

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, WDT
Number of I/O	87
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m306n4mct-137fpusq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

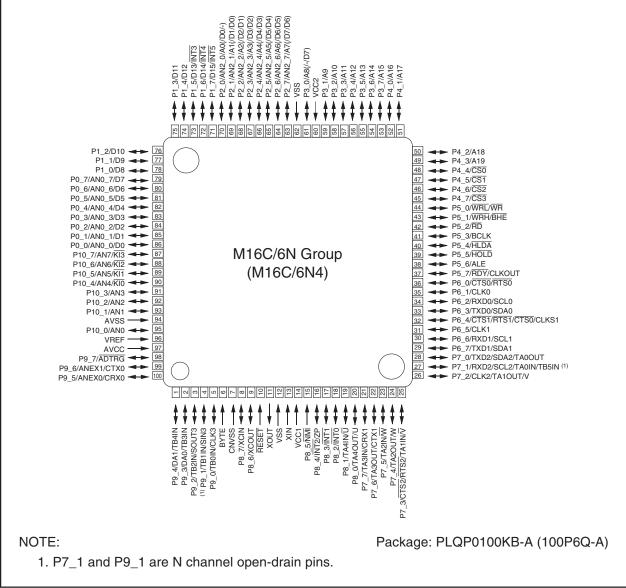


Figure 1.4 Pin Assignments (Top View) (2)

Table 4.6 SFR Information (6) ⁽¹⁾

Address	Register	Symbol	After Reset
0140h	~		XXh
0141h			XXh
0142h	CAN0 Message Box 14: Identifier /DLC		XXh
0143h 0144h	-		XXh XXh
0144n 0145h			XXh
0145h			XXh
0140h			XXh
0148h			XXh
0149h	CAN0 Message Box 14: Data Field		XXh
014Ah	On No Message Dox 14. Data Field		XXh
014Bh			XXh
014Ch			XXh XXh
014Dh 014Eh			XXh
014En	CAN0 Message Box 14: Time Stamp		XXh
0150h			XXh
0151h			XXh
0152h	CAN0 Message Box 15: Identifier /DLC		XXh
0153h	OANO Message box 13. Identifier / DEO		XXh
0154h			XXh
0155h			XXh
0156h 0157h			XXh XXh
0157h 0158h			XXh
0159h			XXh
015Ah	CAN0 Message Box 15: Data Field		XXh
015Bh			XXh
015Ch			XXh
015Dh			XXh
015Eh	CAN0 Message Box 15: Time Stamp		XXh
015Fh			XXh XXh
0160h 0161h			XXh
0162h			XXh
0163h	CAN0 Global Mask Register	C0GMR -	XXh
0164h			XXh
0165h			XXh
0166h			XXh
0167h			XXh
0168h 0169h	CAN0 Local Mask A Register	COLMAR	XXh XXh
016Ah			XXh
016Bh			XXh
016Ch			XXh
016Dh			XXh
016Eh	CAN0 Local Mask B Register	COLMBR	XXh
016Fh			XXh
0170h			XXh XXb
0171h 0172h			XXh
0172n 0173h			
0173h		1	
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah 017Bh			
017Bh 017Ch			
017Dh			
017Eh			
017Fh			

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.7 SFR Information (7) (2)

Address	Register	Symbol	After Reset
0180h			
0181h			
0182h			
0183h 0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch 018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h 0196h			
0190h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh 019Fh			
019Fn			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h 01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h 01B1h			
01B1h			
01B3h			
01B4h			
01B5h	Flash Memory Control Register 1 (1)	FMR1	0X00XX0Xb
01B6h			
01B7h	Flash Memory Control Register 0 ⁽¹⁾	FMR0	0000001b
01B8h	Address Motob Interrupt Register 2	DMAD2	00h
01B9h 01BAh	Address Match Interrupt Register 2	RMAD2	00h X0h
01BAn 01BBh	Address Match Interrupt Enable Register 2	AIER2	XXXXXX00b
01BCh			00h
01BDh	Address Match Interrupt Register 3	RMAD3	00h
01BEh			X0h
01BFh			
V: Undofin			

X: Undefined

NOTES:

These registers are included in the flash memory version. Cannot be accessed by users in the mask ROM version.
 Blank spaces are reserved. No access is allowed.

Table 4.8 SFR Information (8) ⁽¹⁾

Address	Register	Symbol	After Reset
01C0h	Timer B3, B4, B5 Count Start Flag	TBSR	000XXXXXb
01C0h	Timer B3, B4, B3 Count Start Flag	IBSN	000//////
01C1h			XXh
01C2h	Timer A1-1 Register	TA11	XXh
01C3n			XXh
	Timer A2-1 Register	TA21	XXh
01C5h	-		XXh
01C6h	Timer A4-1 Register	TA41	
01C7h		1010/000	XXh
01C8h	Three-Phase PWM Control Register 0	INVC0 INVC1	00h
01C9h	Three-Phase PWM Control Register 1		00h
01CAh	Three-Phase Output Buffer Register 0	IDB0	00111111b
01CBh	Three-Phase Output Buffer Register 1	IDB1	00111111b
01CCh	Dead Time Timer	DTT	XXh
01CDh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
01CEh			
01CFh			
01D0h	Timer B3 Register	ТВЗ	XXh
01D1h		120	XXh
01D2h	Timer B4 Register	ТВ4 —	XXh
01D3h			XXh
01D4h	Timer B5 Register	ТВ5 —	XXh
01D5h		185	XXh
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh	Timer B3 Mode Register	TB3MR	00XX0000b
01DCh	Timer B4 Mode Register	TB4MR	00XX0000b
01DDh	Timer B5 Mode Register	TB5MR	00XX0000b
01DEh	Interrupt Source Select Register 0	IFSR0	00XXX000b
01DFh	Interrupt Source Select Register 1	IFSR1	00h
01E0h	SI/O3 Transmit/Receive Register	S3TRR	XXh
01E1h	3		
01E2h	SI/O3 Control Register	S3C	0100000b
01E3h	SI/O3 Bit Rate Register	S3BRG	XXh
01E4h		002.10	70
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh 01EBh			
	LIADTO Cassial Made Degister 4		00h
01ECh	UARTO Special Mode Register 4	U0SMR4 U0SMR3	00h 000X0X0Xb
01EDh	UARTO Special Mode Register 3		
01EEh	UARTO Special Mode Register 2	U0SMR2	X000000b
01EFh	UARTO Special Mode Register	U0SMR	X000000b
01F0h	UART1 Special Mode Register 4	U1SMR4	00h
01F1h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
01F2h	UART1 Special Mode Register 2	U1SMR2	X000000b
01F3h	UART1 Special Mode Register	UISMR	X000000b
01F4h	UART2 Special Mode Register 4	U2SMR4	00h
01F5h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
01F6h	UART2 Special Mode Register 2	U2SMR2	X000000b
01F7h	UART2 Special Mode Register	U2SMR	X000000b
01F8h	UART2 Transmit/Receive Mode Register	U2MR	00h
01F9h	UART2 Bit Rate Register	U2BRG	XXh
01FAh	UART2 Transmit Buffer Register	U2TB	XXh
01FBh	UNITE HAIBIIIL DUILEI NEUISIEL	0210	XXh
01FCh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
01FDh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
01FEh			XXh
01FFh	UART2 Receive Buffer Register	U2RB —	XXh
Villadofia		· · · · · · · · · · · · · · · · · · ·	

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

M16C/6N Group (M16C/6N4)

Table 4.9 SFR Information (9)

Address	Register	Symbol	After Reset
0200h	CAN0 Message Control Register 0	COMCTLO	00h
0200h	CANO Message Control Register 1	COMCTL1	00h
0202h	CANO Message Control Register 2	C0MCTL2	00h
0203h	CAN0 Message Control Register 3	COMCTL3	00h
0203h	CAN0 Message Control Register 4	COMCTL4	00h
020411 0205h	CANO Message Control Register 5	COMCTL5	00h
0205h	CANO Message Control Register 6	COMCTL6	00h
	CANO Message Control Register 7	COMOTEO COMCTL7	00h
0207h	CANO Message Control Register 8	COMCTL8	00h
0208h 0209h	CANO Message Control Register 9	COMCTL9	00h
	CANO Message Control Register 9	COMCTL10	00h
020Ah		COMCTL11	
020Bh	CANO Message Control Register 11		00h
020Ch	CANO Message Control Register 12	COMCTL12	00h
020Dh	CANO Message Control Register 13	COMCTL13	00h
020Eh	CANO Message Control Register 14	COMCTL14	00h
020Fh	CAN0 Message Control Register 15	C0MCTL15	00h
0210h	CAN0 Control Register	COCTLR	X000001b
0211h			XX0X0000b
0212h	CAN0 Status Register	COSTR	00h
0213h		00011	X000001b
0214h	CAN0 Slot Status Register	COSSTR	00h
0215h	CANO OIUL OLALUS HEYISLEI		00h
0216h	CAN0 Interrupt Control Register	COICR	00h
0217h	CANO Interrupt Control Register	CUICR	00h
0218h	CANO Estandad ID Bagistar	00100	00h
0219h	CAN0 Extended ID Register	COIDR	00h
021Ah		0.001	XXh
021Bh	CAN0 Configuration Register	COCONR	XXh
021Ch	CAN0 Receive Error Count Register	CORECR	00h
021Dh	CAN0 Transmit Error Count Register	COTECR	00h
021Eh	<u> </u>		00h
021Eh	CAN0 Time Stamp Register	COTSR	00h
0220h	CAN1 Message Control Register 0	C1MCTL0	00h
022011 0221h	CAN1 Message Control Register 0	C1MCTL1	00h
022111 0222h	CAN'T Message Control Register 1	C1MCTL2	00h
	CAN'T Message Control Register 2	C1MCTL2	00h
0223h			
0224h	CAN1 Message Control Register 4	C1MCTL4	00h
0225h	CAN1 Message Control Register 5	C1MCTL5	00h
0226h	CAN1 Message Control Register 6	C1MCTL6	00h
0227h	CAN1 Message Control Register 7	C1MCTL7	00h
0228h	CAN1 Message Control Register 8	C1MCTL8	00h
0229h	CAN1 Message Control Register 9	C1MCTL9	00h
022Ah	CAN1 Message Control Register 10	C1MCTL10	00h
022Bh	CAN1 Message Control Register 11	C1MCTL11	00h
022Ch	CAN1 Message Control Register 12	C1MCTL12	00h
022Dh	CAN1 Message Control Register 13	C1MCTL13	00h
022Eh	CAN1 Message Control Register 14	C1MCTL14	00h
022Fh	CAN1 Message Control Register 15	C1MCTL15	00h
0230h	CAN1 Control Register	C1CTLR	X000001b
0231h		UIUILN	XX0X0000b
0232h	CANI Statua Degister	C10TD	00h
0233h	CAN1 Status Register	C1STR	X000001b
0234h	CANIA Class Chatrice Desciptory	CLOOTD	00h
0235h	CAN1 Slot Status Register	C1SSTR	00h
0236h		0.1105	00h
0237h	CAN1 Interrupt Control Register	C1ICR	00h
0238h			00h
0239h	CAN1 Extended ID Register	C1IDR	00h
0233h			XXh
023An	CAN1 Configuration Register	C1CONR	XXh
-	CAN1 Receive Error Count Register	C1RECR	00h
023Ch	CANT Receive Error Count Register	CITECR	
023Dh			00h
023Eh 023Fh	CAN1 Time Stamp Register	C1TSR	00h 00h
			UUN

X: Undefined

5. Electrical Characteristics

5.1 Electrical Characteristics (T/V-ver.)

Table 5.1 Absolute Maximum Ratings

Symbol			Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage (VCC1 = VCC2)			VCC = AVCC	-0.3 to 6.5	V
AVcc	Analog supply voltage			VCC = AVCC	-0.3 to 6.5	V
Vi	Input	RESET,	CNVSS, BYTE,		-0.3 to VCC+0.3	V
	voltage	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,			
		P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to F	P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
		P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
		VREF, >	(IN			
		P7_1, P9_1			-0.3 to 6.5	V
Vo	Output	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,		-0.3 to VCC+0.3	V
	voltage	P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to	P6_7, P7_0, P7_2 to P7_7,			
		P8_0 to I	P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
		P10_0 t	o P10_7, XOUT			
		P7_1, P	9_1		-0.3 to 6.5	V
Pd	Power dis	sipation		Topr = 25°C	700	mW
Topr	Operating	ambient	During MCU operation		T version: -40 to 85	°C
	temperature				V version: -40 to 125 (option)	
			During flash memory program and		0 to 60	
			erase operation			
Tstg	Storage te	Storage temperature			-65 to 150	°C

option: All options are on request basis.

Table 5.2 Recommended Operating Conditions (1)

Symbol	Parameter			ł	Unit	
Symbol			Min.	Тур.	Max.	Unit
Vcc	Supply volta	ge (VCC1 = VCC2)	4.2	5.0	5.5	V
AVcc	Analog supp	ly voltage		Vcc		V
Vss	Supply volta	ge		0		V
AVss	Analog supp	ly voltage		0		V
VIH	HIGH input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8 Vcc		Vcc	V
	voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, XIN, RESET, CNVSS, BYTE				
		P7_1, P9_1	0.8 Vcc		6.5	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8 Vcc		Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5 Vcc		Vcc	V
		(Data input during memory expansion and microprocessor modes)				
VIL	LOW input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2 Vcc	V
	voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		XIN, RESET, CNVSS, BYTE				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2 Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16 Vcc	V
		(Data input during memory expansion and microprocessor modes)				
OH(peak)	HIGH peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,				
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,				
		P9_2 to P9_7, P10_0 to P10_7				
OH(avg)	HIGH average	$P0_0 \text{ to } P0_7, P1_0 \text{ to } P1_7, P2_0 \text{ to } P2_7, P3_0 \text{ to } P3_7,$			-5.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,				
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,				
		P9_2 to P9_7, P10_0 to P10_7				
OL(peak)	LOW peak	$P0_0 \text{ to } P0_7, P1_0 \text{ to } P1_7, P2_0 \text{ to } P2_7, P3_0 \text{ to } P3_7,$			10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, $$				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7				
OL(avg)	LOW average	$P0_0 \text{ to } P0_7, P1_0 \text{ to } P1_7, P2_0 \text{ to } P2_7, P3_0 \text{ to } P3_7,$			5.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7				

NOTES:

1. Referenced to VCC = 4.2 to 5.5 V at Topr = -40 to 85° C unless otherwise specified.

2. Average output current values during 100 ms period.

3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, and P10 must be 80 mA max.

The total $I_{OL(peak)}$ for ports P3, P4, P5, P6, P7, and P8_0 to P8_4 must be 80 mA max.

The total $I_{OH(peak)}$ for ports P0, P1, and P2 must be -40 mA max.

The total $I_{OH(peak)}$ for ports P3, P4, and P5 must be -40 mA max.

The total $I_{OH(peak)}$ for ports P6, P7, and P8_0 to P8_4 must be -40 mA max.

The total IOH(peak) for ports P8_6, P8_7, P9, and P10 must be -40 mA max.

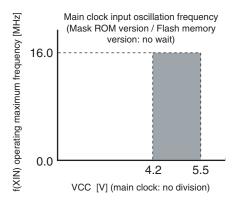


Table 5.3 Recommended Operating Conditions (2)

Sumbol	Parameter			Standard			Unit	
Symbol				Min.	Тур.	Max.	Unit	
f(XIN)	Main clock input oscillation	No wait	Mask ROM version	VCC = 4.2 to 5.5 V	0		16	MHz
	frequency (2) (3) (4)		Flash memory version					
f(XCIN)	Sub clock oscillation frequency					32.768	50	kHz
f(Ring)	On-chip oscillation frequencies	uency				1		MHz
f(PLL)	PLL clock oscillation frequency				16		20	MHz
f(BCLK)	CPU operation clock VCC = 4.2 to 5.5 V			0		20	MHz	
tsu(PLL)	PLL frequency synthesizer stabilization wait time						20	ms

NOTES:

- 1. Referenced to VCC = 4.2 to 5.5 V at Topr = -40 to 85°C unless otherwise specified.
- 2. Relationship between main clock oscillation frequency and supply voltage is shown right.
- 3. Execute program/erase of flash memory by VCC = 5.0 ± 0.5 V.
- 4. When using over 16 MHz, use PLL clock. PLL clock oscillation frequency which can be used is 16 MHz or 20 MHz.

Symbol	Parameter		Managering Condition		Standard		Linit	
Symbol	Falan	neter		Measuring Condition		Тур.	Max.	Unit
_	Resolution		VREF :	= VCC			10	Bit
INL	Integral	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	nonlinearity		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
	error		= 5 V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 5 V			±2	LSB
_	Absolute	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	accuracy		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 5 V	External operation amp connection mode			±7	LSB
		8 bits	VREF :	= AVCC = VCC = 5 V			±2	LSB
DNL	Differential nor	linearity error					±1	LSB
_	Offset error						±3	LSB
_	Gain error						±3	LSB
RLADDER	Resistor ladde	r	VREF :	= VCC	10		40	kΩ
tconv	10-bit conversi	ion time,	VREF :	= VCC = 5 V, φAD = 10 MHz	3.3			μs
	sample & hold	available						
	8-bit conversion	on time,	VREF :	= VCC = 5 V, φAD = 10 MHz	2.8			μs
	sample & hold	available						
t SAMP	Sampling time				0.3			μs
VREF	Reference volt	age			2.0		Vcc	V
VIA	Analog input v	oltage			0		VREF	V

Table 5.6 A/D Conversion Characteristics (1)

NOTES:

1. Referenced to VCC = AVCC = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, -40 to 85°C unless otherwise specified.

2. ϕ AD frequency must be 10 MHz or less.

When sample & hold is disabled, φAD frequency must be 250kHz or more in addition to a limit of NOTE 2.
 When sample & hold is enabled, φAD frequency must be 1MHz or more in addition to a limit of NOTE 2.

Table 5.7 D/A conversion Characteristics (1)

Symbol	Parameter	Macauring condition	S	Unit		
	Falailletei	Measuring condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to VCC = AVCC = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, -40 to 85°C unless otherwise specified.

2. This applies when using one D/A converter, with the DAi register (i = 0, 1) for the unused D/A converter set to 00h. The resistor ladder of the A/D converter is not included. Also, the I_{VREF} will flow even if VREF is disconnected by the ADCON1 register.

Timing Requirements VCC = 5 V(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.9 External Clock Input (XIN Input)

Symbol	Parameter	Stan	Unit	
	Parameter		Max.	Unit
tc	External clock input cycle time	62.5		ns
t _{w(H)}	External clock input HIGH pulse width	25		ns
tw(L)	External clock input LOW pulse width	25		ns
tr	External clock rise time		15	ns
tr	External clock fall time		15	ns

Table 5.10 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	Unit	
Symbol	Falameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
t h(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

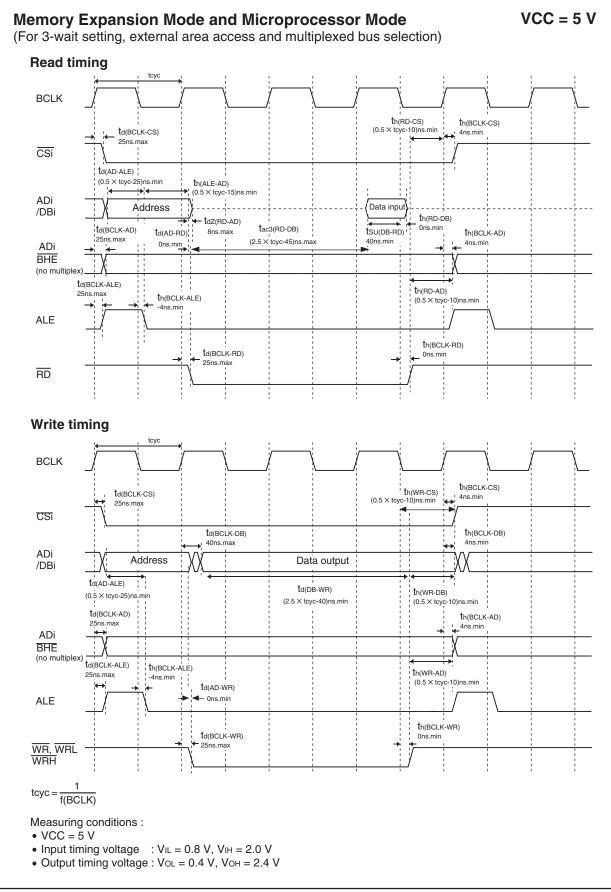


Figure 5.10 Timing Diagram (8)

RENESAS

5.2 Electrical Characteristics (Normal-ver.)

Symbol	Parameter			Condition	Rated Value	Unit
Vcc	Supply voltage (VCC1 = VCC2)			VCC = AVCC	-0.3 to 6.5	V
AVcc	Analog su	pply volta	age	VCC = AVCC	-0.3 to 6.5	V
Vi	Input	RESET,	CNVSS, BYTE,		-0.3 to VCC+0.3	V
	voltage	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,			
		P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to F	P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
		P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
		VREF, >	(IN			
		P7_1, P	9_1		-0.3 to 6.5	V
Vo	Output	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,		-0.3 to VCC+0.3	V
	voltage P3_0 to		P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to	P6_7, P7_0, P7_2 to P7_7,			
		P8_0 to I	P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
		P10_0 t	p P10_7, XOUT			
		P7_1, P	9_1		-0.3 to 6.5	V
Pd	Power dis	sipation		Topr = 25°C	700	mW
Topr	Operating	ambient	During MCU operation		-40 to 85	°C
	temperature		During flash memory program and		0 to 60	
			erase operation			
Tstg	Storage temperatur		re la		-65 to 150	°C

Table 5.26 Absolute Maximum Ratings

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

		•	-		
Symbol	Parameter	Measuring	Standard		Unit
Symbol	i didificici	Condition	Min.	Max.	
$t_{d(BCLK-AD)}$	Address output delay time	Figure 5.12		25	ns
$t_{h(BCLK-AD)}$	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time		25		ns
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
$t_{d(BCLK-HLDA)}$	HLDA output delay time			40	ns

Table 5.48 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

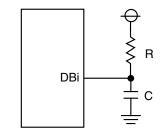
1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is } 12.5 \text{ MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in $t = - CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

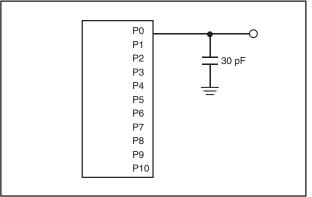


Figure 5.12 Port P0 to P10 Measurement Circuit

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit	
Symbol	Falameter	Condition	Min.	Max.		
td(BCLK-AD)	Address output delay time	Figure 5.12		25	ns	
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns	
th(RD-AD)	Address output hold time (in relation to RD)		0		ns	
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns	
td(BCLK-CS)	Chip select output delay time			25	ns	
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns	
$t_{d(BCLK-ALE)}$	ALE signal output delay time			15	ns	
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns	
td(BCLK-RD)	RD signal output delay time			25	ns	
$t_{h(BCLK-RD)}$	RD signal output hold time		0		ns	
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns	
th(BCLK-WR)	WR signal output hold time		0		ns	
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns	
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns	
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns	
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns	
td(BCLK-HLDA)	HLDA output delay time			40	ns	

Table 5.49 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

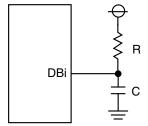
 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
Symbol		Condition	Min.	Max.	
$t_{d(BCLK-AD)}$	Address output delay time	Figure 5.12		25	ns
$\mathbf{t}_{h(BCLK-AD)}$	Address output hold time (in relation to BCLK)		4	ns	
th(RD-AD)	Address output hold time (in relation to RD)		(NOTE 1)		
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
$t_{d(BCLK-CS)}$	Chip select output delay time			25	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns
$t_{h(RD-CS)}$	Chip select output hold time (in relation to RD)		(NOTE 1)		ns
$t_{h(WR-CS)}$	Chip select output hold time (in relation to WR)		(NOTE 1)		ns
$t_{d(BCLK-RD)}$	RD signal output delay time		25		ns
$t_{h(BCLK-RD)}$	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns
$t_{d(BCLK-DB)}$	Data output delay time (in relation to BCLK)			40	ns
$t_{h(BCLK-DB)}$	Data output hold time (in relation to BCLK)		4		ns
$t_{d(DB-WR)}$	Data output delay time (in relation to WR)	WR) (NOTE 2)		ns	
th(WR-DB)	Data output hold time (in relation to WR)		(NOTE 1)		ns
$t_{d(BCLK-HLDA)}$	HLDA output delay time			40	ns
$t_{\text{d}(\text{BCLK-ALE})}$	ALE signal output delay time (in relation to BCLK)			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time (in relation to BCLK)		-4		ns
$t_{d(AD-ALE)}$	ALE signal output delay time (in relation to Address)		(NOTE 3)		ns
$\mathbf{t}_{h(ALE-AD)}$	ALE signal output hold time (in relation to Address)]	(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
$t_{dZ(RD-AD)}$	Address output floating start time]		8	ns

Table 5.50 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

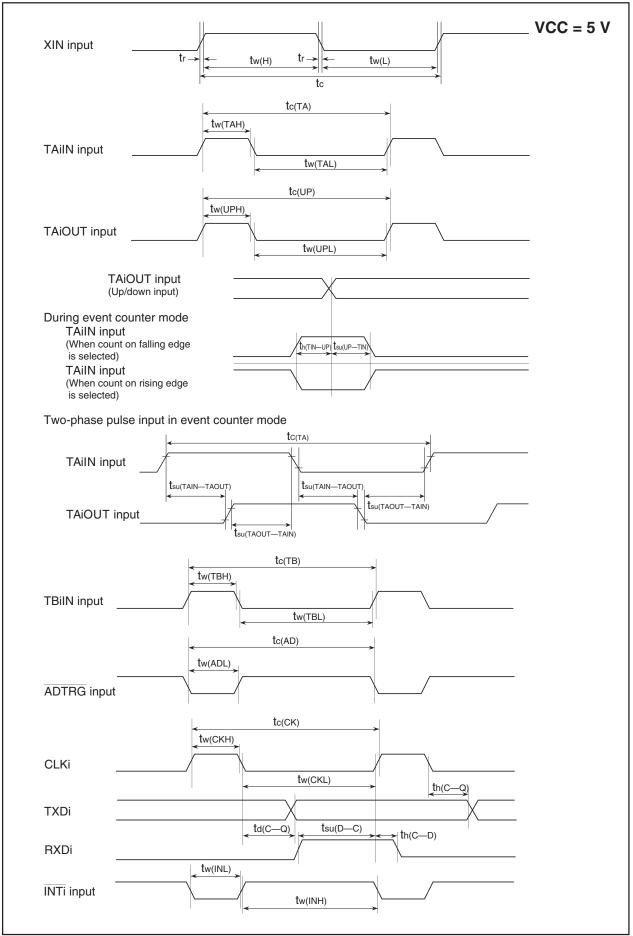
NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^{\circ}}{f(BCLK)} - 40 \text{ [ns]} \text{ n is "2" for 2-wait setting, "3" for 3-wait setting.}$$


3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

Rev.2.40 Aug 25, 2006 page 64 of 88 REJ03B0003-0240

RENESAS

Memory Expansion Mode and Microprocessor Mode (Effective for setting with wait)	VCC = 5 V
BCLK	
RDY input	
tsu(RDY-BCLK) + th(BCLK-RDY (Common to setting with wait and setting without wait) BCLK	
HOLD input	
P0, P1, P2,	
NOTE: 1. The above pins are set to high-impedance regardless of the input level of the the PM06 bit in the PM0 register, and the PM11 bit in the PM1 register.	BYTE pin,
 Measuring conditions : VCC = 5 V Input timing voltage : Determined with VIL = 1.0 V, VIH = 4.0 V Output timing voltage: Determined with VoL = 2.5 V, VOH = 2.5 V 	

Figure 5.14 Timing Diagram (2)

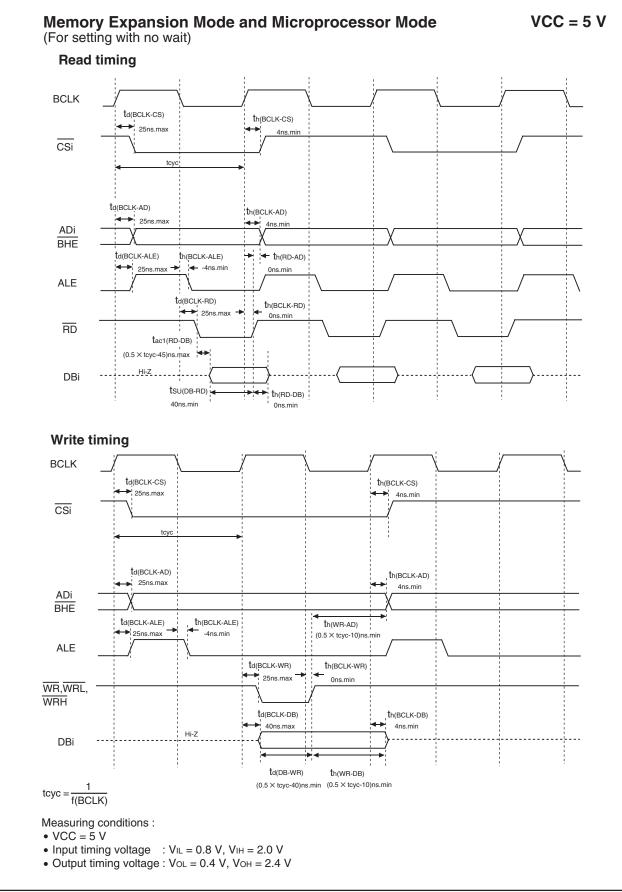


Figure 5.15 Timing Diagram (3)

RENESAS

Memory Expansion Mode and Microprocessor ModeVCC =(Effective for setting with wait)	= 3.3 V
BCLK RD (Separate bus) WR, WRL, WRH (Separate bus) RD (Multiplexed bus) WR, WRL, WRH	
RDY input	
tsu(RDY-BCLK) + th(BCLK-RDY) (Common to setting with wait and setting without wait) BCLK	
HOLD input HLDA output P0, P1, P2,	
P3, P4, P5_0 to P5_2 ⁽¹⁾	
NOTE: 1. The above pins are set to high-impedance regardless of the input level of the BYTE p the PM06 bit in the PM0 register, and the PM11 bit in the PM1 register.	vin,
Measuring conditions : • VCC = 3.3 V • Input timing voltage : Determined with V _{IL} = 0.6 V , V _{IH} = 2.7 V • Output timing voltage: Determined with V _{OL} = 1.65 V , V _{OH} = 1.65 V	

Figure 5.23 Timing Diagram (2)

REVISION HISTORY

M16C/6N Group (M16C/6N4) Data Sheet

Rev.	Data		Description		
Rev. Date Page		Page	Summary		
2.00	Nov. 10, 2004	34	Table 5.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is added.		
		35	Table 5.8 Power Supply Circuit Timing Characteristics: "td(M-L)" is deleted.		
			Figure 5.2 Power Supply Circuit Timing Diagram is added.		
		36	Table 5.10 Memory Expansion Mode and Microprocessor Mode: "td(BCLK-HLDA)" is deleted.		
		38	Table 5.21 Serial I/O: Min. of standard in t _{su(D-C)} is revised from "30" to "70".		
		39	Table 5.23 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)		
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".		
			• td(BCLK-HLDA) is added.		
		40	Table 5.24 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting		
			and external area access)		
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".		
			• td(BCLK-HLDA) is added.		
		41	Table 5.25 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting,		
			external area access and multiplexed bus selection)		
			• td(BCLK-HLDA) is added.		
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".		
		42	Figure 5.4 Timing Diagram (1): "XIN input" is added.		
		44, 45	Figures 5.6 and 5.7 Timing Diagram (3) (4): "DB" in Read timing is revised to "DBi".		
		46, 47	Figures 5.8 and 5.9 Timing Diagram (5) (6): "DB" in Write timing is revised to "DBi".		
		49	Figure 5.11 Timing Diagram (8)		
			 "ADi/DB" in Read/Write timing is revised to "ADi/DBi". 		
		50	Appendix 1. Package Dimensions: 100P6Q-A is added.		
2.10	Jun. 24, 2005	-	Revised edition issued		
			* The contents of product are revised. (Normal-ver. is added.)		
			* Revised parts and revised contents are as follows (except for expressional change).		
		2	Table 1.1 Performance outline of M16C/6N Group (M16C/6N4)		
		4	Performance outline of Normal-ver. is added.		
		4	Table 1.2 Product List is revised. (Normal-ver. is added.)		
			Figure 1.2 Type No., Memory Size, and Package:		
		10	• "(no): Normal-ver." is added to Characteristics.		
		19 32	Figure 4.7 SFR Information (7): NOTE 1 is revised. Table 5.4 Electrical Characteristics (1)		
		52	• Measuring Condition of V_{OL} is revised from "Lo _L = -200µA" to "Lo _L = 200µA".		
		33	Table 5.5 Electrical Characteristics (2): Mask ROM (5th item)		
		00	• "f(XCIN)" is changed to "(f(BCLK)).		
		34	Table 5.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is deleted.		
2 40	Aug. 25, 2006		Revised edition issued		
•			* Electric Characteristics of Normal-ver. is added.		
			* Revised parts and revised contents are as follows (except for expressional change).		
		1	1.1 Applications: Comment of Normal-ver. is added.		
		4	Table 1.2 Product Information		
			Status of development is revised and NOTES 1 and 2 are added.		