

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m306n4fgtfp-ukj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as **efdh**ate this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and carefubattention additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual **ghtsp**erty ri of third parties by or arising from the use of Renesas Electronics products or technical information described in this document No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property right of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operat semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technologyschebed in this document for any purposlating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or **iss**ions from the information included herein.
- 7. Renesas Electronics products are classified according fool to weing three quality grades: "Standard", "High Quality", dan "Specific". The recommended application seach Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you mayseo any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for a application categorized as "Specific" or for which the productos intended where you have failed to obtain the prior writte consent of Renesas Electronics. The quality grade of Rearets Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, shepc.); traffic control systems; anti-disaster systemte; an crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions o damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quaditiveliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use contractive rates and renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to

Figure 1.4 Pin Assignments (Top View) (2)

Table 1.4 List of Pin Names (2)

Pin	No.	Control	Port	Interrupt	Timor Pin		Analog	CAN Module	Rue Control Din
FP	GP	Pin	FUIL	Pin		UANTEIII	Pin	Pin	Bus Control Fill
51	49		P4_3						A19
52	50		P4_2						A18
53	51		P4_1						A17
54	52		P4_0						A16
55	53		P3_7						A15
56	54		P3 6						A14
57	55		P3 5						A13
58	56		P3 4						A12
59	57		P3 3						A11
60	58		P3 2						A10
61	59		P3 1						A9
62	60	VCC2							
63	61	1002	P3 0						A8(/-/D7)
64	62	VSS							10(, 101)
65	63		P2 7				AN2 7		A7(/D7/D6)
66	64		P2 6				AN2 6		A6(/D6/D5)
67	65		P2 5				$\Delta N_2 5$		A5(/D5/D4)
68	66		P2 /				AN2 4		A3(/D3/D4)
60	67		D2 3				AN2 3		A4(/D4/D3)
70	60		FZ_3				AN2_3		A3(/D3/D2)
70	60		FZ_Z				ANZ_Z		A2(/D2/D1)
	09 70		P2_1				AN2_1		A1(/D1/D0)
72	70		P2_0	INITE			AN2_0		AU(/DU/-)
73	/1		PI_/						DI5
/4	72		P1_6						D14
75	73		P1_5	IN13					D13
76	74		P1_4						D12
77	75		P1_3						D11
78	76		P1_2						D10
79	77		P1_1						D9
80	78		P1_0						D8
81	79		P0_7				AN0_7		D7
82	80		P0_6				AN0_6		D6
83	81		P0_5				AN0_5		D5
84	82		P0_4				AN0_4		D4
85	83		P0_3				AN0_3		D3
86	84		P0_2				AN0_2		D2
87	85		P0_1				AN0_1		D1
88	86		P0_0				AN0_0		D0
89	87		P10_7	KI3			AN7		
90	88		P10_6	KI2			AN6		
91	89		P10_5	KI1			AN5		
92	90		P10_4	KI0			AN4		
93	91		P10_3				AN3		
94	92		P10_2				AN2		
95	93		P10_1				AN1		
96	94	AVSS							
97	95		P10_0				AN0		
98	96	VREF							
99	97	AVCC							
100	98		P9 7				ADTRG		
	- -	I	<u> </u>	I				L	

FP: PRQP0100JB-A (100P6S-A), GP: PLQP0100KB-A (100P6Q-A)

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two register banks.

Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

The A0 register consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and arithmetic/logic operations. A1 is the same as A0.

In some instructions, A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

This flag is used exclusively for debugging purpose. During normal use, set to 0.

2.8.3 Zero Flag (Z Flag)

This flag is set to 1 when an arithmetic operation resulted in 0; otherwise, it is 0.

2.8.4 Sign Flag (S Flag)

This flag is set to 1 when an arithmetic operation resulted in a negative value; otherwise, it is 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is 0; register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

This flag is set to 1 when the operation resulted in an overflow; otherwise, it is 0.

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt. Maskable interrupts are disabled when the I flag is 0, and are enabled when the I flag is 1. The I flag is set to 0 when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0; USP is selected when the U flag is 1. The U flag is set to 0 when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt request is enabled.

2.8.10 Reserved Area

When white to this bit, write 0. When read, its content is undefined.

3. Memory

Figure 3.1 shows a Memory Map. The address space extends the 1 Mbyte from address 00000h to FFFFh. The internal ROM is allocated in a lower address direction beginning with address FFFFh. For example, a 128-Kbyte internal ROM is allocated to the addresses from E0000h to FFFFh.

As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 5-Kbyte internal RAM is allocated to the addresses from 00400h to 017FFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The Special Function Registers (SFRs) are allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be accessed by user.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to **M16C/60**, **M16C/20**, **M16C/Tiny Series Software Manual**. In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

1. During memory expansion mode or microprocessor mode, cannot be used.

2. In memory expansion mode, cannot be used.

3. As for the flash memory version, 4-Kbyte space (block A) exists.

4. When using the masked ROM version, write nothing to internal ROM area.

5. Shown here is a memory map for the case where the PM10 bit in the PM1 register is 1 (block A enabled, addresses 10000h to 26FFFh for CS2 area) and the PM13 bit in the PM1 register is 1 (internal RAM area is expanded over 192 Kbytes).

Figure 3.1 Memory Map

4. Special Function Registers (SFRs)

An SFR (Special Function Register) is a control register for a peripheral function. Tables 4.1 to 4.16 list the SFR Information.

(3)

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0 (1)	PM0	00000000b (CNVSS pin is "L") 00000011b (CNVSS pin is "H")
0005h	Processor Mode Register 1	PM1	00001000b
0006h	System Clock Control Register 0	CM0	01001000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Chip Select Control Register	CSR	0000001b
0009h	Address Match Interrupt Enable Register	AIER	XXXXXX00b
000Ah	Protect Register	PRCR	XX000000b
000Bh			
000Ch	Oscillation Stop Detection Register (2)	CM2	0X00000b
000Dh	Wetchday Times Oracl Devictor	MOTO	204
000Eh	Watchdog Timer Start Register	WDIS	
000FN	Walchdog Timer Control Register	WDC	00h
0010h	Address Match Interrupt Register 0	DMADO	00h
0011h	Address Match Interrupt Register 0	RIVIADO	V0h
0012h			Xuii
0014h			00h
0015h	Address Match Interrupt Begister 1	BMAD1	00h
0016h			X0h
0017h			
0018h			
0019h			
001Ah			
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch	PLL Control Register 0	PLC0	0001X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XXX00000b
001Fh			
0020h	DMAG On the Delater	0.4.50	XXh
0021h	DMAU Source Pointer	SARU	XXn
0022h			XXn
00230 0024b			
002411 0025h	DMA0 Destination Pointer	DARO	XXh
0025h		DAITO	XXh
0027h			7000
0028h		TODA	XXh
0029h	DMA0 Transfer Counter	I CHO	XXh
002Ah			
002Bh			
002Ch	DMA0 Control Register	DM0CON	00000X00b
002Dh			
002Eh			
002Fh			<u> </u>
0030h	DMM On the Delated	04.54	XXh
0031h	Divia i Source Pointer	SARI	XXh
00320			<u>AĂN</u>
003311			YVh
003411 0035h	DMA1 Destination Pointer	DAR1	<u>хли</u> ХҮь
0036h			XXh
0037h			22201
0038h		TOD4	XXh
0039h	DIMA1 Transfer Counter	ICHI	XXh
003Ah			
003Bh			
003Ch	DMA1 Control Register	DM1CON	00000X00b
003Dh			
003Eh			
003Fh			

X: Undefined

NOTES:

Bits PM00 and PM01 in the PM0 register do not change at software reset, watchdog timer reset and oscillation stop detection reset.
 Bits CM20, CM21, and CM27 in the CM2 register do not change at oscillation stop detection reset.

3. Blank spaces are reserved. No access is allowed.

Table 4.14 SFR Information (14) (1)

Address	Register	Symbol	After Reset
0340h			XXh
0341h			XXh
0342h	CANIT Massage Day 14 Identifier / DLC		XXh
0343h	CANT Message Box 14. Identifier / DLC		XXh
0344h			XXh
0345h			XXh
0346h			XXh
0347h			XXh
0348h			XXh
0349h	CANI1 Magazara Boy 14: Data Field		XXh
034Ah	CANT Message box 14. Data Fleid		XXh
034Bh			XXh
034Ch			XXh
034Dh			XXh
034Eh	CANIT Magagage Boy 14: Time Stamp		XXh
034Fh	CANT Message Box 14. Time Stamp		XXh
0350h			XXh
0351h			XXh
0352h	CANIT Magazara Boy 15: Identifier / DLC		XXh
0353h	CANT Message box 15. Identifier / DEC		XXh
0354h			XXh
0355h			XXh
0356h			XXh
0357h			XXh
0358h			XXh
0359h	CANI1 Magazara Boy 15: Data Field		XXh
035Ah	CANT Message box 15. Data Field		XXh
035Bh			XXh
035Ch			XXh
035Dh			XXh
035Eh	CAN1 Message Box 15: Time Stamp		XXh
035Fh			XXh
0360h			XXh
0361h			XXh
0362h	CAN1 Global Mask Begister	C1GMB	XXh
0363h		o raimr	XXh
0364h			XXh
0365h			XXh
0366h			XXh
0367h			XXh
0368h	CAN1 Local Mask A Register	C1LMAR	XXh
0369h		-	XXh
036Ah			XXh
036Bh			XXn
036Ch			XXn
036Dh			<u> </u>
036Eh	CAN1 Local Mask B Register	C1LMBR	<u> </u>
030FN			
03/0n			
03706			~~!!
03/20			
03/30			
03756			
037511			
037011			
03796			
03701			
0379H			
037AII			
0370h			
03701			
037Eh			
037Eh			
00/111			

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Switching Characteristics

VCC = 5 V

Symbol	Parameter	Measuring	Standard		Linit
Symbol	Farameter	Condition	Min.	Max.	Onn
td(BCLK-AD)	Address output delay time	Figure 5.2		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK) 4				
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)	time (in relation to WR) (3) (NOTE 1)			
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 5.23 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is 12.5 MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in $t = - CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Figure 5.2 Port P0 to P10 Measurement Circuit

Memory Expansion Mode and Microprocessor Mode (Effective for setting with wait)	VCC = 5 V
BCLK	
RD (Separate bus)	
WR, WRL, WRH	
RD (Multiplexed bus)	
WR, WRL, WRH,	
RDY input	
(Common to setting with wait and setting without wait) BCLK	/
HOLD input	
HLDA output	
P0, P1, P2, P3, P4, P5_0 to P5_2 ⁽¹⁾	
NOTE: 1. The above pins are set to high-impedance regardless of the input level of t the PM06 bit in the PM0 register, and the PM11 bit in the PM1 register.	he BYTE pin,
Measuring conditions : • VCC = 5 V • Input timing voltage : Determined with VIL = 1.0 V, VIH = 4.0 V • Output timing voltage: Determined with VoL = 2.5 V, VOH = 2.5 V	

Figure 5.4 Timing Diagram (2)

Figure 5.6 Timing Diagram (4)

Table 5.31 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring	Standard			LInit
Gymbol			Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during powering-on	VCC = 3.0 to 5.5 V			2	ms
td(R-S)	STOP release time				150	μs
td(W-S)	Low power dissipation mode wait mode release time]			150	μs

Figure 5.11 Power Supply Circuit Timing Diagram

Symbol	Baramatar		Baramatar Manauring Condition		Standard			Llnit
Symbol	Га	Tameter	Measur	Measuring Condition		Тур.	Max.	Unit
Icc	Power supply	In single-chip mode,	Mask ROM	f(BCLK) = 24 MHz,		20	36	mA
	current	the output pins are		PLL operation,				
	(VCC = 3.0 to 5.5 V)	open and other pins		No division				
		are VSS.		On-chip oscillation,		1		mA
				No division				
			Flash memory	f(BCLK) = 24 MHz,		22	38	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash memory	f(BCLK) = 10 MHz,		15		mA
			program	VCC = 5 V				
			Flash memory	f(BCLK) = 10 MHz,		25		mA
			erase	VCC = 5 V				
			Mask ROM	f(BCLK) = 32 kHz,		25		μA
				Low power dissipation				
				mode, ROM ⁽²⁾				
			Flash memory	f(BCLK) = 32 kHz,		25		μA
				Low power dissipation				
				mode, RAM ⁽²⁾				
				f(BCLK) = 32 kHz,		420		μA
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μA
			Flash memory	Wait mode				
				f(BCLK) = 32 kHz,		8.5		μA
				Wait mode ⁽³⁾ ,				
				Oscillation capacity High				
				f(BCLK) = 32 kHz,		3.0		μA
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μA
				Topr = 25°C				

Table 5.33 Electrical Characteristics (2)

NOTES:

1. Referenced to VCC = 3.0 to 5.5 V, VSS = 0 V at Topr = -40 to 85° C, f(BCLK) = 24 MHz unless otherwise specified.

2. This indicates the memory in which the program to be executed exists.

3. With one timer operated using fC32.

Timing Requirements VCC = 5 V(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.36 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter		Standard		
Symbol		Min.	Max.	Unit	
tc(TA)	TAIIN input cycle time	100		ns	
tw(TAH)	TAIIN input HIGH pulse width	40		ns	
tw(TAL)	TAIIN input LOW pulse width	40		ns	

Table 5.37 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter		Standard		
Symbol		Min.	Max.	Onit	
tc(TA)	TAilN input cycle time	400		ns	
tw(TAH)	TAIIN input HIGH pulse width			ns	
tw(TAL)	TAilN input LOW pulse width	200		ns	

Table 5.38 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parametar	Standard	dard	Llpit	
	Parameter	Min.	Max.	Unit	
tc(TA)	TAIIN input cycle time	200		ns	
tw(TAH)	TAIIN input HIGH pulse width	100		ns	
tw(TAL)	TAIIN input LOW pulse width	100		ns	

Table 5.39 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parametar	Standard		Linit
	Farameter	Min.	Max.	
tw(TAH)	TAIIN input HIGH pulse width	100		ns
tw(TAL)	TAilN input LOW pulse width	100		ns

Table 5.40 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Unit
tc(UP)	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input HIGH pulse width	1000		ns
tw(UPL)	TAiOUT input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

Table 5.41 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	
t _{c(TA)}	TAIIN input cycle rime	800		ns
tsu(TAIN-TAOUT)	TAiOUT input setup time	200		ns
tsu(taout-tain)	TAIIN input setup time	200		ns

Timing Requirements VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.42 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Standard	
	Farameter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time (counted on one edge)	100		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBiIN input LOW pulse width (counted on one edge)	40		ns
t _{c(TB)}	TBiIN input cycle time (counted on both edges)	200		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBiIN input LOW pulse width (counted on both edges)	80		ns

Table 5.43 Timer B Input (Pulse Period Measurement Mode)

Symbol	Baramatar	Standard		Linit	
	Parameter	Min.	Max.	Unit	
t _{c(TB)}	TBiIN input cycle time	400		ns	
tw(TBH)	TBiIN input HIGH pulse width	200		ns	
tw(TBL)	TBiIN input LOW pulse width	200		ns	

Table 5.44 Timer B Input (Pulse Width Measurement Mode)

Symbol	Baramatar	Stan	Standard	
	Faldmeter	Min.	Max.	
tc(TB)	TBiIN input cycle time	400		ns
t _{w(TBH)}	TBIIN input HIGH pulse width	200		ns
tw(TBL)	TBiIN input LOW pulse width	200		ns

Table 5.45 A/D Trigger Input

Symbol	Deremeter	Standard		Linit	
	Parameter	Min.	Max.	Unit	
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns	
tw(ADL)	ADTRG input LOW pulse width	125		ns	

Table 5.46 Serial Interface

Symbol	Parameter	Standard		Linit
	Farameter	Min.	Max.	Onit
tc(CK)	CLKi input cycle time	200		ns
t _{w(CKH)}	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TXDi output delay time		80	ns
th(C-Q)	TXDi hold time	0		ns
tsu(D-C)	RXDi input setup time	70		ns
th(C-D)	RXDi input hold time	90		ns

Table 5.47 External Interrupt INTi Input

Symbol	Baramatar	Standard		Lloit
	Parameter	Min.	Max.	Unit
t _{w(INH)}	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Cumbol	Devementer	Measuring	Stan	dard	Linit
Symbol	Parameter	Condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time	Figure 5.12		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		(NOTE 1)		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
$t_{d(BCLK-CS)}$	Chip select output delay time			25	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (in relation to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns
td(BCLK-ALE)	ALE signal output delay time (in relation to BCLK)			15	ns
th(BCLK-ALE)	ALE signal output hold time (in relation to BCLK)	-	-4		ns
td(AD-ALE)	ALE signal output delay time (in relation to Address)		(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (in relation to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address	-	0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Table 5.50 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \text{ n is "2" for 2-wait setting, "3" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

Rev.2.40 Aug 25, 2006 page 64 of 88 REJ03B0003-0240

Figure 5.20 Timing Diagram (8)

Timing Requirements VCC = 3.3 V (Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.52 External Clock Input (XIN Input)

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Unit
tc	External clock input cycle time	62.5		ns
tw(H)	External clock input HIGH pulse width	25		ns
tw(L)	External clock input LOW pulse width	25		ns
tr	External clock rise time		15	ns
tr	External clock fall time		15	ns

Table 5.53 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Standard		Unit
	Farameter		Max.	
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	50		ns
tsu(RDY-BCLK)	RDY input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	50		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 60 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Figure 5.26 Timing Diagram (5)

REVISION HISTORY

M16C/6N Group (M16C/6N4) Data Sheet

Rev.	Date	Description			
		Page	Summary		
2.40	Aug. 25, 2006	7, 8	Tables 1.3 and 1.4 List of Pin Names (1)(2) are added.		
		9	Table 1.5 Pin Functions (1)		
			 3.0 to 5.5 V (Normal-ver.) is added to Description of Power supply input. 		
		22	Table 4.8 SFR Information (8)		
			 The value of After Reset in IDB0 register is revised. 		
			 The value of After Reset in IDB1 register is revised. 		
		33	Table 5.3 Recommended Operating Conditions (2)		
			 Power supply ripple is deleted. (three items) 		
			Figure 5.1 Voltage Fluctuation Timing is deleted.		
		34	Table 5.4 Electrical Characteristics (1): Hysteresis XIN is deleted.		
		52 to 87	5.2 Electrical Characteristics (Normal-ver.) is added.		