

Welcome to E-XFL.COM

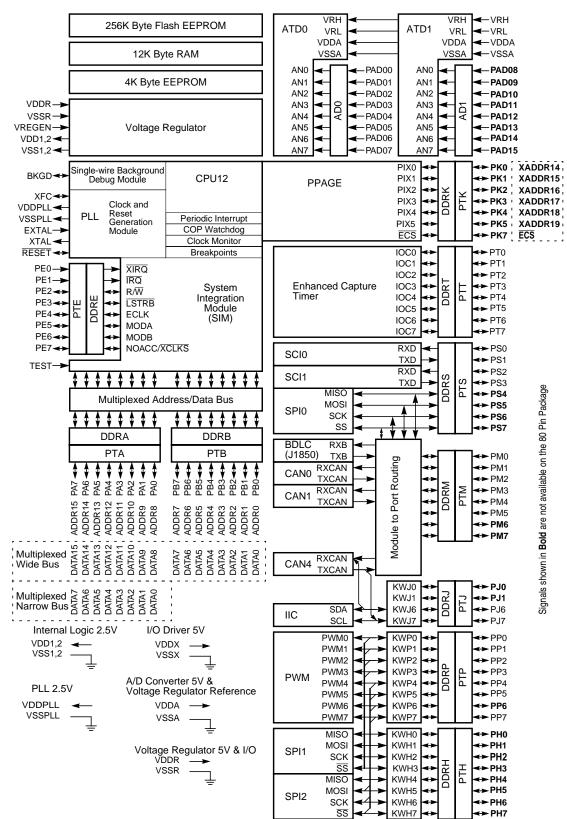
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dj256cpve


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 0-1	Order Partnumber Example15
Figure 1-1	MC9S12DT256 Block Diagram
Figure 1-2	MC9S12DT256 Memory Map
Figure 2-1	Pin Assignments in 112-pin LQFP52
Figure 2-2	Pin Assignments in 80-pin QFP for MC9S12DJ25653
Figure 2-3	PLL Loop Filter Connections
Figure 2-4	Colpitts Oscillator Connections (PE7=1)
Figure 2-5	Pierce Oscillator Connections (PE7=0)
Figure 2-6	External Clock Connections (PE7=0)60
Figure 3-1	Clock Connections
Figure 20-1	Recommended PCB Layout for 112LQFP Colpitts Oscillator
Figure 20-2	Recommended PCB Layout for 80QFP Colpitts Oscillator
Figure 20-3	Recommended PCB Layout for 112LQFP Pierce Oscillator
Figure 20-4	Recommended PCB Layout for 80QFP Pierce Oscillator
Figure A-1	ATD Accuracy Definitions 102
Figure A-2	Typical Endurance vs Temperature 107
Figure A-3	Basic PLL functional diagram 113
Figure A-4	Jitter Definitions
Figure A-5	Maximum bus clock jitter approximation 115
Figure A-6	SPI Master Timing (CPHA=0) 119
Figure A-7	SPI Master Timing (CPHA=1) 120
Figure A-8	SPI Slave Timing (CPHA=0) 121
Figure A-9	SPI Slave Timing (CPHA=1) 122
Figure A-10	General External Bus Timing 124
Figure B-1	112-pin LQFP mechanical dimensions (case no. 987) 128
Figure B-2	80-pin QFP Mechanical Dimensions (case no. 841B) 129

Figure 1-1 MC9S12DT256 Block Diagram

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00B1	PWMCNT5	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:	0 Bit 7	0	0	0	0	0	0 1	0 Bit 0
\$00B2	PWMCNT6	Read: Write:	<u>оп</u>	0	0	4	0	0	0	<u> </u>
* ** *		Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B3	PWMCNT7	Write:	0	0	0	0	0	0	0	0
\$00B4	PWMPER0	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B5	PWMPER1	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B6	PWMPER2	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B7	PWMPER3	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B8	PWMPER4	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B9	PWMPER5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BA	PWMPER6	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BB	PWMPER7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BC	PWMDTY0	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BD	PWMDTY1	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BE	PWMDTY2	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BF	PWMDTY3	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C0	PWMDTY4	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C1	PWMDTY5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C2	PWMDTY6	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C3	PWMDTY7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C4	PWMSDN	Read: Write:	PWMIF	PWMIE	PWMRS TRT	PWMLVL	0	PWM7IN	PWM7IN L	PWM7E NA
\$00C5	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$00C6	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$00C7	Reserved	Read: Write:	0	0	0	0	0	0	0	0

\$0240 - \$027F

PIM (Port Integration Module PIM_9DP256)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$024D	PPSS	Read: Write:	PPSS7	PPSS6	PPSS5	PPSS4	PPSS3	PPSS2	PPSS1	PPSS0
\$024E	WOMS	Read: Write:	WOMS7	WOMS6	WOMS5	WOMS4	WOMS3	WOMS2	WOMS1	WOMS0
Ф004 Г	Decembra	Read:	0	0	0	0	0	0	0	0
\$024F	Reserved	Write:								
\$0250	PTM	Read: Write:	PTM7	PTM6	PTM5	PTM4	PTM3	PTM2	PTM1	PTM0
\$0251	PTIM	Read:	PTIM7	PTIM6	PTIM5	PTIM4	PTIM3	PTIM2	PTIM1	PTIM0
* • - • ·		Write:								
\$0252	DDRM	Read: Write:	DDRM7	DDRM7	DDRM5	DDRM4	DDRM3	DDRM2	DDRM1	DDRM0
\$0253	RDRM	Read: Write:	RDRM7	RDRM6	RDRM5	RDRM4	RDRM3	RDRM2	RDRM1	RDRM0
\$0254	PERM	Read: Write:	PERM7	PERM6	PERM5	PERM4	PERM3	PERM2	PERM1	PERM0
\$0255	PPSM	Read: Write:	PPSM7	PPSM6	PPSM5	PPSM4	PPSM3	PPSM2	PPSM1	PPSM0
\$0256	WOMM	Read: Write:	WOMM7	WOMM6	WOMM5	WOMM4	WOMM3	WOMM2	WOMM1	WOMM0
\$0257	MODRR	Read: Write:	0	MODRR6	MODRR5	MODRR4	MODRR3	MODRR2	MODRR1	MODRR0
\$0258	PTP	Read: Write:	PTP7	PTP6	PTP5	PTP4	PTP3	PTP2	PTP1	PTP0
\$0259	PTIP	Read:	PTIP7	PTIP6	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0
4 0209	PHP	Write:								
\$025A	DDRP	Read: Write:	DDRP7	DDRP7	DDRP5	DDRP4	DDRP3	DDRP2	DDRP1	DDRP0
\$025B	RDRP	Read: Write:	RDRP7	RDRP6	RDRP5	RDRP4	RDRP3	RDRP2	RDRP1	RDRP0
\$025C	PERP	Read: Write:	PERP7	PERP6	PERP5	PERP4	PERP3	PERP2	PERP1	PERP0
\$025D	PPSP	Read: Write:	PPSP7	PPSP6	PPSP5	PPSP4	PPSP3	PPSP2	PPSP1	PPSS0
\$025E	PIEP	Read: Write:	PIEP7	PIEP6	PIEP5	PIEP4	PIEP3	PIEP2	PIEP1	PIEP0
\$025F	PIFP	Read: Write:	PIFP7	PIFP6	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0
\$0260	PTH	Read: Write:	PTH7	PTH6	PTH5	PTH4	PTH3	PTH2	PTH1	PTH0
\$0261	טידס	Read:	PTIH7	PTIH6	PTIH5	PTIH4	PTIH3	PTIH2	PTIH1	PTIH0
\$0261	PTIH	Write:								
\$0262	DDRH	Read: Write:	DDRH7	DDRH7	DDRH5	DDRH4	DDRH3	DDRH2	DDRH1	DDRH0
\$0263	RDRH	Read: Write:	RDRH7	RDRH6	RDRH5	RDRH4	RDRH3	RDRH2	RDRH1	RDRH0
\$0264	PERH	Read: Write:	PERH7	PERH6	PERH5	PERH4	PERH3	PERH2	PERH1	PERH0
\$0265	PPSH	Read: Write:	PPSH7	PPSH6	PPSH5	PPSH4	PPSH3	PPSH2	PPSH1	PPSH0

\$02C0 - \$03FF

Reserved space

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$02C0	Reserved	Read:	0	0	0	0	0	0	0	0
- \$03FF		Write:								

1.7 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **Table 1-3** shows the assigned part ID number.

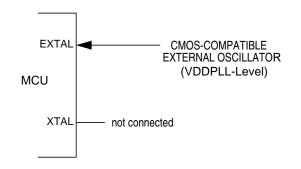
Device	Mask Set Number	Part ID ¹
MC9S12DT256	0L91N	\$0030
MC9S12DT256	1L91N	\$0031
MC9S12DT256	3L91N	\$0032
MC9S12DT256	4L91N	\$0034
MC9S12DT256	0L01Y	\$0033

Table 1-3 Assigned Part ID Numbers

NOTES:

1. The coding is as follows:

Bit 15-12: Major family identifier


Bit 11-8: Minor family identifier

Bit 7-4: Major mask set revision number including FAB transfers Bit 3-0: Minor - non full - mask set revision

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-4** shows the read-only values of these registers. Refer to section Module Mapping and Control (MMC) of HCS12 Core User Guide for further details.

Table 1-4 Memory size registers

Register name	Value
MEMSIZ0	\$25
MEMSIZ1	\$81

2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.16 PE4 / ECLK — Port E I/O Pin 4

PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference.

2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3

PE3 is a general purpose input or output pin. In MCU expanded modes of operation, $\overline{\text{LSTRB}}$ can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, $\overline{\text{TAGLO}}$ is used to tag the low half of the instruction word being read into the instruction queue.

2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).

2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).

2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).

2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL - PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module.

2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6

PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module.

2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]

PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode .

2.3.32 PK7 / ECS / ROMONE — Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output ($\overline{\text{ECS}}$). During MCU normal expanded wide and narrow modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMONE). At the rising edge of $\overline{\text{RESET}}$, the state of this pin is latched to the ROMON bit.

Section 4 Modes of Operation

4.1 Overview

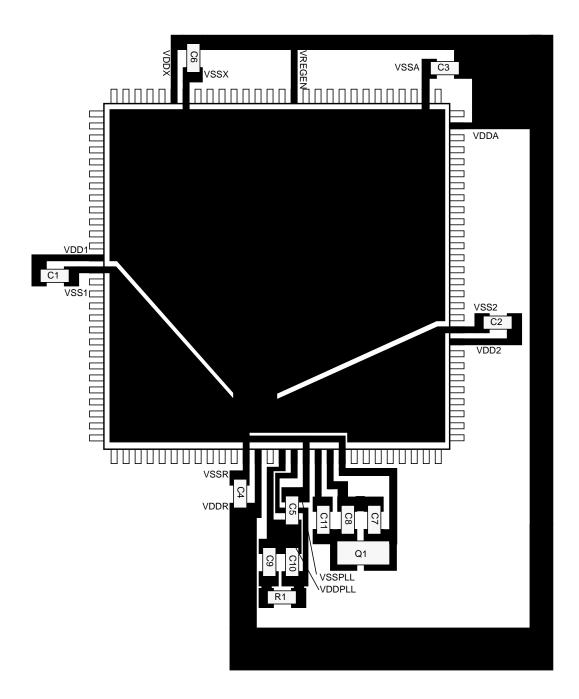
Eight possible modes determine the operating configuration of the MC9S12DT256. Each mode has an associated default memory map and external bus configuration controlled by a further pin.

Three low power modes exist for the device.

4.2 Chip Configuration Summary

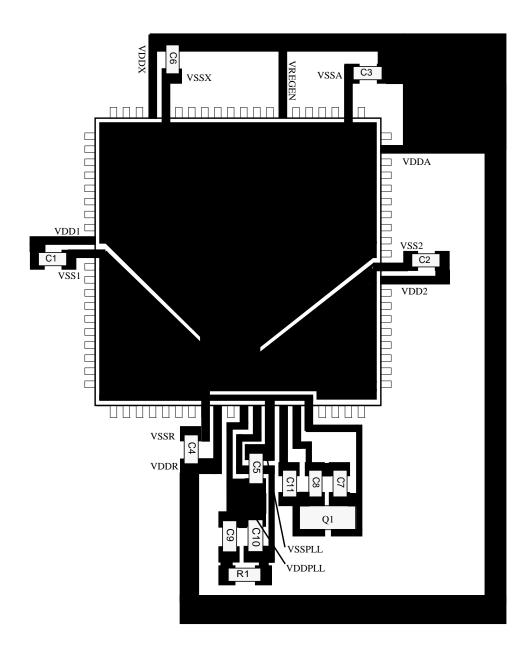
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset (**Table 4-1**). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

BKGD = MODC	PE6 = MODB	PE5 = MODA	PK7 = ROMCTL	ROMON Bit	Mode Description	
0	0	0	х	1	Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.	
0	0	1	0	1	Emulation Expanded Narrow, RDM allowed	
0	0	I	1	0	Emulation Expanded Narrow, BDM allowed	
0	1	0	Х	0	Special Test (Expanded Wide), BDM allowed	
0	1	1	0	1	Emulation Expanded Wide PDM allowed	
0	I	I	1	0	Emulation Expanded Wide, BDM allowed	
1	0	0	Х	1	Normal Single Chip, BDM allowed	
1	0	1	0	0	Normal Expanded Narrow DDM allowed	
	0	I	1	1	Normal Expanded Narrow, BDM allowed	
1	1	0	Х	1	Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used)	
			0	0		
1	1	1	1	1	Normal Expanded Wide, BDM allowed	


Table 4-1 Mode Selection

For further explanation on the modes refer to the Core User Guide.

Table 4-2 Clock Selection Based on PE7


PE7 = XCLKS	Description
1	Colpitts Oscillator selected

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS5} or V_{DD5}).

Num	Rating	Symbol	Min	Max	Unit
1	I/O, Regulator and Analog Supply Voltage	V _{DD5}	-0.3	6.0	V
2	Digital Logic Supply Voltage ²	V _{DD}	-0.3	3.0	V
3	PLL Supply Voltage ²	V _{DDPLL}	-0.3	3.0	V
4	Voltage difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.3	0.3	V
5	Voltage difference VSSX to VSSR and VSSA	Δ _{VSSX}	-0.3	0.3	V
6	Digital I/O Input Voltage	V _{IN}	-0.3	6.0	V
7	Analog Reference	V _{RH,} V _{RL}	-0.3	6.0	V
8	XFC, EXTAL, XTAL inputs	V _{ILV}	-0.3	3.0	V
9	TEST input	V _{TEST}	-0.3	10.0	V
10	Instantaneous Maximum Current Single pin limit for all digital I/O pins ³	I _D	-25	+25	mA
11	Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ⁴	I _{DL}	-25	+25	mA
12	Instantaneous Maximum Current Single pin limit for TEST ⁵	I _{DT}	-0.25	0	mA
13	Storage Temperature Range	T _{stg}	- 65	155	°C

gs ¹
1

NOTES:

1. Beyond absolute maximum ratings device might be damaged.

- 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
- The absolute maximum ratings apply when the device is powered from an external source.
- 3. All digital I/O pins are internally clamped to V_{SSX} and V_{DDX}, V_{SSR} and V_{DDR} or V_{SSA} and V_{DDA}.
- 4. Those pins are internally clamped to V_{SSPLL} and V_{DDPLL} . 5. This pin is clamped low to V_{SSR} , but not clamped high. This pin must be tied low in applications.

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
Human Body	Number of Pulse per pin positive negative	-	- 3 3	
	Series Resistance	R1	0	Ohm
	Storage Capacitance	С	200	pF
Machine	Number of Pulse per pin positive negative	-	- 3 3	
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table A-2 ESD and Latch-up Test Conditions

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	С	Machine Model (MM)	V _{MM}	200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	с	Latch-up Current at T _A = 125°C positive negative	I _{LAT}	+100 -100	-	mA
5	с	Latch-up Current at T _A = 27°C positive negative	I _{LAT}	+200 -200	-	mA

A.2.3 ATD accuracy

Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

V _{REF} =	= V _F	s are shown in Table A-4 unless otherwise noted $_{RH}$ - V _{RL} = 5.12V. Resulting to one 8 bit count = 20mV a = 2.0MHz	and one 10 bi	t count = 5m\	1		
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Ρ	10-Bit Resolution	LSB		5		mV
2	Ρ	10-Bit Differential Nonlinearity	DNL	-1		1	Counts
3	Ρ	10-Bit Integral Nonlinearity	INL	-2.5	±1.5	2.5	Counts
4	Ρ	10-Bit Absolute Error ¹	AE	-3	±2.0	3	Counts
5	Ρ	8-Bit Resolution	LSB		20		mV
6	Ρ	8-Bit Differential Nonlinearity	DNL	-0.5		0.5	Counts
7	Ρ	8-Bit Integral Nonlinearity	INL	-1.0	±0.5	1.0	Counts
8	Ρ	8-Bit Absolute Error ¹	AE	-1.5	±1.0	1.5	Counts

Table A-10 ATD Conversion Performance

NOTES:

1. These values include the quantization error which is inherently 1/2 count for any A/D converter.

For the following definitions see also Figure A-1.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

$$\mathsf{DNL}(i) = \frac{\mathsf{V}_i - \mathsf{V}_{i-1}}{\mathsf{1LSB}} - \mathsf{1}$$

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

MC9S12DT256 Device User Guide V03.07

A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

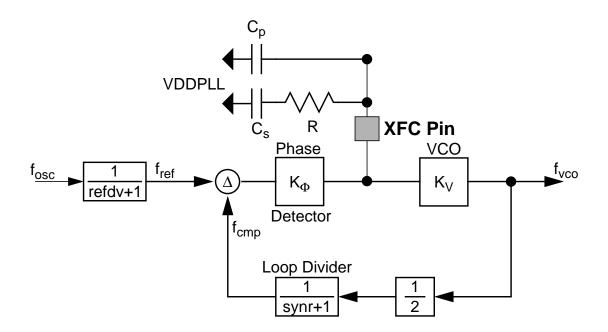


Figure A-3 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table A-16**.

The grey boxes show the calculation for $f_{VCO} = 50$ MHz and $f_{ref} = 1$ MHz. E.g., these frequencies are used for $f_{OSC} = 4$ MHz and a 25MHz bus clock.

The VCO Gain at the desired VCO frequency is approximated by:

$$K_{V} = K_{1} \cdot e^{\frac{(f_{1} - f_{vco})}{K_{1} \cdot 1V}} = -100 \cdot e^{\frac{(60 - 50)}{-100}} = -90.48 MHz/V$$

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_{V} = 316.7 \text{Hz}/\Omega$$

i_{ch} is the current in tracking mode.

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Frequency of operation (E-clock)	f _o	0		25.0	MHz
2	Р	Cycle time	t _{cyc}	40			ns
3	D	Pulse width, E low	PW _{EL}	19			ns
4	D	Pulse width, E high ¹	PW _{EH}	19			ns
5	D	Address delay time	t _{AD}			8	ns
6	D	Address valid time to E rise $(PW_{EL}-t_{AD})$	t _{AV}	11			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	13			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			7	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ¹ (PW _{EH} -t _{DDW})	t _{DSW}	12			ns
15	D	Address access time ¹ (t _{cyc} -t _{AD} -t _{DSR})	t _{ACCA}	19			ns
16	D	E high access time ¹ (PW _{EH} -t _{DSR})	t _{ACCE}	6			ns
17	D	Non-multiplexed address delay time	t _{NAD}			6	ns
18	D	Non-muxed address valid to E rise (PW _{EL} -t _{NAD})	t _{NAV}	15			ns
19	D	Non-multiplexed address hold time	t _{NAH}	2			ns
20	D	Chip select delay time	t _{CSD}			16	ns
21	D	Chip select access time ¹ (t _{cyc} -t _{CSD} -t _{DSR})	t _{ACCS}	11			ns
22	D	Chip select hold time	t _{CSH}	2			ns
23	D	Chip select negated time	t _{CSN}	8			ns
24	D	Read/write delay time	t _{RWD}			7	ns
25	D	Read/write valid time to E rise (PW_{EL} -t _{RWD})	t _{RWV}	14			ns
26	D	Read/write hold time	t _{RWH}	2			ns
27	D	Low strobe delay time	t _{LSD}			7	ns
28	D	Low strobe valid time to E rise (PW_{EL} - t_{LSD})	t _{LSV}	14			ns
29	D	Low strobe hold time	t _{LSH}	2			ns
30	D	NOACC strobe delay time	t _{NOD}			7	ns
31	D	NOACC valid time to E rise (PW _{EL} -t _{NOD})	t _{NOV}	14			ns

Table A-21 Expanded Bus Timing Characteristics

User Guide End Sheet

FINAL PAGE OF 132 PAGES