin. For more information, see Table 16 on Page 19.
BOFF	I	epu	Back Off. A deadlock situation can occur when the host and a DSP try to read from each other's bus at the same time. When deadlock occurs, the host can assert BOFF to force the DSP to relinquish the bus before completing its outstanding transaction, but only if the outstanding transaction is to host memory space (MSH).
BUSLOCK ³	O/T (pu ²)	nc	Bus Lock Indication. Provides an indication that the current bus master has locked the bus.
HBR	I	epu	Host Bus Request. A host must assert HBR to request control of the DSP's external bus. When HBR is asserted in a multiprocessing system, the bus master relinquishes the bus and asserts HBG once the outstanding transaction is finished.

Table 6. Pin Definitions-External Port Arbitration

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

Table 6.	Pin Definitions-	-External Port	Arbitration	(Continued)
----------	------------------	----------------	-------------	-------------

Signal	Туре	Term	Description
HBG ³	I/O/T (pu²)	nc	Host Bus Grant. Acknowledges HBR and indicates that the host can take control of the external bus. When relinquishing the bus, the master DSP three-states the ADDR31–0, DATA63–0, MSH, MSSD, MS1–0, RD, WRL, WRH, BMS, BRST, FLYBY, IOEN, RAS, CAS, SDWE, SDA10, SDCKE, LDQM and HDQM pins, and the DSP puts the SDRAM in self-refresh mode. The DSP asserts HBG until the host deasserts HBR. In multiprocessor systems, the current bus master DSP drives HBG, and all slave DSPs monitor HBG.
CPA	I/O (o/d)	See next column	Core Priority Access. Asserted while the DSP's core accesses external memory. This pin enables a slave DSP to interrupt a master DSP's background DMA transfers and gain control of the external bus for core-initiated transactions. CPA is an open drain output, connected to all DSPs in the system. The CPA pin has an internal 500 Ω pull-up resistor, which is only enabled on the DSP with ID2–0 = 0. If ID0 is not used, terminate this pin as either epu or nc. If ID7–1 is not used, terminate this pin as epu.
DPA	I/O (o/d)	See next column	DMA Priority Access. Asserted while a high-priority DSP DMA channel accesses external memory. This pin enables a high-priority DMA channel on a slave DSP to interrupt transfers of a normal-priority DMA channel on a master DSP and gain control of the external bus for DMA initiated transactions. DPA is an open drain output, connected to all DSPs in the system. The DPA pin has an internal 500 Ω pull-up resistor, which is only enabled on the DSP with ID2–0 = 0 If ID0 is not used, terminate this pin as either epu or nc. If ID7–1 is not used, terminate this pin as epu.

pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹The internal pull-down may not be sufficient. A stronger pull-down may be necessary.

²See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

³ The internal pull-up may not be sufficient. A stronger pull-up may be necessary.

Signal	Туре	Term	Description
DMAR3-0	I/A	epu	DMA Request Pins. Enable external I/O devices to request DMA services from the DSP. In response to DMARx, the DSP performs DMA transfers according to the DMA channel's initialization. The DSP ignores DMA requests from uninitialized channels.
FLYBY ¹	O/T (pu²)	nc	Flyby Mode. When a DSP DMA channel is initiated in FLYBY mode, it generates flyby transactions on the external bus. During flyby transactions, the DSP asserts FLYBY, which signals the source or destination I/O device to latch the next data or strobe the current data, respectively, and to prepare for the next data on the next cycle.
IOEN ¹	O/T (pu ²)	nc	I/O Device Output Enable. Enables the output buffers of an external I/O device for flyby trans- actions between the device and external memory. Active on flyby transactions.

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹ The internal pull-up may not be sufficient. A stronger pull-up may be necessary.

² See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

Table 9. Pin Definitions—JTAG Port (Continued)

Signal	Туре	Term	Description
TDO	O/T	nc ¹	Test Data Output (JTAG). A serial data output of the scan path.
TMS ²	l (pu³)	nc ¹	Test Mode Select (JTAG). Used to control the test state machine.
TRST ²	I/A (pu ³)	au	Test Reset (JTAG). Resets the test state machine. TRST must be asserted or pulsed low after
			power-up for proper device operation.

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹See the reference Page 11 to the JTAG emulation technical reference EE-68.

² The internal pull-up may not be sufficient. A stronger pull-up may be necessary.

³See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

Table 10. Pin Definitions-Flags, Interrupts, and Timer

Signal	Туре	Term	Description
FLAG3-0 ¹	I/O/A (pd ²)	nc	FLAG pins. Bidirectional input/output pins can be used as program conditions. Each pin can be configured individually for input or for output. FLAG3–0 are inputs after power-up and reset.
IRQ3-0 ³	I/A (pu²)	nc	Interrupt Request. When asserted, the DSP generates an interrupt. Each of the IRQ3–0 pins can be independently set for edge triggered or level sensitive operation. After reset, these pins are disabled unless the IRQ3–0 strap option is initialized for booting.
TMR0E ¹	O (pd ²)	au	Timer 0 expires. This output pulses for four SCLK cycles whenever timer 0 expires. At reset this is a strap pin. For additional information, see Table 16 on Page 19.

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹The internal pull-down may not be sufficient. A stronger pull-down may be necessary.

² See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

³ The internal pull-up may not be sufficient. A stronger pull-up may be necessary.

Signal	Туре	Term	Description	
L0DAT7-01	I/O	nc	Link0 Data 7–0	
L1DAT7-0 ¹	I/O	nc	Link1 Data 7–0	
L2DAT7-0 ¹	I/O	nc	Link2 Data 7–0	
L3DAT7-0 ¹	I/O	nc	Link3 Data 7–0	
LOCLKOUT	0	nc	Link0 Clock/Acknowledge Output	
L1CLKOUT	0	nc	Link1 Clock/Acknowledge Output	
L2CLKOUT	0	nc	Link2 Clock/Acknowledge Output	
L3CLKOUT	0	nc	Link3 Clock/Acknowledge Output	
LOCLKIN	I/A	epu	Link0 Clock/Acknowledge Input	
L1CLKIN	I/A	epu	Link1 Clock/Acknowledge Input	
L2CLKIN	I/A	epu	Link2 Clock/Acknowledge Input	
L3CLKIN	I/A	epu	Link3 Clock/Acknowledge Input	
LODIR	0	nc	Link0 Direction. (0 = input, 1 = output)	
Type column symbols: $A = asynchronous: G = around: I = input: Q = output: o/d = open drain output: P = power supply:$				

Table 11. Pin Definitions—Link Ports

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

Table 11. Pin Definitions—Link Ports (Continued)

Туре	Term	Description				
0	nc	Link1 Direction. (0 = input, 1 = output)				
O (pd ³)	au	Direction. (0 = input, 1 = output)				
		At reset this is a strap pin. For more information, see Table 16 on Page 19.				
O (pd ³)	nc	Link3 Direction. (0 = input, 1 = output)				
Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply;						
	O O (pd ³) O (pd ³) bols: A = asyn	O (pd ³) au O (pd ³) nc				

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹ The link port data pins, if connected or floated for extended periods (for example, token slave with no token master), do not require pull-ups or pull-downs as there are no reliability issues and the worst-case power consumption for these floating inputs is negligible. Floating in this case means that these inputs are not driven by any source and that dc-biased terminations are not present.

² The internal pull-down may not be sufficient. A stronger pull-down may be necessary.

³See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

Table 12. Pin Definitions—Impedance and Drive Strength Control

Signal	Туре	Term	Description
CONTROLIMP2–1 ¹ CONTROLIMP0 ²	l (pu ³) l (pd ³)	au au	Impedance Control. For ADC (Address/Data/Controls) and LINK (all link port outputs) signals, the CONTROLIMP2–0 pins control impedance as shown in Table 13. These pins enable or disable
	r (pu)	uu	dig_ctrl mode. When dig_ctrl: 0 = Disabled (maximum drive strength) 1 = Enabled (use DS2–0 drive strength selection)
DS2-0 ¹	l (pu³)	au	Digital Drive Strength Selection. Selected as shown in Table 14. For drive strength calculation, see Output Drive Currents on Page 32. The drive strength for some pins is preset, not controlled by the DS2–0 pins. The pins that are always at drive strength 7 (100%) are: CPA, DPA, and EMU.

Type column symbols: A = asynchronous; G = ground; I = input; O = output; o/d = open drain output; P = power supply; pd = internal pull-down approximately 100 k Ω ; pu = internal pull-up approximately 100 k Ω ; T = three-state

Term (for termination) column symbols: epd = external pull-down approximately 10 k Ω to V_{SS}; epu = external pull-up approximately 10 k Ω to V_{DD-IO}, nc = not connected; au = always used.

¹ The internal pull-up may not be sufficient. A stronger pull-up may be necessary.

² The internal pull-down may not be sufficient. A stronger pull-down may be necessary.

³ See Electrical Characteristics on Page 20 for maximum and minimum current consumption for pull-up and pull-down resistances.

Table 13. Control Impedance Selection

CONTROLIMP2-0	ADC dig_ctrl	LINK dig_ctrl
000	0	0
001	0	0
010	0	1
011	reserved	reserved
100	1	0
101	reserved	reserved
110 (default)	1	1
111	reserved	reserved

Table 14. Drive Strength Selection

DS2-0	Drive Strength	
000	Strength 0	
001	Strength 1	
010	Strength 2	
011	Strength 3	
100	Strength 4	
101	Strength 5	
110	Strength 6	
111 (default)	Strength 7	

SPECIFICATIONS

Note that component specifications are subject to change without notice.

OPERATING CONDITIONS

Paramet	er	Test Conditions	Min	Тур	Max	Unit
V _{DD}	Internal Supply Voltage		1.14		1.26	V
V_{DD_A}	Analog Supply Voltage		1.14		1.26	V
V_{DD_IO}	I/O Supply Voltage		3.15		3.45	V
T _{CASE}	Case Operating Temperature		-40		+85	°C
V _{IH}	High Level Input Voltage ¹	$@V_{DD}, V_{DD_{IO}} = max$	2		$V_{DD_{IO}} + 0.5$	V
V _{IL}	Low Level Input Voltage ¹	$@V_{DD}, V_{DD_{IO}} = min$	-0.5		+0.8	v
I _{DD}	V _{DD} Supply Current for Typical Activity ²	@ CCLK = 250 MHz, V _{DD} = 1.25 V, T _{CASE} = 25°C		1.2		A
I _{DD}	V _{DD} Supply Current for Typical Activity ²	@ CCLK = 300 MHz, V _{DD} = 1.25 V, T _{CASE} = 25°C		1.5		A
IDDIDLELP	V _{DD} Supply Current for IDLELP Instruction Execution	@ CCLK = 300 MHz, V _{DD} = 1.20 V, T _{CASE} = 25°C		173		mA
$I_{DD_{10}}$	V _{DD_IO} Supply Current for Typical Activity ²	@ SCLK = 100 MHz, $V_{DD_{-10}}$ = 3.3 V, T _{CASE} = 25°C		137		mA
I _{DD_A}	V _{DD_A} Supply Current	@ V _{DD} = 1.25 V, T _{CASE} = 25°C		25	31.25	mA
V_{REF}	Voltage Reference		1.4		1.6	V

¹ Applies to input and bidirectional pins.

² For details on internal and external power estimation, including: power vector definitions, current usage descriptions, and formulas, see *EE-169, Estimating Power for the ADSP-TS101S* on the Analog Devices website—use site search on "EE-169" (www.analog.com). This document is updated regularly to keep pace with silicon revisions.

ELECTRICAL CHARACTERISTICS

Param	eter	Test Conditions	Min	Max	Unit
V _{OH}	High Level Output Voltage ¹	$@V_{DD_{IO}} = min, I_{OH} = -2 mA$	2.4		V
V_{OL}	Low Level Output Voltage ¹	$@V_{DD_{LO}} = min, I_{OL} = 4 mA$		0.4	V
I _{IH}	High Level Input Current ²	$@V_{DD_{IO}} = max, V_{IN} = V_{DD_{IO}} max$		10	μA
I _{IHP}	High Level Input Current (pd) ²	$@V_{DD_{IO}} = max, V_{IN} = V_{DD_{IO}} max$	17.2	44.5	μA
I _{IL}	Low Level Input Current ³	$@V_{DD_{IO}} = max, V_{IN} = 0 V$		10	μA
I _{ILP}	Low Level Input Current (pu) ⁴	$@V_{DD_{IO}} = max, V_{IN} = 0 V$	-69	-23	μA
I _{OZH}	Three-State Leakage Current High ^{5, 6}	$@V_{DD_{IO}} = max, V_{IN} = V_{DD_{IO}} max$		10	μA
I OZHP	Three-State Leakage Current High (pd) ⁷	$@V_{DD_{IO}} = max, V_{IN} = V_{DD_{IO}} max$	17.2	44.5	μA
I _{OZL}	Three-State Leakage Current Low ⁸	$@V_{DD_{IO}} = max, V_{IN} = 0 V$		10	μA
I _{OZLP}	Three-State Leakage Current Low (pu)9	$@V_{DD_{IO}} = max, V_{IN} = 0 V$	-69	-23	μA
I _{OZLO}	Three-State Leakage Current Low (od) ⁷	$@V_{DD_{IO}} = max, V_{IN} = 0 V$	-9.8	-4.6	mA
C _{IN}	Input Capacitance ^{10, 11}	$@f_{IN} = 1 \text{ MHz}, T_{CASE} = 25^{\circ}\text{C}, V_{IN} = 2.5 \text{ V}$		5	pF

¹ Applies to output and bidirectional pins.

² Applies to input pins with internal pull-downs (pd).

³ Applies to input pins without internal pull-ups (pu).

⁴ Applies to input pins with internal pull-ups (pu).

⁵ Applies to three-stateable pins without internal pull-downs (pd).

⁶ Applies to open drain (od) pins with 500 Ω pull-ups (pu).

⁷ Applies to three-stateable pins with internal pull-downs (pd).

⁸ Applies to three-stateable pins without internal pull-ups (pu).

⁹ Applies to three-stateable pins with internal pull-ups (pu).

¹⁰Applies to all signals.

¹¹Guaranteed but not tested.

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed in Table 19 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 17. Absolute Maximum Ratings

Parameter	Rating
Internal (Core) Supply Voltage (V _{DDINT})	–0.3 V to +1.40 V
Analog (PLL) Supply Voltage (V_{DD_A})	–0.3 V to +1.40 V
External (I/O) Supply Voltage (V _{DDEXT})	–0.3 V to +4.6 V
Input Voltage	-0.5 V to V _{DD_IO} + 0.5 V
Output Voltage Swing	-0.5 V to V _{DD_IO} + 0.5 V -0.5 V to V _{DD_IO} + 0.5 V
Storage Temperature Range	–65°C to +150°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PACKAGE INFORMATION

The information presented in Figure 7 provide details about the package branding for the ADSP-TS101S processors. For a complete listing of product availability, see Ordering Guide on Page 45.

ANALOG DEVICES
ADSP-TS101S
tppZ-ccc
LLLLLLLL-L 2.0
yyww country_of_origin
TIGER SHARC [®] VVVVV

Figure 7. Typical Package Brand

Table 18.	Package Brand	Information
-----------	---------------	-------------

Brand Key	Field Description
t	Temperature Range
рр	Package Type
Z	Lead Free Option (optional)
ссс	See Ordering Guide
LLLLLLLL-L	Silicon Lot Number
R.R	Silicon Revision
yyww	Date Code
VVVVV	Assembly Lot Code

TIMING SPECIFICATIONS

With the exception of link port, IRQ3–0, DMAR3–0, TMR0E, FLAG3–0 (input), and TRST pins, all ac timing for the ADSP-TS101S is relative to a reference clock edge. Because input setup/hold, output valid/hold, and output enable/disable times are relative to a clock edge, the timing data for the ADSP-TS101S has few calculated (formula-based) values. For information on ac timing, see General AC Timing. For information on link port transfer timing, see Link Ports Data Transfer and Token Switch Timing on Page 29.

General AC Timing

Timing is measured on signals when they cross the 1.5 V level as described in Figure 16 on Page 28. All delays (in nanoseconds) are measured between the point that the first signal reaches 1.5 V and the point that the second signal reaches 1.5 V.

The ac asynchronous timing data for the $\overline{IRQ3-0}$, $\overline{DMAR3-0}$, TMR0E, FLAG3-0 (input), and \overline{TRST} pins appears in Table 21.

The general ac timing data appears in Table 21, Table 29, and Table 30. All ac specifications are measured with the load specified in Figure 8, and with the output drive strength set to strength 4. Output valid and hold are based on standard capacitive loads: 30 pF on all pins. The delay and hold specifications given should be derated by a drive strength related factor for loads other than the nominal value of 30 pF.

In order to calculate the output valid and hold times for different load conditions and/or output drive strengths, refer to Figure 32 on Page 34 through Figure 39 on Page 36 (Rise and Fall Time vs. Load Capacitance) and Figure 40 on Page 36 (Output Valid vs. Load Capacitance and Drive Strength).

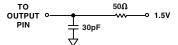


Figure 8. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

For power-up sequencing, power-up reset, and normal reset (hot reset) timing requirements, refer to Table 26 and Figure 13, Table 27 and Figure 14, and Table 28, and Figure 15 respectively.

Table 19. AC Asynchronous Signal Specifications (All values in this table are in nanoseconds)

Name	Description	Pulse Width Low (min)	Pulse Width High (min)
IRQ3–0 ¹	Interrupt request input	t _{CCLK} + 3 ns	
DMAR3-0 ¹	DMA request input	t _{CCLK} + 4 ns	t _{CCLK} + 4 ns
TMR0E ²	Timer 0 expired output		$4 \times t_{SCLK} ns$
FLAG3-0 ^{1, 3}	Flag pins input	$3 \times t_{\text{CCLK}}$ ns	$3 \times t_{CCLK} ns$
TRST	JTAG test reset input	1 ns	

¹These input pins do not need to be synchronized to a clock reference.

² This pin is a strap option. During reset, an internal resistor pulls the pin low.

³ For output specifications, see Table 29 and Table 30.

Table 20. Reference Clocks—Core Clock (CCLK) Cycle Time

		Grade = 100 (300 MHz)		Grade = 000 (250 MHz)		
Parameter	Description	Min	Max	Min	Max	Unit
t _{CCLK} ¹	Core Clock Cycle Time	3.3	12.5	4.0	12.5	ns

¹ CCLK is the internal processor clock or instruction cycle time. The period of this clock is equal to the system clock period (t_{SCLK}) divided by the system clock ratio (SCLKRAT2–0). For information on available part numbers for different internal processor clock rates, see the Ordering Guide on Page 45.

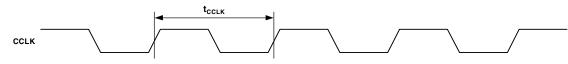


Figure 9. Reference Clocks—Core Clock (CCLK) Cycle Time

Table 21. Reference Clocks—Local Clock (LCLK) Cycle Time

Parameter	Description	Min	Max	Unit
t _{LCLK} ^{1, 2, 3, 4}	Local Clock Cycle Time	10	25	ns
t _{LCLKH}	Local Clock Cycle High Time	$0.4 \times t_{LCLK}$	$0.6 \times t_{LCLK}$	ns
t _{LCLKL}	Local Clock Cycle Low Time	$0.4 \times t_{LCLK}$	$0.6 \times t_{LCLK}$	ns
t _{LCLKJ} ^{5, 6}	Local Clock Jitter Tolerance		500	ps

¹ For more information, see Table 3 on Page 12.

² For more information, see Clock Domains on Page 9.

³LCLK_P and SCLK_P must be connected to the same source.

 4 The value of (t_{\rm LCLK} / LCLKRAT2-0) must not violate the specification for t_{\rm CCLK}.

⁵ Actual input jitter should be combined with ac specifications for accurate timing analysis.

⁶ Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.

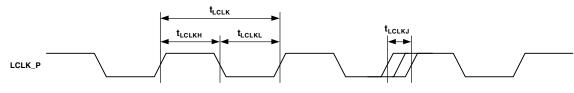


Figure 10. Reference Clocks—Local Clock (LCLK) Cycle Time

Table 22.	Reference	Clocks-S	ystem Clock	(SCLK)	Cycle Time
-----------	-----------	----------	-------------	--------	------------

Parameter	Description	Min	Max	Unit
t _{SCLK} ^{1, 2, 3, 4}	System Clock Cycle Time	10	25	ns
t _{sclkh}	System Clock Cycle High Time	$0.4 \times t_{SCLK}$	$0.6 \times t_{SCLK}$	ns
t _{sclkl}	System Clock Cycle Low Time	$0.4 \times t_{SCLK}$	$0.6 \times t_{SCLK}$	ns
t _{SCLKJ} ^{5, 6}	System Clock Jitter Tolerance		500	ps

¹ For more information, see Table 3 on Page 12.

² For more information, see Clock Domains on Page 9.

³ LCLK_P and SCLK_P must be connected to the same source.

 4 The value of (t_{SCLK} / LCLKRAT2-0) must not violate the specification for t_{CCLK}.

⁵ Actual input jitter should be combined with ac specifications for accurate timing analysis.

⁶ Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.

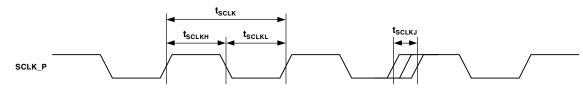


Figure 11. Reference Clocks—System Clock (SCLK) Cycle Time

Table 23. Reference Clocks—Test Clock (TCK) Cycle Time

Parameter	Description	Min	Max	Unit
t _{TCK}	Test Clock (JTAG) Cycle Time	Greater of 30 or $t_{CCLK} \times 4$		ns
t _{TCKH}	Test Clock (JTAG) Cycle High Time	12.5		ns
t _{TCKL}	Test Clock (JTAG) Cycle Low Time	12.5		ns

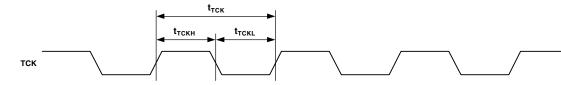


Figure 12. Reference Clocks—Test Clock (TCK) Cycle Time

Table 24. Power-Up Timing¹

Parameter		Min	Мах	Unit
Timing Requi	irement			
$t_{\text{VDD_IO}}$	$V_{\text{DD}_{-}\text{IO}}$ Stable and Within Specification After V_{DD} and $V_{\text{DD}_{-}\text{A}}$ Are Stable and Within Specification	>0		ms

¹For information about power supply sequencing and monitoring solutions, please visit http://www.analog.com/sequencing.

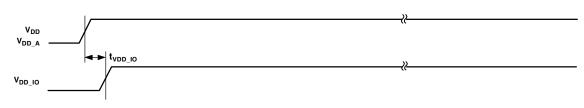


Figure 13. Power-Up Sequencing Timing

¹ The output valid (max) value in this column applies for the standard 30 pF capacitive load used in testing. To see how output valid varies with capacitive loading, see Figure 40 on Page 36.

² The external port protocols employ bus IDLE cycles for bus mastership transitions as well as slave address boundary crossings to avoid any potential bus contention. The apparent driver overlap, due to output disables being larger than output enables, is not actual.

 ${}^{3}\overline{\text{CPA}}$ and $\overline{\text{DPA}}$ pins are open drains and have 0.5 k Ω internal pull-ups.

⁴ These input pins have Schmitt triggers and therefore do not need to be synchronized to a clock reference. These synchronous specifications only apply for recognition in the current clock reference cycle.

⁵ This pin is a strap option. During reset, an internal resistor pulls the pin low.

⁶ For input specifications, see Table 21.

⁷ For additional requirement details, see Reset and Booting on Page 9.

⁸ TCK_FE indicates TCK falling edge.

 9 These pins may change only during reset; recommend connecting it to $V_{\text{DD}_\text{IO}}/V_{\text{SS}}$

¹⁰Reference clock depends on function.

¹¹System inputs are: IRQ3-0, BMS, LCLKRAT2-0, SCLKFREQ, BM, TMR0E, FLAG3-0, ID2-0, BRST, WRH, WRL, RD, MSSD, SDCKE, SDWE, CAS, RAS, ADDR31-0, DATA63-0, DPA, CPA, HBG, BOFF, HBR, ACK, BR7-0, L0CLKIN, L0DAT7-0, L1CLKIN, L1DAT7-0, L2CLKIN, L2DAT7-0, L2DIR, L3CLKIN, L3DAT7-0, DS2-0, CONTROLIMP2-0, RESET, DMAR3-0.

¹²System outputs are: BMS, BM, BUSLOCK, TMR0E, FLAG3-0, FLYBY, IOEN, MSH, BRST, WRH, WRL, RD, MS1-0, HDQM, LDQM, MSSD, SDCKE, SDWE, CAS, RAS, ADDR31-0, DATA63-0, DPA, CPA, HBG, ACK, BR7-0, L0CLKOUT, L0DAT7-0, L0DIR, L1CLKOUT, L1DAT7-0, L1DIR, L2CLKOUT, L2DAT7-0, L2DIR, L3CLKOUT, L3DAT7-0, L3DIR, EMU.

Table 28. AC Signal Specifications (for 16.7 ns <SCLK <25 ns) (All values in this table are in nanoseconds)

Name	Description	Input Setup (min)	Input Hold (min)	Output Valid (max) ¹	Output Hold (min)	Output Enable (min) ²	Output Disable (max) ²	Reference Clock
ADDR31-0	External Address Bus	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
DATA63-0	External Data Bus	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
MSH	Memory Select Host Line			4.2	0.8	0.3	2.5	SCLK
MSSD	Memory Select SDRAM Line	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
MS1-0	Memory Select for Static Blocks			4.2	0.8	0.3	2.5	SCLK
RD	Memory Read	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
WRL	Write Low Word	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
WRH	Write High Word	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
ACK	Acknowledge for Data	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
SDCKE	SDRAM Clock Enable	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
RAS	Row Address Select	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
CAS	Column Address Select	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
SDWE	SDRAM Write Enable	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
LDQM	Low Word SDRAM Data Mask			4.2	0.8	0.3	2.5	SCLK
HDQM	High Word SDRAM Data Mask			4.2	0.8	0.3	2.5	SCLK
SDA10	SDRAM ADDR10			4.2	0.8	0.3	2.5	SCLK
HBR	Host Bus Request	2.8	0.5					SCLK
HBG	Host Bus Grant	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
BOFF	Back Off Request	2.8	0.5					SCLK
BUSLOCK	Bus Lock			4.2	0.8	0.3	2.5	SCLK
BRST	Burst Access	2.8	0.5	4.2	0.8	0.3	2.5	SCLK
BR7-0	Multiprocessing Bus Request	2.8	0.5	4.2	0.8			SCLK
FLYBY	Flyby Mode Selection			4.2	0.8	0.3	2.5	SCLK
IOEN	Flyby Mode I/O Enable			4.2	0.8	0.3	2.5	SCLK
CPA 3, 4	Core Priority Access	2.8	0.5	5.8			2.5	SCLK
DPA ^{3, 4}	DMA Priority Access	2.8	0.5	5.8			2.5	SCLK
BMS ⁵	Boot Memory Select			4.2	0.8	0.3	2.5	SCLK
FLAG3-0 ⁶	FLAG Pins			4.2	1.0	1.0	4.0	SCLK

Name	Description	Input Setup (min)	Input Hold (min)	Output Valid (max) ¹	Output Hold (min)	Output Enable (min) ²	Output Disable (max) ²	Reference Clock
RESET ^{4, 7}	Global Reset							SCLK
TMS ⁴	Test Mode Select (JTAG)	1.5	1.0					ТСК
TDI ⁴	Test Data Input (JTAG)	1.5	1.0					ТСК
TDO	Test Data Output (JTAG)			6.0	1.0	1.0	5.0	TCK_FE ⁸
TRST ^{4, 7, 9}	Test Reset (JTAG)							ТСК
BM⁵	Bus Master Debug Aid Only			4.2	0.8			SCLK
EMU ¹⁰	Emulation			5.5			5.0	TCK or LCLK
JTAG_SYS_IN ¹¹	System Input	1.5	11.0					ТСК
JTAG_SYS_OUT ¹²	System Output			16.0				TCK_FE ⁸
ID2-0 ⁹	Chip ID—Must Be Constant							
CONTROLIMP2-09	Static Pins—Must Be Constant							
DS2-0 ⁹	Static Pins—Must Be Constant							
LCLKRAT2-0 ⁹	Static Pins—Must Be Constant							
SCLKFREQ ⁹	Static Pins—Must Be Constant							

Table 28. AC Signal Specifications (for 16.7 ns <SCLK <25 ns) (All values in this table are in nanoseconds) (Continued)

¹The output valid (max) value in this column applies for the standard 30 pF capacitive load used in testing. To see how output valid varies with capacitive loading, see Figure 40 on Page 36.

² The external port protocols employ bus IDLE cycles for bus mastership transitions as well as slave address boundary crossings to avoid any potential bus contention. The apparent driver overlap, due to output disables being larger than output enables, is not actual.

 $^3\overline{\text{CPA}}$ and $\overline{\text{DPA}}$ pins are open drains and have 0.5 k Ω internal pull-ups.

⁴ These input pins have Schmitt triggers and therefore do not need to be synchronized to a clock reference. These synchronous specifications only apply for recognition in the current clock reference cycle.

⁵ This pin is a strap option. During reset, an internal resistor pulls the pin low.

⁶ For input specifications, see Table 21.

⁷ For additional requirement details, see Reset and Booting on Page 9.

⁸ TCK_FE indicates TCK falling edge.

 9 These pins may change only during reset; recommend connecting it to $V_{\rm DD_IO}/V_{\rm SS}.$

¹⁰Reference clock depends on function.

¹¹System inputs are: IRQ3-0, BMS, LCLKRAT2-0, SCLKFREQ, BM, TMR0E, FLAG3-0, ID2-0, BRST, WRH, WRL, RD, MSSD, SDCKE, SDWE, CAS, RAS, ADDR31-0, DATA63-0, DPA, CPA, HBG, BOFF, HBR, ACK, BR7-0, L0CLKIN, L0DAT7-0, L1CLKIN, L1DAT7-0, L2CLKIN, L2DAT7-0, L2DIR, L3CLKIN, L3DAT7-0, DS2-0, CONTROLIMP2-0, RESET, DMAR3-0.

¹²System outputs are: BMS, BM, BUSLOCK, TMR0E, FLAG3-0, FLYBY, IOEN, MSH, BRST, WRH, WRL, RD, MS1-0, HDQM, LDQM, MSSD, SDCKE, SDWE, CAS, RAS, ADDR31-0, DATA63-0, DPA, CPA, HBG, ACK, BR7-0, L0CLKOUT, L0DAT7-0, L0DIR, L1CLKOUT, L1DAT7-0, L1DIR, L2CLKOUT, L2DAT7-0, L2DIR, L3CLKOUT, L3DAT7-0, L3DIR, EMU.

Link Ports Data Transfer and Token Switch Timing

Table 31, Table 32, Table 33, and Table 34 with Figure 17, Figure 18, Figure 19, and Figure 20 provide the timing specifications for the link ports data transfer and token switch.

Table 29. Link Ports—Transmit

Parameter		Min	Max U	Unit
Timing Requi	rements			
t _{CONNS} ¹	Connectivity Pulse Setup	$2 \times t_{CCLK} + 3.5$	r	ns
t _{CONNS} ²	Connectivity Pulse Setup	8	r	ns
t _{CONNIW} ³	Connectivity Pulse Input Width	$t_{LxCLK_Tx} + 1$	r	ns
t _{ACKS}	Acknowledge Setup	$0.5 \times t_{\text{LxCLK}_{\text{Tx}}}$	r	ns
Switching Cho	aracteristics			
t _{LxCLK_Tx} ⁴	Transmit Link Clock Period	$0.9 \times LR \times t_{CCLK}$	$1.1 \times LR \times t_{CCLK}$ r	ns
t _{LxCLKH_Tx} 1	Transmit Link Clock Width High	$0.33 \times t_{\text{LxCLK}_{\text{Tx}}}$	$0.66 \times t_{LxCLK_Tx}$ r	ns
t_LxCLKH_Tx ²	Transmit Link Clock Width High	$0.4 \times t_{LxCLK_Tx}$	$0.6 \times t_{LxCLK_Tx}$ r	ns
t _{LxCLKL_Tx} 1	Transmit Link Clock Width Low	$0.33 \times t_{LxCLK_Tx}$	$0.66 \times t_{LxCLK_Tx}$ r	ns
t _{LxCLKL_Tx} ²	Transmit Link Clock Width Low	$0.4 \times t_{LxCLK_Tx}$	$0.6 \times t_{LxCLK_Tx}$ r	ns
t _{DIRS}	LxDIR Transmit Setup	$0.5 \times t_{\text{LxCLK}_{\text{Tx}}}$	$2 \times t_{LxCLK_Tx}$ r	ns
t _{DIRH}	LxDIR Transmit Hold	$0.5 \times t_{LxCLK_Tx}$	$2 \times t_{LxCLK_Tx}$ n	ns
t _{DOS} ¹	LxDAT7–0 Output Setup	$0.25 \times t_{LxCLK_Tx} - 1$	r	ns
t _{DOH} ¹	LxDAT7-0 Output Hold	$0.25 \times t_{LxCLK_Tx} - 1$	r	ns
t_{DOS}^2	LxDAT7–0 Output Setup	Greater of 0.8 or 0.17 \times t_{Lx}	_{(CLK_Tx} – 1 r	ns
t _{DOH} ²	LxDAT7–0 Output Hold	Greater of 0.8 or 0.17 \times t_{Lx}	_{rcLK_Tx} – 1	ns
t _{LDOE}	LxDAT7–0 Output Enable	1	r	ns
t_{LDOD}^{5}	LxDAT7–0 Output Disable	1	r	ns

¹ The formula for this parameter applies when LR is 2.

² The formula for this parameter applies when LR is 3, 4, or 8.

³ LxCLKIN shows the connectivity pulse with each of the three possible transitions to "Acknowledge." After a connectivity pulse low minimum, LxCLKIN may [1] return high and remain high for "Acknowledge," [2] return high and subsequently go low (meeting t_{ACKS}) for "Not Acknowledge," or [3] remain low for "Not Acknowledge."

⁴ The Link clock Ratio (LR) is 2, 3, 4, or 8 as set by the SPD bits in the LCTLx register. The maximum LxCLK is 125 MHz. LR = 2 may not be used when CCLK ≥ 250 MHz. ⁵ This specification applies to the last data byte or the "Dummy" byte that follows the verification byte if enabled. For more information, see the ADSP-TS101 TigerSHARC Processor Hardware Reference.

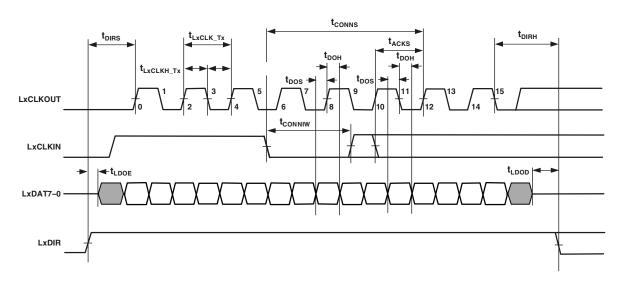


Figure 17. Link Ports—Transmit

Parameter		Min	Max	Unit
Timing Requ	lirements			
t _{REQI}	Token Request Input Width	$5.0 \times t_{\text{LxCLK}_{\text{Rx}}}$		ns
t _{TKRQ}	Token Request from Token Enable ¹		$3.0 \times t_{\text{LxCLK}_{\text{Tx}}}$	ns
Switching C	haracteristics			
t _{TKENO}	Token Switch Enable Output	$8.0 \times t_{\text{LxCLK}_{\text{Tx}}}$		ns
t _{REQO}	Token Request Output Width ²	$6.0 \times t_{LxCLK_Tx}$		ns

¹ For guaranteeing token switch during token enable.

²LxCLKOUT shows both possible responses to the token request: [1] a "Token Grant" (LxCLKOUT remains high), and [2] a "Token Regret" (LxCLKOUT goes low).

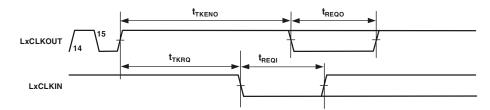


Figure 19. Link Ports—Token Switch, Token Master

Table 32. Link Ports—Token Switch, Token Requester

Parameter		Min Max	x Unit
Timing Require	ements		
t _{TKENI} 1	Token Switch Enable Input	$8.0 \times t_{LxCLK_Rx}$	ns
Switching Cha	racteristics		
t _{REQO}	Token Request Output Width ²	$6.0 \times t_{LxCLK_Rx}$	ns

¹ Required whenever there is a break in transmission.

²LxCLKOUT shows both possible responses to the token request: [1] a "Token Grant" (LxCLKOUT remains high), and [2] a "Token Regret" (LxCLKOUT goes low).

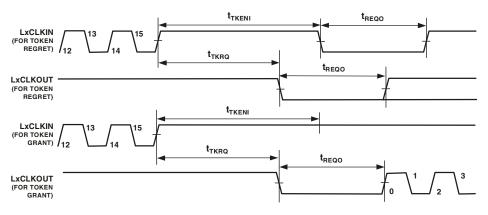


Figure 20. Link Ports—Token Switch, Token Requester

OUTPUT DRIVE CURRENTS

Figure 21 through Figure 28 show typical I–V characteristics for the output drivers of the ADSP-TS101S. The curves in these diagrams represent the current drive capability of the output drivers as a function of output voltage over the range of drive strengths. For complete output driver characteristics, refer to IBIS models, available on the Analog Devices website, www.analog.com.

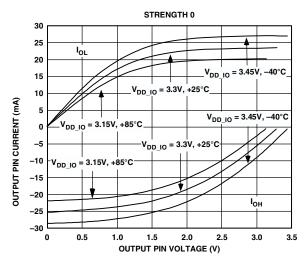


Figure 21. Typical Drive Currents at Strength 0

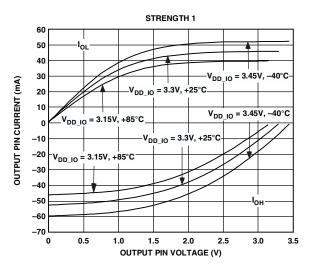


Figure 22. Typical Drive Currents at Strength 1

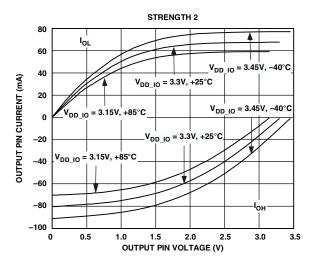


Figure 23. Typical Drive Currents at Strength 2

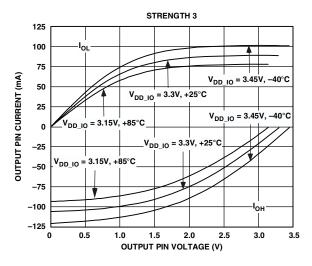
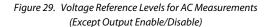



Figure 24. Typical Drive Currents at Strength 3

TEST CONDITIONS

The test conditions for timing parameters appearing in Table 29 on Page 29 and Table 30 on Page 30 include output disable time, output enable time, and capacitive loading. The timing specifications for the DSP apply for the voltage reference levels in Figure 29.

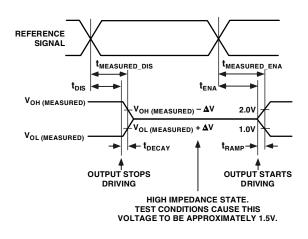


Figure 30. Output Enable/Disable

Output Disable Time

Output pins are considered to be disabled when they stop driving, go into a high impedance state, and start to decay from their output high or low voltage. The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_L and the load current, I_L . This decay time can be approximated by the following equation:

$$t_{DECAY} = \frac{C_L \Delta V}{I_L}$$

The output disable time t_{DIS} is the difference between $t_{MEASURED_DIS}$ and t_{DECAY} as shown in Figure 30. The time $t_{MEASURED_DIS}$ is the interval from when the reference signal switches to when the output voltage decays ΔV from the measured output high or output low voltage. The t_{DECAY} value is calculated with test loads C_L and I_L , and with ΔV equal to 0.5 V.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high impedance state to when they start driving. The time for the voltage on the bus to ramp by ΔV is dependent on the capacitive load, C_L , and the drive current, I_D . This ramp time can be approximated by the following equation:

$$t_{RAMP} = \frac{C_L \Delta V}{I_D}$$

The output enable time t_{ENA} is the difference between $t_{\text{MEASURED}_{\text{ENA}}}$ and t_{RAMP} as shown in Figure 30. The time $t_{\text{MEASURED}_{\text{ENA}}}$ is the interval from when the reference signal switches to when the output voltage ramps ΔV from the measured three-stated output level. The t_{RAMP} value is calculated with test load C_L , drive current I_D , and with ΔV equal to 0.5 V.

Capacitive Loading

Figure 31 shows the circuit with variable capacitance that is used for measuring typical output rise and fall times. Figure 32 through Figure 39 show how output rise time varies with capacitance. Figure 40 graphically shows how output valid varies with load capacitance. (Note that this graph or derating does not apply to output disable delays; see Output Disable Time on Page 34.) The graphs of Figure 32 through Figure 40 may not be linear outside the ranges shown.

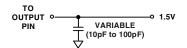


Figure 31. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

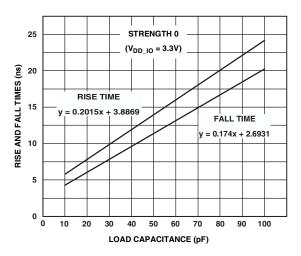


Figure 32. Typical Output Rise and Fall Time (10%–90%, V_{DD_IO} = 3.3 V) vs. Load Capacitance at Strength 0

Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic
F22	TMROE	G22	FLAG0	H22	ID1	J22	MSH	K22	WRL
L1	L3CLKIN	M1	L1DAT0	N1	L1DAT3	P1	L1DAT4	R1	L1DAT6
L2	NC	M2	L1DAT2	N2	L1DAT5	P2	L1CLKOUT	R2	DATA32
L3	L3DIR	M3	L1DAT1	N3	L1DAT7	P3	L1CLKIN	R3	DATA33
L4	V _{DD_IO}	M4	V _{DD_IO}	N4	V _{DD_IO}	P4	V _{DD_IO}	R4	V _{DD_IO}
L5	V _{DD}	M5	V _{SS}	N5	V _{DD_IO}	P5	V _{DD}	R5	V _{DD}
L6	V _{ss}	M6	V _{SS}	N6	V _{SS}	P6	V _{ss}	R6	V _{ss}
L7	V _{ss}	M7	V _{SS}	N7	V _{SS}	P7	V _{SS}	R7	V _{ss}
L8	V _{ss}	M8	V _{SS}	N8	V _{SS}	P8	V _{SS}	R8	V _{SS}
L9	V _{ss}	M9	V _{SS}	N9	V _{SS}	P9	V _{SS}	R9	V _{SS}
L10	V _{ss}	M10	V _{SS}	N10	V _{SS}	P10	V _{SS}	R10	V _{ss}
L11	V _{ss}	M11	V _{SS}	N11	V _{SS}	P11	V _{SS}	R11	V _{ss}
L12	V _{ss}	M12	V _{SS}	N12	V _{SS}	P12	V _{SS}	R12	V _{ss}
L13	V _{ss}	M13	V _{SS}	N13	V _{SS}	P13	V _{SS}	R13	V _{ss}
L14	V _{ss}	M14	V _{SS}	N14	V _{SS}	P14	V _{SS}	R14	V _{ss}
L15	V _{ss}	M15	V _{ss}	N15	V _{SS}	P15	V _{SS}	R15	V _{SS}
L16	V _{ss}	M16	V _{SS}	N16	V _{SS}	P16	V _{SS}	R16	V _{SS}
L17	V _{ss}	M17	V _{SS}	N17	V _{SS}	P17	V _{SS}	R17	V _{SS}
L18	V _{DD_IO}	M18	V _{DD_IO}	N18	V _{DD}	P18	V _{DD_IO}	R18	V _{DD}
L19	V _{DD_IO}	M19	V _{DD}	N19	V _{DD_IO}	P19	V _{DD_IO}	R19	V _{DD_IO}
L20	BRST	M20	HDQM	N20	SDWE	P20	ADDR31	R20	ADDR28
L21	WRH	M21	MSO	N21	MSSD	P21	RAS	R21	ADDR29
L22	RD	M22	MS1	N22	LDQM	P22	SDCKE	R22	CAS
 T1	L1DIR	U1	NC	V1	DATA34	W1	DATA40	Y1	DATA42
T2	DATA36	U2	DATA38	V2	DATA41	W2	DATA43	Y2	DATA45
Т3	DATA37	U3	DATA39	V3	DATA35	W3	DATA46	Y3	L2DAT5
T4	V _{DD_IO}	U4	V _{DD_IO}	V4	V _{DD_IO}	W4	V _{DD_IO}	Y4	DATA48
T5	V _{DD}	U5	V _{DD}	V5	V _{DD}	W5	V _{DD_IO}	Y5	DATA52
T6	V _{SS}	U6	V _{ss}	V6	V _{DD}	W6	V _{DD_IO}	Y6	DATA58
Т7	V _{SS}	U7	V _{ss}	V7	V _{DD_IO}	W7	V _{DD_IO}	Y7	DATA60
тя	V _{SS}	U8	V _{ss}	V8	V _{DD}	W8	V _{DD_IO}	Y8	DATA63
Т9	V _{SS}	U9	V _{SS}	V9	V _{DD}	W9	V _{DD_IO}	Y9	L2DAT4
T10	V _{SS}	U10	V _{ss}	V10	V _{DD}	W10	V _{DD_IO}	Y10	L2CLKOUT
T11	V _{SS}	U11	V _{SS}	V11	V _{DD}	W11	V _{DD_IO}	Y11	NC
T12	V _{SS}	U12	V _{SS}	V12	V _{DD_IO}	W12	V _{DD_IO}	Y12	BR4
T13	V _{SS}	U13	V _{SS}	V13	V _{DD}	W13	V _{DD_IO}	Y13	ACK
T14	V _{ss}	U14	V _{SS}	V14	V _{ss}	W14	V _{DD_IO}	Y14	
T15	V _{SS}	U15	V _{SS}	V15	V _{DD}	W15	V _{DD_IO}	Y15	ADDR0
T16	V _{SS}	U16	V _{SS}	V16	V _{DD}	W15	V _{DD_IO}	Y16	BR7
T17	V _{SS}	U17	V _{SS}	V10 V17	V _{DD}	W10	V _{DD_IO}	Y17	HBG
T18	V _{SS} V _{DD}	U18	V _{SS} V _{DD}	V17	V _{DD}	W17	V _{DD_IO}	Y18	ADDR1
T19	V _{DD} V _{DD_IO}	U19	V _{DD} V _{DD_IO}	V18 V19	V _{DD} V _{DD_IO}	W18 W19	V _{DD_IO}	Y19	ADDR1
112	ADDR23	U20	ADDR30	V19 V20	ADDR14	W20	ADDR12	Y20	ADDR11 ADDR21
T20				1 4 2 0				1120	
T20 T21	ADDR25	U21	ADDR22	V21	ADDR19	W21	ADDR17	Y21	ADDR18

Table 35. 484-Ball (19 mm \times 19 mm) PBGA Pin Assignments (Continued)

Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic
A1	V _{SS}	B1	V _{SS}	C1	V _{SS}	D1	V _{ss}	E1	DATA23
A2	DATA17	B2	V _{SS}	C2	DATA20	D2	V _{ss}	E2	DATA22
A3	DATA14	B3	DATA16	C3	DATA21	D3	DATA19	E3	V _{ss}
A4	DATA11	B4	DATA13	C4	DATA18	D4	V _{DD_IO}	E4	V _{DD_IO}
A5	DATA9	B5	DATA12	C5	DATA15	D5	V _{DD_IO}	E5	V _{DD_IO}
A6	DATA7	B6	DATA10	C6	DATA8	D6	V _{DD_IO}	E6	V _{DD}
A7	DATA4	B7	DATA5	C7	DATA6	D7	V _{DD_IO}	E7	V _{DD}
A8	DATA1	B8	DATA2	C8	DATA3	D8	V _{DD_IO}	E8	V _{DD_IO}
A9	LODIR	B9	NC	C9	DATA0	D9	V _{DD_IO}	E9	V _{DD_IO}
A10	L0DAT7	B10	LOCLKOUT	C10	LOCLKIN	D10	V _{DD_IO}	E10	V _{DD}
A11	L0DAT4	B11	L0DAT5	C11	L0DAT6	D11	V _{DD_IO}	E11	V _{DD}
A12	L0DAT1	B12	L0DAT2	C12	L0DAT3	D12	V _{DD_IO}	E12	V _{DD_IO}
A13	LCLK_N	B13	V _{ss}	C13	LODATO	D13	V _{DD_IO}	E13	V _{DD_IO}
A14	LCLK_P	B14	V _{ss}	C14	V _{SS_A}	D14	V _{DD_IO}	E14	V _{DD}
A15	V _{DD_A}	B15	V _{SS_A}	C15	V _{DD_A}	D15	V _{DD_IO}	E15	V _{DD}
A16	SCLK_N	B16	SCLK_P	C16	V _{SS}	D16	V _{DD_IO}	E16	V _{DD_IO}
A17	V _{REF}	B17	V _{ss}	C17	DS0	D17	V _{DD_IO}	E17	V _{DD_IO}
A18	DS1	B18	DS2	C18	CONTROLIMPO	D18	V _{DD_IO}	E18	V _{DD}
A19	CONTROLIMP2	B19	CONTROLIMP1	C19	DMAR1	D19	V _{DD_IO}	E19	V _{DD}
A20	RESET	B20	DMAR3	C20	TDI	D20	V _{DD_IO}	E20	V _{DD_IO}
A21	DMAR2	B21	DMARO	C21	IRQ2	D21	V _{DD_IO}	E21	V _{DD_IO}
A22	EMU	B22	IRQ3	C22	LCLKRATO	D22		E22	V _{DD_IO}
A23	TRST	B23	TCK	C22	LCLKRAT1	D23	BMS	E23	V _{SS}
A24	TMS	B23 B24	IRQ1	C23	IRQO	D23	V _{SS}	E24	SCLKFREQ
A25	V _{ss}	B25	TDO	C24 C25	V _{ss}	D24 D25	V _{SS}	E25	LCLKRAT2
F1	DATA26	G1	DATA29	H1	L3DAT0	J1	L3DAT3	K1	L3DAT6
F2	DATA25	G2	DATA28	H2	DATA31	J2	L3DAT2	K2	L3DAT5
F3	DATA24	G3	DATA20 DATA27	H3	DATA30	J3	L3DAT1	K3	L3DAT4
F4	V _{DD_IO}	G4	V _{DD_IO}	H4		J4	V _{DD_IO}	K4	V _{DD_IO}
F5	V _{DD_IO}	G5	V _{DD}	H5	V _{DD}	J5	V _{DD_IO}	K5	V _{DD_IO}
F6	V _{DD_IO}	G6	V _{DD}	H6	V _{DD}	79 72	V _{DD_IO}	K6	V _{DD_IO}
F7	V _{DD} V _{DD}	G7	V _{DD} V _{SS}	H7	V _{DD} V _{SS}	J7	V _{DD} V _{SS}	KO K7	V _{DD} V _{SS}
F8				H8		78 71		K7 K8	
	V _{DD}	G8	V _{ss}		V _{ss}		V _{ss}		V _{ss}
F9	V _{DD}	G9	V _{ss}	H9 H10	V _{ss}	J9	V _{ss}	K9	V _{ss}
F10	V _{DD}	G10	V _{ss}		V _{ss}	J10	V _{ss}	K10	V _{ss}
F11	V _{DD}	G11	V _{ss}	H11	V _{ss}	J11	V _{ss}	K11	V _{ss}
F12	V _{DD}	G12	V _{ss}	H12	V _{ss}	J12	V _{ss}	K12	V _{ss}
F13	V _{DD}	G13	V _{ss}	H13	V _{ss}	J13	V _{ss}	K13	V _{SS}
F14	V _{DD}	G14	V _{ss}	H14	V _{ss}	J14	V _{ss}	K14	V _{SS}
F15	V _{DD}	G15	V _{ss}	H15	V _{ss}	J15	V _{ss}	K15	V _{ss}
F16	V _{DD}	G16	V _{ss}	H16	V _{SS}	J16	V _{ss}	K16	V _{SS}
F17	V _{DD}	G17	V _{ss}	H17	V _{SS}	J17	V _{ss}	K17	V _{SS}
F18	V _{DD}	G18	V _{ss}	H18	V _{SS}	J18	V _{ss}	K18	V _{ss}
F19	V _{DD}	G19	V _{ss}	H19	V _{SS}	J19	V _{ss}	K19	V _{ss}
F20	V _{DD}	G20	V _{DD}	H20	V _{DD}	J20	V _{DD}	K20	V _{DD}
F21	V _{DD}	G21	V _{DD}	H21	V _{DD_IO}	J21	V _{DD_IO}	K21	V _{DD}
F22	V _{DD_IO}	G22	V _{DD_IO}	H22	V _{DD_IO}	J22	V _{DD_IO}	K22	V _{DD_IO}
F23	BM	G23	FLAG3	H23	FLAG0	J23	ID0	K23	NC
F24	BUSLOCK	G24	FLAG2	H24	ID2	J24	NC	K24	NC
F25	TMROE	G25	FLAG1	H25	ID1	J25	NC	K25	NC

Table 36. 625-Ball (27 mm \times 27 mm) PBGA Pin Assignments

Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic
.1	L3CLKIN	M1	L1DAT0	N1	L1DAT2	P1	L1DAT5	R1	L1CLKOUT
.2	L3CLKOUT	M2	NC	N2	NC	P2	L1DAT4	R2	L1DAT7
3	L3DAT7	M3	L3DIR	N3	L1DAT1	P3	L1DAT3	R3	L1DAT6
.4	V _{DD_IO}	M4	V _{DD_IO}	N4	V _{DD_IO}	P4	V _{DD_IO}	R4	V _{DD_IO}
.5	V _{DD}	M5	V _{DD}	N5	V _{DD_IO}	P5	V _{DD_IO}	R5	V _{DD}
.6	V _{DD}	M6	V _{DD}	N6	V _{DD}	P6	V _{DD}	R6	V _{DD}
.7	V _{SS}	M7	V _{SS}	N7	V _{ss}	P7	V _{SS}	R7	V _{ss}
8	V _{SS}	M8	V _{SS}	N8	V _{SS}	P8	V _{SS}	R8	V _{ss}
9	V _{ss}	M9	V _{SS}	N9	V _{ss}	P9	V _{ss}	R9	V _{ss}
10	V _{ss}	M10	V _{SS}	N10	V _{ss}	P10	V _{ss}	R10	V _{ss}
11	V _{ss}	M11	V _{ss}	N11	V _{ss}	P11	V _{ss}	R11	V _{ss}
12	V _{ss}	M12	V _{ss}	N12	V _{ss}	P12	V _{ss}	R12	V _{ss}
13	V _{SS}	M13	V _{SS}	N13	V _{ss}	P13	V _{ss}	R13	V _{ss}
14	V _{SS}	M14	V _{SS}	N14	V _{SS}	P14	V _{SS}	R14	V _{ss}
15	V _{SS}	M15	V _{SS}	N15	V _{ss}	P15	V _{ss}	R15	V _{ss}
16	V _{SS}	M16	V _{SS}	N16	V _{ss}	P16	V _{ss}	R16	V _{ss}
17	V _{SS}	M17	V _{SS}	N17	V _{ss}	P17	V _{ss}	R17	V _{ss}
18	V _{SS}	M18	V _{SS}	N18	V _{ss}	P18	V _{ss}	R18	V _{ss}
19	V _{SS}	M19	V _{SS}	N19	V _{ss}	P19	V _{ss}	R19	V _{ss}
20	V _{DD}	M20	V _{DD}	N20	V _{DD}	P20	V _{DD}	R20	V _{DD}
21	V _{DD}	M21	V _{DD_IO}	N21	V _{DD_IO}	P21	V _{DD}	R21	V _{DD}
22	V _{DD_IO}	M22	V _{DD_IO}	N22	V _{DD_IO}	P22	V _{DD_IO}	R22	V _{DD_IO}
23	NC	M23		N23	WRH	P23	MS1	R23	LDQM
24	NC	M24	MSH	N24	WRL	P24	MSO	R24	NC
25	FLYBY	M25	BRST	N25	RD	P25	HDQM	R25	MSSD
1	NC	U1	DATA34	V1	DATA37	W1	DATA40	Y1	DATA43
2	L1DIR	U2	DATA33	V2	DATA36	W2	DATA39	Y2	DATA42
3	L1CLKIN	U3	DATA32	V3	DATA35	W3	DATA38	Y3	DATA41
4	V _{DD_IO}	U4	V _{DD_IO}	V4	V _{DD_IO}	W4	V _{DD_IO}	Y4	V _{DD_IO}
5	V _{DD}	U5	V _{DD_IO}	V5	V _{DD_IO}	W5	V _{DD}	Y5	V _{DD}
6	V _{DD}	U6	V _{DD}	V6	V _{DD}	W6	V _{DD}	Y6	V _{DD}
7	V _{SS}	U7	V _{SS}	V7	V _{ss}	W7	V _{ss}	Y7	V _{DD}
8	V _{SS}	U8	V _{SS}	V8	V _{ss}	W8	V _{ss}	Y8	V _{DD}
9	V _{SS}	U9	V _{SS}	V9	V _{SS}	W9	V _{SS}	Y9	V _{DD}
10	V _{SS}	U10	V _{SS}	V10	V _{SS}	W10	V _{SS}	Y10	V _{DD}
11	V _{SS}	U11	V _{SS}	V11	V _{SS}	W11	V _{SS}	Y11	V _{DD}
12	V _{SS}	U12	V _{SS}	V12	V _{SS}	W12	V _{SS}	Y12	V _{DD}
13	V _{SS}	U13	V _{SS}	V13	V _{SS}	W13	V _{SS}	Y13	V _{DD}
14	V _{SS}	U14	V _{SS}	V14	V _{SS}	W14	V _{SS}	Y14	V _{DD}
15	V _{SS}	U15	V _{SS}	V15	V _{SS}	W15	V _{SS}	Y15	V _{DD}
16	V _{SS}	U16	V _{SS}	V16	V _{SS}	W16	V _{SS}	Y16	V _{DD}
17	V _{SS}	U17	V _{SS}	V17	V _{SS}	W10	V _{SS}	Y17	V _{DD}
18	V _{SS}	U18	V _{SS}	V18	V _{SS}	W18	V _{SS}	Y18	V _{DD}
19	V _{SS}	U19	V _{SS}	V10 V19	V _{SS}	W10	V _{SS}	Y19	V _{DD}
20	V _{SS} V _{DD}	U20	V _{SS} V _{DD}	V20	V _{DD}	W20	V _{DD}	Y20	V _{DD}
20	V _{DD} V _{DD_IO}	U21	V _{DD} V _{DD_IO}	V20 V21	V _{DD}	W20	V _{DD}	Y21	V _{DD} V _{DD_IO}
21	V _{DD_IO}	U22	V _{DD_IO}	V21 V22	V _{DD} V _{DD_IO}	W21 W22	V _{DD} V _{DD_IO}	Y22	V _{DD_IO}
		U23		V22 V23		W22 W23	ADDR28	Y23	ADDR26
/ <	JUCIL	025		v Z J		VVZJ	100120	125	100120
23 24	NC	U24	NC	V24	ADDR30	W24	NC	Y24	ADDR25

Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic	Pin No.	Mnemonic
AA1	DATA46	AB1	DATA49	AC1	V _{SS}	AD1	V _{ss}	AE1	V _{ss}
AA2	DATA45	AB2	DATA48	AC2	V _{ss}	AD2	V _{ss}	AE2	V _{ss}
AA3	DATA44	AB3	DATA47	AC3	DATA50	AD3	V _{ss}	AE3	V _{ss}
AA4	V _{DD_IO}	AB4	V _{DD_IO}	AC4	DATA51	AD4	DATA52	AE4	DATA53
AA5	V _{DD_IO}	AB5	V _{DD_IO}	AC5	DATA54	AD5	DATA55	AE5	DATA56
AA6	V _{DD_IO}	AB6	V _{DD_IO}	AC6	DATA57	AD6	DATA58	AE6	DATA59
AA7	V _{DD}	AB7	V _{DD_IO}	AC7	DATA60	AD7	DATA61	AE7	DATA62
AA8	V _{DD}	AB8	V _{DD_IO}	AC8	DATA63	AD8	L2DAT0	AE8	L2DAT1
AA9	V _{DD_IO}	AB9	V _{DD_IO}	AC9	L2DAT2	AD9	L2DAT3	AE9	L2DAT4
AA10	V _{DD_IO}	AB10	V _{DD_IO}	AC10	L2DAT5	AD10	L2DAT6	AE10	L2DAT7
AA11	V _{DD}	AB11	V _{DD_IO}	AC11	L2CLKOUT	AD11	L2CLKIN	AE11	L2DIR
AA12	V _{DD}	AB12	V _{DD_IO}	AC12	NC	AD12	BRO	AE12	BR1
AA13	V _{DD_IO}	AB13	V _{DD_IO}	AC13	BR2	AD13	BR3	AE13	BR4
AA14	V _{DD_IO}	AB14	V _{DD_IO}	AC14	BR5	AD14	BR6	AE14	BR7
AA15	V _{DD}	AB15	V _{DD_IO}	AC15	ACK	AD15	HBR	AE15	BOFF
AA16	V _{DD}	AB16	V _{DD_IO}	AC16	HBG	AD16	CPA	AE16	DPA
AA17	V _{DD_IO}	AB17	V _{DD_IO}	AC17	ADDR0	AD17	ADDR1	AE17	ADDR2
AA18	V _{DD_IO}	AB18	V _{DD_IO}	AC18	ADDR3	AD18	ADDR4	AE18	ADDR5
AA19	V _{DD}	AB19	V _{DD_IO}	AC19	ADDR6	AD19	ADDR7	AE19	ADDR8
AA20	V _{DD}	AB20	V _{DD_IO}	AC20	ADDR9	AD20	SDA10	AE20	ADDR10
AA21	V _{DD_IO}	AB21	V _{DD_IO}	AC21	ADDR11	AD21	ADDR12	AE21	ADDR13
AA22	V _{DD_IO}	AB22	V _{DD_IO}	AC22	ADDR14	AD22	ADDR15	AE22	V _{ss}
AA23	ADDR23	AB23	ADDR20	AC23	V _{ss}	AD23	V _{ss}	AE23	V _{ss}
AA24	ADDR22	AB24	ADDR19	AC24	ADDR17	AD24	V _{ss}	AE24	V _{ss}
AA25	ADDR21	AB25	ADDR18	AC25	ADDR16	AD25	V _{ss}	AE25	V _{ss}

Table 36. 625-Ball (27 mm × 27 mm) PBGA Pin Assignments (Continued)

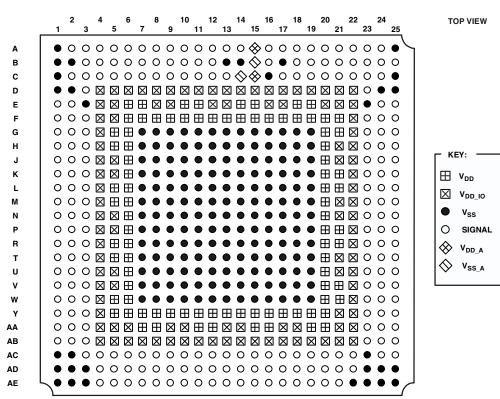


Figure 42. 625-Ball PBGA Pin Configurations (Top View, Summary)