

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, IEBus, SIO, UART/USART
Peripherals	DMA, WDT
Number of I/O	87
Program Memory Size	256КВ (256К х 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m306n4mgt-168fpufq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.3 List of Pin Names (1)

Pin FP	No. GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pir
1	99		P9_6				ANEX1	CTX0	
2	100		 P9_5				ANEX0	CRX0	
3	1		 P9_4		TB4IN		DA1		
4	2		 P9_3		TB3IN		DA0		
5	3		 P9_2		TB2IN	SOUT3			
6	4		P9_1		TB1IN	SIN3			
7	5		P9_0		TBOIN	CLK3			
8	6	BYTE			-				
9	7	CNVSS							
10	8	XCIN	P8_7						
11	9	XCOUT	P8_6						
12	10	RESET							
13	11	XOUT							
14	12	VSS							
15	13	XIN							
16	14	VCC1							
17	15		P8_5	NMI					
18	16		P8_4	INT2	ZP				
19	17		P8_3	INT1	21				
20	18		P8_2	INT0					
21	19		P8_1		TA4IN/U				
22	20		P8_0		TA4OUT/U				
23	21		P7_7		TA3IN			CRX1	
24	22		P7_6		TA3OUT			CTX1	
25	23		P7_5		TA2IN/W				
26	24		P7_4		TA2OUT/W				
27	25		P7_3		TA1IN/V	CTS2/RTS2			
28	26		P7_2		TA10UT/V	CLK2			
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2			
30	28		P7_0		TAOOUT	TXD2/SDA2			
31	29		P6_7		140001	TXD1/SDA1			
32	30		P6_6			RXD1/SCL1			
33	31		P6_5			CLK1			
34	32		P6_4			CTS1/RTS1/CTS0/CLKS			
34 35	32 33		P6_3			TXD0/SDA0			
36	34		P6_2			RXD0/SCL0			
36 37	34 35		P6_2 P6_1			CLK0			
37	35 36		P6_0			CTS0/RTS0			
30 39	36 37		P6_0 P5_7			0100/11100			RDY/CLKOUT
39 40	37		P5_7 P5_6						ALE
40 41	38 39		P5_6 P5_5						HOLD
41 42	39 40								HULDA
			P5_4						BCLK
43 44	41 42		P5_3						RD
			P5_2						
45	43		P5_1						WRH/BHE
46	44		P5_0						WRL/WR
47	45		P4_7						CS3
48	46		P4_6						CS2
49	47		P4_5						CS1
50	48		P4_4						CS0

FP: PRQP0100JB-A (100P6S-A), GP: PLQP0100KB-A (100P6Q-A)

1.6 Pin Functions

Tables 1.5 to 1.7 list the Pin Functions.

Table 1.5 Pin Functions (1)

Signal Name	Pin Name	I/О Туре	
Power supply	VCC1, VCC2,	I	Apply 4.2 to 5.5 V (T/V-ver.), 3.0 to 5.5 V (Normal-ver.) to the VCC
input	VSS		and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is
			that VCC2 = VCC1 $^{(1)}$.
Analog power	AVCC, AVSS		Applies the power supply for the A/D converter. Connect the AVCC
supply input			pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	The MCU is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	I	Switches processor mode. Connect this pin to VSS to when afte
			a reset to start up in single-chip mode. Connect this pin to VCC
			to start up in microprocessor mode.
External data	BYTE		Switches the data bus in external memory space. The data bus
bus width			is 16-bit long when the this pin is held "L" and 8-bit long when
select input			the this pin is held "H". Set it to either one. Connect this pin to
			VSS when single-chip mode.
Bus control	D0 to D7	I/O	Inputs and outputs data (D0 to D7) when these pins are set as
pins			the separate bus.
P	D8 to D15	I/O	Inputs and outputs data (D8 to D15) when external 16-bit data
			bus is set as the separate bus.
	A0 to A19	0	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	Input and output data (D0 to D7) and output address bits (A0 to
			A7) by time-sharing when external 8-bit data bus are set as the
			multiplexed bus.
	A1/D0 to A8/D7	I/O	Input and output data (D0 to D7) and output address bits (A1 to
		1// 0	A8) by time-sharing when external 16-bit data bus are set as th
			multiplexed bus.
	CS0 to CS3	0	Output CS0 to CS3 signals. CS0 to CS3 are chip-select signals
			to specify an external space.
	WRL/WR	0	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH of
	WRH/BHE	Ŭ	BHE, and WR can be switched by program.
	RD		• WRL, WRH, and RD are selected
			The WRL signal becomes "L" by writing data to an even addres
			in an external memory space.
			The WRH signal becomes "L" by writing data to an odd addres
			in an external memory space.
			The RD pin signal becomes "L" by reading data in an externa
			memory space.
			• WR, BHE, and RD are selected
			The WR signal becomes "L" by writing data in an externa
			memory space.
			The RD signal becomes "L" by reading data in an externa
			memory space.
			The BHE signal becomes "L" by accessing an odd address.
			Select WR, BHE, and RD for an external 8-bit data bus.
	ALE	0	ALE is a signal to latch the address.
			While the HOLD pin is held "L", the MCU is placed in a hol
	HOLD		state.
		0	In a hold state, HLDA outputs a "L" signal.
	HLDA	0	While applying a "L" signal to the RDY pin, the MCU is placed i
	RDY		a wait state.
			a waii siale.

NOTE:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

This flag is used exclusively for debugging purpose. During normal use, set to 0.

2.8.3 Zero Flag (Z Flag)

This flag is set to 1 when an arithmetic operation resulted in 0; otherwise, it is 0.

2.8.4 Sign Flag (S Flag)

This flag is set to 1 when an arithmetic operation resulted in a negative value; otherwise, it is 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is 0; register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

This flag is set to 1 when the operation resulted in an overflow; otherwise, it is 0.

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt. Maskable interrupts are disabled when the I flag is 0, and are enabled when the I flag is 1. The I flag is set to 0 when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0; USP is selected when the U flag is 1. The U flag is set to 0 when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt request is enabled.

2.8.10 Reserved Area

When white to this bit, write 0. When read, its content is undefined.

M16C/6N Group (M16C/6N4)

Table 4.9 SFR Information (9)

Address	Register	Symbol	After Reset
0200h	CAN0 Message Control Register 0	COMCTLO	00h
0200h	CANO Message Control Register 1	COMCTL1	00h
0202h	CANO Message Control Register 2	C0MCTL2	00h
0203h	CAN0 Message Control Register 3	COMCTL3	00h
0203h	CAN0 Message Control Register 4	COMCTL4	00h
020411 0205h	CANO Message Control Register 5	COMCTL5	00h
0205h	CANO Message Control Register 6	COMCTL6	00h
	CANO Message Control Register 7	COMOTEO COMCTL7	00h
0207h	CANO Message Control Register 8	COMCTL8	00h
0208h 0209h	CANO Message Control Register 9	COMCTL9	00h
	CANO Message Control Register 9	COMCTL10	00h
020Ah		COMCTL11	
020Bh	CANO Message Control Register 11		00h
020Ch	CANO Message Control Register 12	COMCTL12	00h
020Dh	CANO Message Control Register 13	COMCTL13	00h
020Eh	CANO Message Control Register 14	COMCTL14	00h
020Fh	CAN0 Message Control Register 15	C0MCTL15	00h
0210h	CAN0 Control Register	COCTLR	X000001b
0211h			XX0X0000b
0212h	CAN0 Status Register	COSTR	00h
0213h		00011	X000001b
0214h	CAN0 Slot Status Register	COSSTR	00h
0215h	CANO OIUL OLALUS HEYISLEI		00h
0216h	CAN0 Interrupt Control Register	COICR	00h
0217h	CANO Interrupt Control Register	CUICR	00h
0218h	CANO Estandad ID Bagistar	00100	00h
0219h	CAN0 Extended ID Register	COIDR	00h
021Ah		0.001	XXh
021Bh	CAN0 Configuration Register	COCONR	XXh
021Ch	CAN0 Receive Error Count Register	CORECR	00h
021Dh	CAN0 Transmit Error Count Register	COTECR	00h
021Eh	<u> </u>		00h
021Eh	CAN0 Time Stamp Register	COTSR	00h
0220h	CAN1 Message Control Register 0	C1MCTL0	00h
022011 0221h	CAN1 Message Control Register 0	C1MCTL1	00h
022111 0222h	CAN'T Message Control Register 1	C1MCTL2	00h
	CAN'T Message Control Register 2	C1MCTL2	00h
0223h			
0224h	CAN1 Message Control Register 4	C1MCTL4	00h
0225h	CAN1 Message Control Register 5	C1MCTL5	00h
0226h	CAN1 Message Control Register 6	C1MCTL6	00h
0227h	CAN1 Message Control Register 7	C1MCTL7	00h
0228h	CAN1 Message Control Register 8	C1MCTL8	00h
0229h	CAN1 Message Control Register 9	C1MCTL9	00h
022Ah	CAN1 Message Control Register 10	C1MCTL10	00h
022Bh	CAN1 Message Control Register 11	C1MCTL11	00h
022Ch	CAN1 Message Control Register 12	C1MCTL12	00h
022Dh	CAN1 Message Control Register 13	C1MCTL13	00h
022Eh	CAN1 Message Control Register 14	C1MCTL14	00h
022Fh	CAN1 Message Control Register 15	C1MCTL15	00h
0230h	CAN1 Control Register	C1CTLR	X000001b
0231h		UIUILN	XX0X0000b
0232h	CANI Statua Degister	C10TD	00h
0233h	CAN1 Status Register	C1STR	X000001b
0234h	CANIA Class Chatrice Desciptory	CLOOTD	00h
0235h	CAN1 Slot Status Register	C1SSTR	00h
0236h		0.1105	00h
0237h	CAN1 Interrupt Control Register	C1ICR	00h
0238h			00h
0239h	CAN1 Extended ID Register	C1IDR	00h
0233h		<u> </u>	XXh
023An	CAN1 Configuration Register	C1CONR	XXh
-	CAN1 Receive Error Count Register	C1RECR	00h
023Ch	CANT Receive Error Count Register	CITECR	
023Dh			00h
023Eh 023Fh	CAN1 Time Stamp Register	C1TSR	00h 00h
			UUN

X: Undefined

Table 4.10 SFR Information (10) (1)

Address	Register	Symbol	After Reset
0240h		2,	
0241h			
0242h	CAN0 Acceptance Filter Support Register	COAFS	XXh
0243h			XXh
0244h	CAN1 Acceptance Filter Support Register	C1AFS	XXh
0245h			XXh
0246h 0247h			
0247h 0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh 0250h			
0250h			
0252h			
0253h			
0254h			
0255h			
0256h			
0257h			
0258h			
0259h 025Ah			
025Ah 025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	00h
025Fh	CAN0/1 Clock Select Register	CCLKR	00h
0260h			XXh
0261h			XXh
0262h	CAN1 Message Box 0: Identifier / DLC		XXh
0263h			XXh XXh
0264h 0265h			XXn XXh
0265h			XXh
0267h			XXh
0268h			XXh
0269h	CAN1 Message Box 0: Data Field	[XXh
026Ah		[XXh
026Bh			XXh
026Ch			XXh
026Dh			XXh
026Eh 026Fh	CAN1 Message Box 0:Time Stamp		XXh XXh
026Fn 0270h			XXh
0270h			XXh
0272h	CAN1 Message Box 1: Identifier / DLC		XXh
0273h	CANT MESSAYE DUX T. IUEHIIHEI / DLO		XXh
0274h		[XXh
0275h			XXh
0276h			XXh
0277h			XXh
0278h 0279h			XXh XXh
0279h 027Ah	CAN1 Message Box 1: Data Field		XXh
027An			XXh
027Ch			XXh
027Dh			XXh
027Eh	CAN1 Message Box 1:Time Stamp		XXh
027Fh			XXh
X: Undefine			

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.11 SFR Information (11)

Address	Register	Symbol	After Reset
0280h			XXh
0281h			XXh
0282h	CAN1 Message Box 2: Identifier / DLC		XXh
0283h	OANT Message Box 2. Identifier / BEO		XXh
0284h			XXh
0285h			XXh
0286h			XXh
0287h			XXh
0288h			XXh
0289h	CAN1 Message Box 2: Data Field		XXh XXh
028Ah			XXh
028Bh 028Ch			XXh
028Ch			XXh
028Eh			XXh
028Fh	CAN1 Message Box 2: Time Stamp		XXh
0290h			XXh
0291h			XXh
0292h	CANIT Magazara Day 2: Identifier / DI C		XXh
0293h	CAN1 Message Box 3: Identifier / DLC		XXh
0294h			XXh
0295h			XXh
0296h			XXh
0297h			XXh
0298h			XXh
0299h	CAN1 Message Box 3: Data Field		XXh
029Ah			XXh
029Bh			XXh XXh
029Ch 029Dh			XXh
029Dh			XXh
029Eh	CAN1 Message Box 3: Time Stamp		XXh
02A0h			XXh
02A1h			XXh
02A2h			XXh
02A3h	CAN1 Message Box 4: Identifier / DLC		XXh
02A4h			XXh
02A5h			XXh
02A6h			XXh
02A7h			XXh
02A8h			XXh
02A9h	CAN1 Message Box 4: Data Field		XXh
02AAh	,		XXh XXh
02ABh			XXh
02ACh 02ADh			XXh
02ADh 02AEh			XXh
02AEh	CAN1 Message Box 4: Time Stamp		XXh
02B0h			XXh
02B1h			XXh
02B2h	CANI Massaga Box 5: Identifier / DLC		XXh
02B3h	CAN1 Message Box 5: Identifier / DLC		XXh
02B4h			XXh
02B5h			XXh
02B6h			XXh
02B7h			XXh
02B8h			XXh
02B9h	CAN1 Message Box 5: Data Field		XXh
02BAh			XXh XXh
02BBh 02BCh			XXn XXh
02BCh 02BDh			XXh
02BDn 02BEh			XXh
02BEh	CAN1 Message Box 5: Time Stamp		XXh
V: Undofin		I	77711

X: Undefined

Table 4.13 SFR Information (13)

Address	Register	Symbol	After Reset
0300h			XXh
0301h			XXh
0302h	CAN1 Message Box 10: Identifier / DLC		XXh
0303h	Origi moodage box to. Identifier / DEO		XXh
0304h			XXh
0305h			XXh
0306h			XXh
0307h			XXh
0308h			XXh
0309h 030Ah	CAN1 Message Box 10: Data Field		XXh XXh
030An			XXh
030Ch			XXh
030Dh			XXh
030Eh			XXh
030Fh	CAN1 Message Box 10: Time Stamp		XXh
0310h			XXh
0311h			XXh
0312h	CAN1 Message Box 11: Identifier / DLC		XXh
0313h			XXh
0314h			XXh
0315h			XXh
0316h			XXh XXh
0317h 0318h			XXn XXh
0319h			XXh
031Ah	CAN1 Message Box 11: Data Field		XXh
031Bh			XXh
031Ch			XXh
031Dh			XXh
031Eh	CAN1 Message Box 11: Time Stamp		XXh
031Fh	CANT Message box 11. Time Stamp		XXh
0320h			XXh
0321h			XXh
0322h	CAN1 Message Box 12: Identifier / DLC		XXh
0323h	,		XXh XXh
0324h 0325h			XXn XXh
0326h			XXh
0327h			XXh
0328h			XXh
0329h	OANIA MANANA DALA EVILI		XXh
032Ah	CAN1 Message Box 12: Data Field		XXh
032Bh			XXh
032Ch			XXh
032Dh			XXh
032Eh	CAN1 Message Box 12: Time Stamp		XXh
032Fh			XXh
0330h			XXh XXh
0331h			XXn XXh
0332h 0333h	CAN1 Message Box 13: Identifier / DLC		XXn XXh
0334h			XXh
0335h			XXh
0336h			XXh
0337h			XXh
0338h			XXh
0339h	CAN1 Message Box 13: Data Field		XXh
033Ah	Original message box to. Data Fleid		XXh
033Bh			XXh
033Ch			XXh
033Dh			XXh
033Eh	CAN1 Message Box 13: Time Stamp		XXh
033Fh X: Undefine		1	XXh

X: Undefined

Timing Requirements VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.11 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Baramatar		Standard		
Symbol		Min.	Max.	Unit	
tc(TA)	TAIIN input cycle time	100		ns	
tw(TAH)	TAIIN input HIGH pulse width	40		ns	
tw(TAL)	TAIIN input LOW pulse width	40		ns	

Table 5.12 Timer A Input (Gating Input in Timer Mode)

Symbol	Symbol Parameter		Standard		
Symbol			Max.	Unit	
tc(TA)	TAIIN input cycle time	400		ns	
tw(TAH)	TAIIN input HIGH pulse width	200		ns	
tw(TAL)	TAiIN input LOW pulse width	200		ns	

Table 5.13 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Unit	
Symbol			Max.	Unit
t _{c(TA)}	TAIIN input cycle time	200		ns
tw(TAH)	TAIIN input HIGH pulse width	100		ns
tw(TAL)	TAIIN input LOW pulse width	100		ns

Table 5.14 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Symbol Parameter		Standard		
Symbol			Max.	Unit	
t _{w(TAH)}	TAIIN input HIGH pulse width	100		ns	
tw(TAL)	TAIIN input LOW pulse width	100		ns	

Table 5.15 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol			Max.	Unit
t _{c(UP)}	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input HIGH pulse width	1000		ns
tw(UPL)	TAiOUT input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

Table 5.16 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard Min. Max.		Unit
Symbol	Falalleter			Onit
tc(TA)	TAiIN input cycle time	800		ns
tsu(TAIN-TAOUT)	TAiOUT input setup time	200		ns
tsu(taout-tain)	TAiIN input setup time	200		ns

Memory Expansion Mode and Microprocessor Mode (Effective for setting with wait)	VCC = 5 V
BCLK	
RD (Separate bus)	
WR, WRL, WRH	
RD (Multiplexed bus)	
WR, WRL, WRH	
RDY input	
(Common to setting with wait and setting without wait) BCLK	
HOLD input	
P0, P1, P2,	
NOTE: 1. The above pins are set to high-impedance regardless of the input level of th the PM06 bit in the PM0 register, and the PM11 bit in the PM1 register.	ne BYTE pin,
 Measuring conditions : VCC = 5 V Input timing voltage : Determined with VIL = 1.0 V, VIH = 4.0 V Output timing voltage: Determined with VoL = 2.5 V, VOH = 2.5 V 	

Figure 5.4 Timing Diagram (2)

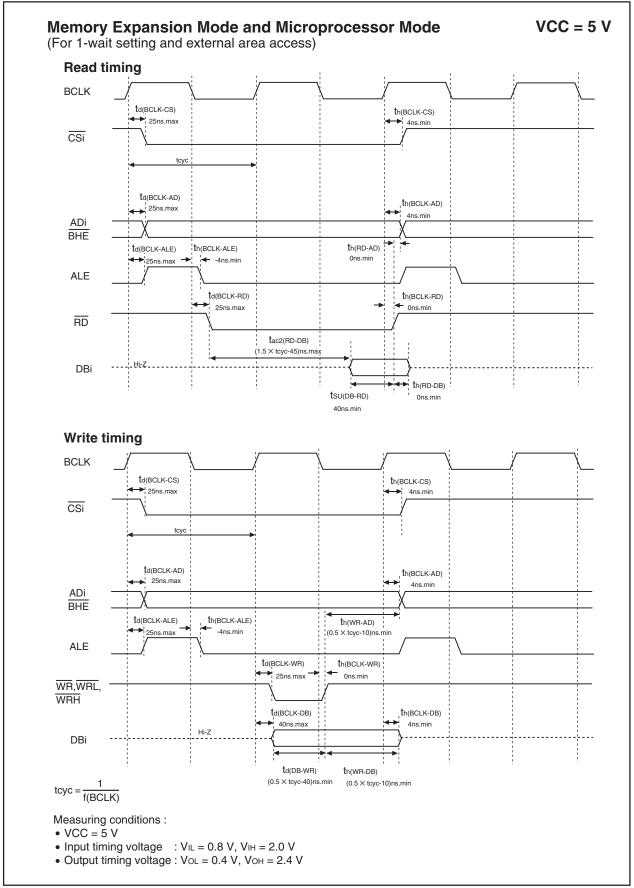


Figure 5.6 Timing Diagram (4)

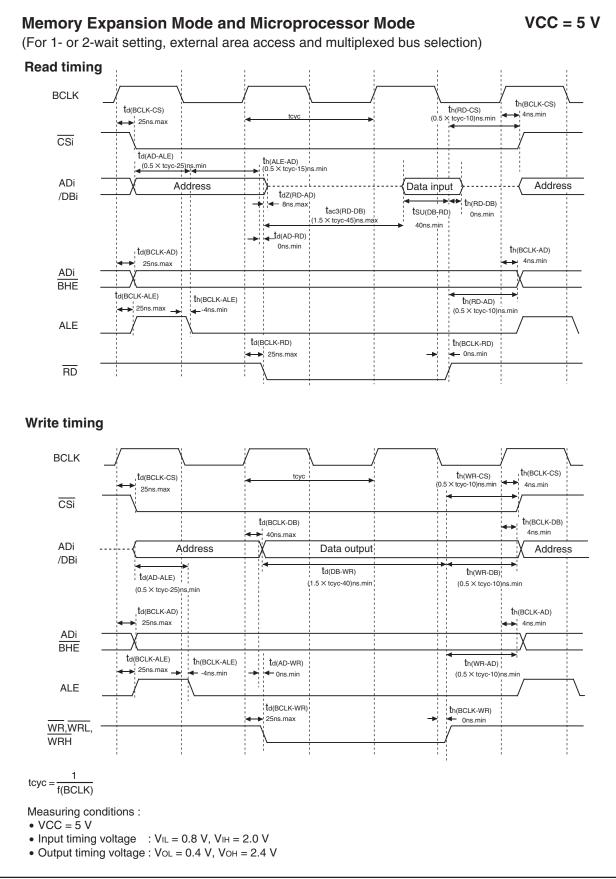


Figure 5.9 Timing Diagram (7)

Table 5.27 Recommended Operating Conditions (1) ⁽¹⁾

Symbol		Parameter	9	Standard	k	Unit
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply volta	ge (VCC1 = VCC2)	3.0	5.0	5.5	V
AVcc	Analog supp	ly voltage		Vcc		V
Vss	Supply volta	ge		0		V
AVss	Analog supp	ly voltage		0		V
VIH	HIGH input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8 Vcc		Vcc	V
	voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, XIN, RESET, CNVSS, BYTE				
		P7_1, P9_1	0.8 Vcc		6.5	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8 Vcc		Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5 Vcc		Vcc	V
		(Data input during memory expansion and microprocessor modes)				
VIL	LOW input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2 Vcc	V
	voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		XIN, RESET, CNVSS, BYTE				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2 Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16 Vcc	V
		(Data input during memory expansion and microprocessor modes)				
OH(peak)	HIGH peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,				
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,				
		P9_2 to P9_7, P10_0 to P10_7				
OH(avg)	HIGH average	$P0_0 \text{ to } P0_7, P1_0 \text{ to } P1_7, P2_0 \text{ to } P2_7, P3_0 \text{ to } P3_7,$			-5.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,				
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,				
		P9_2 to P9_7, P10_0 to P10_7				
OL(peak)	LOW peak	$P0_0 \text{ to } P0_7, P1_0 \text{ to } P1_7, P2_0 \text{ to } P2_7, P3_0 \text{ to } P3_7,$			10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, $$				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7				
OL(avg)	LOW average	$P0_0 \text{ to } P0_7, P1_0 \text{ to } P1_7, P2_0 \text{ to } P2_7, P3_0 \text{ to } P3_7,$			5.0	mΑ
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7				

NOTES:

1. Referenced to VCC = 3.0 to 5.5 V at Topr = -40 to 85° C unless otherwise specified.

2. Average output current values during 100 ms period.

3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, and P10 must be 80 mA max.

The total $I_{OL(peak)}$ for ports P3, P4, P5, P6, P7, and P8_0 to P8_4 must be 80 mA max.

The total $I_{OH(peak)}$ for ports P0, P1, and P2 must be -40 mA max.

The total $I_{OH(peak)}$ for ports P3, P4, and P5 must be -40 mA max.

The total $I_{OH(peak)}$ for ports P6, P7, and P8_0 to P8_4 must be -40 mA max.

The total IOH(peak) for ports P8_6, P8_7, P9, and P10 must be -40 mA max.

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

		•	-		
Symbol	Parameter	Measuring	Stan	dard	Unit
Symbol	i didificici	Condition	Min.	Max.	
$t_{d(BCLK-AD)}$	Address output delay time	Figure 5.12		25	ns
$t_{h(BCLK-AD)}$	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
$t_{d(BCLK-HLDA)}$	HLDA output delay time			40	ns

Table 5.48 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

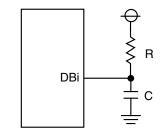
1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is } 12.5 \text{ MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in $t = - CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

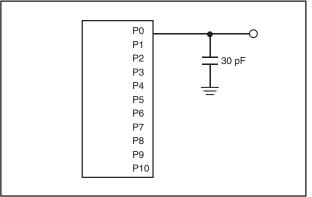


Figure 5.12 Port P0 to P10 Measurement Circuit

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Stan	dard	Unit
Symbol	Falameter	Condition	Min.	Max.	Onit
td(BCLK-AD)	Address output delay time	Figure 5.12		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
$t_{h(BCLK-RD)}$	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 5.49 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

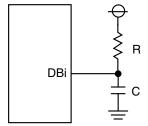
 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

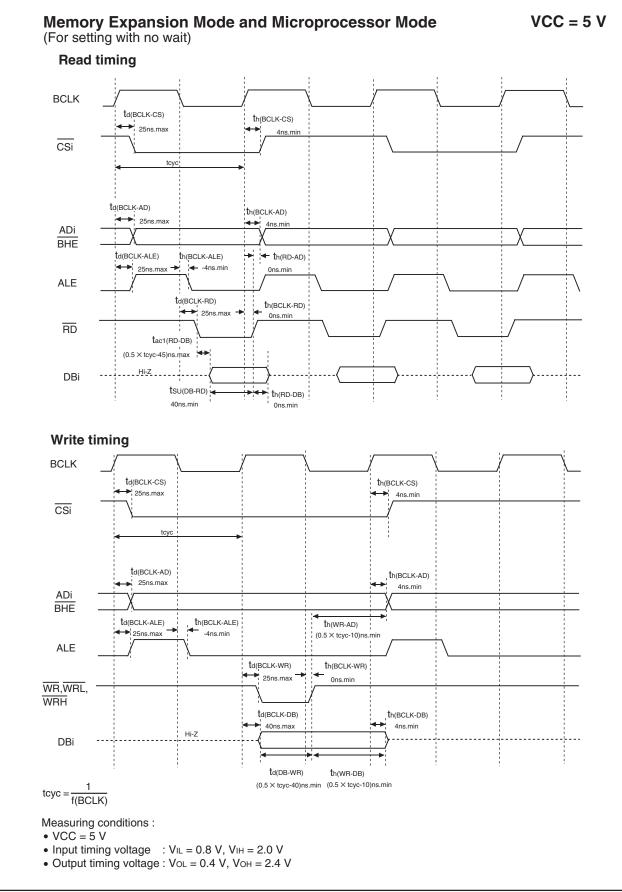


Figure 5.15 Timing Diagram (3)

Timing Requirements VCC = 3.3 V (Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 5.60 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Symbol	Farameter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time (counted on one edge)	150		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on one edge)	60		ns
t _{w(TBL)}	TBiIN input LOW pulse width (counted on one edge)	60		ns
t _{c(TB)}	TBiIN input cycle time (counted on both edges)	300		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on both edges)	120		ns
tw(TBL)	TBiIN input LOW pulse width (counted on both edges)	120		ns

Table 5.61 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard Min. Max.	Unit	
Symbol	Faldineter	Min. Max.		Unit
t _{c(TB)}	TBIIN input cycle time	600		ns
tw(TBH)	TBiIN input HIGH pulse width	300		ns
tw(TBL)	TBiIN input LOW pulse width	300		ns

Table 5.62 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Min. Max.	Unit	
	Farameter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time	600		ns
tw(TBH)	TBiIN input HIGH pulse width	300		ns
tw(TBL)	TBiIN input LOW pulse width	300		ns

Table 5.63 A/D Trigger Input

Cumbol	Darameter	Stan	dard	Linit
Symbol	Parameter	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width 200			ns

Table 5.64 Serial Interface

Cumbal	Parameter	Standard		Unit
Symbol	Parameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300		ns
t _{w(CKH)}	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TXDi output delay time		160	ns
th(C-Q)	TXDi hold time	0		ns
tsu(D-C)	RXDi input setup time 100			ns
th(C-D)	RXDi input hold time	90		ns

Table 5.65 External Interrupt INTi Input

Cumbol	Parameter	Stan	dard	Unit
Symbol	Parameter	Min. Max.		
tw(INH)	INTi input HIGH pulse width	380		ns
t _{w(INL)}	INTi input LOW pulse width	380		ns

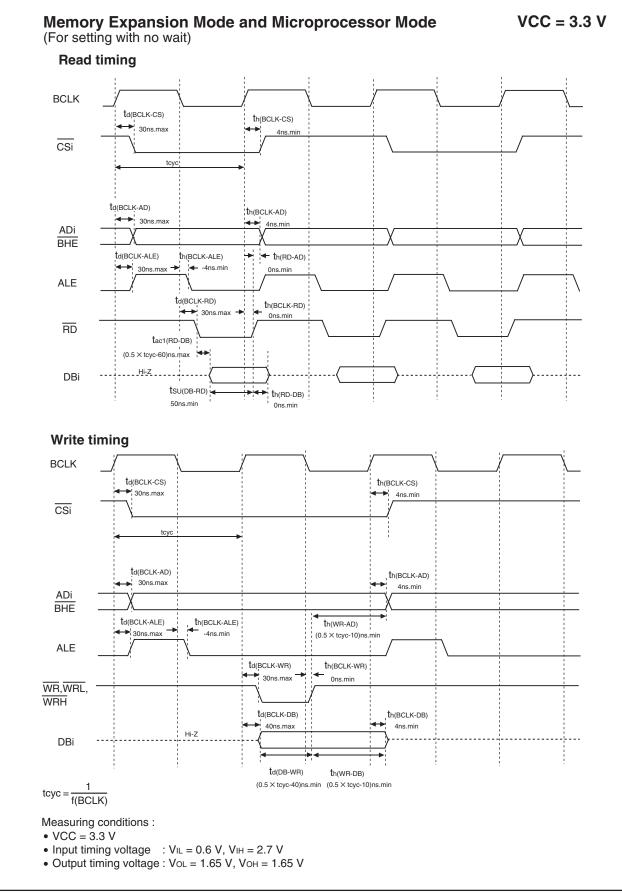


Figure 5.24 Timing Diagram (3)

REVISION HISTORY

M16C/6N Group (M16C/6N4) Data Sheet

Rev.	Date		Description
nev.	Dale	Page	Summary
2.00	Nov. 10, 2004	34	Table 5.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is added.
		35	Table 5.8 Power Supply Circuit Timing Characteristics: "td(M-L)" is deleted.
			Figure 5.2 Power Supply Circuit Timing Diagram is added.
		36	Table 5.10 Memory Expansion Mode and Microprocessor Mode: "td(BCLK-HLDA)" is deleted.
		38	Table 5.21 Serial I/O: Min. of standard in t _{su(D-C)} is revised from "30" to "70".
		39	Table 5.23 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
			• t _{d(BCLK-HLDA)} is added.
		40	Table 5.24 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting
			and external area access)
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
			• td(BCLK-HLDA) is added.
		41	Table 5.25 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting,
			external area access and multiplexed bus selection)
			• td(BCLK-HLDA) is added.
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
		42	Figure 5.4 Timing Diagram (1): "XIN input" is added.
		44, 45	Figures 5.6 and 5.7 Timing Diagram (3) (4): "DB" in Read timing is revised to "DBi".
		46, 47	Figures 5.8 and 5.9 Timing Diagram (5) (6): "DB" in Write timing is revised to "DBi".
		49	Figure 5.11 Timing Diagram (8)
			 "ADi/DB" in Read/Write timing is revised to "ADi/DBi".
		50	Appendix 1. Package Dimensions: 100P6Q-A is added.
2.10	Jun. 24, 2005	-	Revised edition issued
			* The contents of product are revised. (Normal-ver. is added.)
			* Revised parts and revised contents are as follows (except for expressional change).
		2	Table 1.1 Performance outline of M16C/6N Group (M16C/6N4)
		4	Performance outline of Normal-ver. is added.
		4	Table 1.2 Product List is revised. (Normal-ver. is added.)
			Figure 1.2 Type No., Memory Size, and Package:
		10	• "(no): Normal-ver." is added to Characteristics.
		19 32	Figure 4.7 SFR Information (7): NOTE 1 is revised. Table 5.4 Electrical Characteristics (1)
		32	• Measuring Condition of $V_{0\perp}$ is revised from "L ₀ = -200µA" to "L ₀ = 200µA".
		33	Table 5.5 Electrical Characteristics (2): Mask ROM (5th item)
		00	• "f(XCIN)" is changed to "(f(BCLK)).
		34	Table 5.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is deleted.
2 40	Aug. 25, 2006		Revised edition issued
•			* Electric Characteristics of Normal-ver. is added.
			* Revised parts and revised contents are as follows (except for expressional change).
		1	1.1 Applications: Comment of Normal-ver. is added.
		4	Table 1.2 Product Information
			Status of development is revised and NOTES 1 and 2 are added.

REVISION HISTORY

M16C/6N Group (M16C/6N4) Data Sheet

Dav	Dete		Description
Rev.	Date	Page	Summary
2.40	Aug. 25, 2006	7, 8	Tables 1.3 and 1.4 List of Pin Names (1)(2) are added.
		9	Table 1.5 Pin Functions (1)
			 3.0 to 5.5 V (Normal-ver.) is added to Description of Power supply input.
		22	Table 4.8 SFR Information (8)
			 The value of After Reset in IDB0 register is revised.
			 The value of After Reset in IDB1 register is revised.
		33	Table 5.3 Recommended Operating Conditions (2)
			Power supply ripple is deleted. (three items)
			Figure 5.1 Voltage Fluctuation Timing is deleted.
		34	Table 5.4 Electrical Characteristics (1): Hysteresis XIN is deleted.
		52 to 87	5.2 Electrical Characteristics (Normal-ver.) is added.
1			
1			
1			
L		1	

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonine page (intp://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com