

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12dt256vpve

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MC9S12DT256 Device User Guide — V03.07

- Programmable rising or falling edge trigger
- Memory
 - 256K Flash EEPROM
 - 4K byte EEPROM
 - 12K byte RAM
- Two 8-channel Analog-to-Digital Converters
 - 10-bit resolution
 - External conversion trigger capability
- Three 1M bit per second, CAN 2.0 A, B software compatible modules
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Enhanced Capture Timer
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Four 8-bit or two 16-bit pulse accumulators
- 8 PWM channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
 - Usable as interrupt inputs
- Serial interfaces
 - Two asynchronous Serial Communications Interfaces (SCI)
 - Three Synchronous Serial Peripheral Interface (SPI)
- Byte Data Link Controller (BDLC)
 - SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
- Inter-IC Bus (IIC)

\$001E - \$001E

Address \$001E

MEBI map 2 of 3 (Core User Guide)

Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCR	Read:	IRQE	IRQEN	0	0	0	0	0	0
INTCR	Write:	INQE							

\$001F - \$001F

INT map 2 of 2 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$001F	HPRIO	Read: Write:	PSEL7	PSEL6	PSEL5	PSEL4	PSEL3	PSEL2	PSEL1	0

\$0020 - \$0027

Reserved

Address	Name	Г	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Address	Name	ł								
\$0020	Reserved	Read:	0	0	0	0	0	0	0	0
Ψ0020	iteseiveu	Write:								
\$0021	Decerved	Read:	0	0	0	0	0	0	0	0
ΦUU2 I	Reserved	Write:								
¢0000	Decembrad	Read:	0	0	0	0	0	0	0	0
\$0022	Reserved	Write:								
¢0000	Decembrad	Read:	0	0	0	0	0	0	0	0
\$0023	Reserved	Write:								
\$0024	Reserved	Read:	0	0	0	0	0	0	0	0
Φ 0024	Reserved	Write:								
\$0025	Reserved	Read:	0	0	0	0	0	0	0	0
φ0025	Reserved	Write:								
\$0026	Reserved	Read:	0	0	0	0	0	0	0	0
φυυΖΰ	Reserved	Write:								
\$0027	Reserved	Read	0	0	0	0	0	0	0	0
φυυΖΙ	Reserved	Write:								

\$0028 - \$002F

BKP (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0028	ВКРСТ0	Read: Write:	BKEN	BKFULL	BKBDM	BKTAG	0	0	0	0
\$0029	BKPCT1	Read:	KOMBH	BK0MBL	BK1MBH	BK1MBL	BK0RWE	BK0RW	BK1RWE	BK1RW
\$002A	BKP0X	Read: Write:	0	0	BK0V5	BK0V4	BK0V3	BK0V2	BK0V1	BK0V0
\$002B	BKP0H	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$002C	BKP0L	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

MC9S12DT256 Device User Guide — V03.07

\$0028 - \$002F

Address \$002D

\$002E

\$002F

BKP (Core User Guide)

Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BKP1X	Read:	0	0	BK1V5	BK1V4	BK1V3	BK1V2	BK1V1	BK1V0
DRITA	Write:			DIVINO		DIVINO	DITIVZ	DICIVI	BICIVO
BKP1H	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
BKP1L	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0030 - \$0031

MMC map 4 of 4 (Core User Guide)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0030	PPAGE	Read:	0	0	PIX5	PIX4	PIX3	PIX2	PIX1	PIX0
ф0030	PPAGE	Write:			FIAD	F1A4	FIAS	FIAZ	FIAT	FIAU
\$0031	Reserved	Read:	0	0	0	0	0	0	0	0
φυυσι	Reserved	Write:								

\$0032 - \$0033

MEBI map 3 of 3 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0032	PORTK	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0033	DDRK	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0034 - \$003F

CRG (Clock and Reset Generator)

Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0034	SYNR	Read: Write:	0	0	SYN5	SYN4	SYN3	SYN2	SYN1	SYN0
\$0035	REFDV	Read: Write:	0	0	0	0	REFDV3	REFDV2	REFDV1	REFDV0
\$0036	CTFLG	Read:	TOUT7	TOUT6	TOUT5	TOUT4	TOUT3	TOUT2	TOUT1	TOUT0
\$0030	TEST ONLY	Write:								
\$0037	CRGFLG	Read:	RTIF	PROF	0	LOCKIF	LOCK	TRACK	SCMIF	SCM
çooo.		Write:			-		-	-		
\$0038	CRGINT	Read:	RTIE	0	0	LOCKIE	0	0	SCMIE	0
		Write:								
\$0039	CLKSEL	Read: Write:	PLLSEL	PSTP	SYSWAI	ROAWAI	PLLWAI	CWAI	RTIWAI	COPWAI
\$003A	PLLCTL	Read: Write:	CME	PLLON	AUTO	ACQ	0	PRE	PCE	SCME
\$003B	RTICTL	Read: Write:	0	RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0
\$003C	COPCTL	Read: Write:	WCOP	RSBCK	0	0	0	CR2	CR1	CR0

\$0034 - \$003F

CRG (Clock and Reset Generator)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢002D	FORBYP	Read:	RTIBYP	СОРВҮР	0	PLLBYP	0	0	FCM	0
\$003D	TEST ONLY	Write:	RIIDIP	COPDIP		PLLDIP			FCIVI	
¢ооог	CTCTL	Read:	TCTL7	TCTL6	TCTL5	TCTL4	TCLT3	TCTL2	TCTL1	TCTL0
\$003E	TEST ONLY	Write:								
\$003F	ARMCOP	Read:	0	0	0	0	0	0	0	0
ф003F	ARIVICOP	Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0040	TIOS	Read: Write:	IOS7	IOS6	IOS5	IOS4	IOS3	IOS2	IOS1	IOS0
¢0044		Read:	0	0	0	0	0	0	0	0
\$0041	CFORC	Write:	FOC7	FOC6	FOC5	FOC4	FOC3	FOC2	FOC1	FOC0
\$0042	OC7M	Read: Write:	OC7M7	OC7M6	OC7M5	OC7M4	OC7M3	OC7M2	OC7M1	OC7M0
\$0043	OC7D	Read: Write:	OC7D7	OC7D6	OC7D5	OC7D4	OC7D3	OC7D2	OC7D1	OC7D0
\$0044	TCNT (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
φοστι		Write:								
\$0045	TCNT (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:					0	0	0	0
\$0046	TSCR1	Read: Write:	TEN	TSWAI	TSFRZ	TFFCA	0	0	0	0
\$0047	ττον	Read: Write:	TOV7	TOV6	TOV5	TOV4	TOV3	TOV2	TOV1	TOV0
\$0048	TCTL1	Read: Write:	OM7	OL7	OM6	OL6	OM5	OL5	OM4	OL4
\$0049	TCTL2	Read: Write:	OM3	OL3	OM2	OL2	OM1	OL1	OM0	OL0
\$004A	TCTL3	Read: Write:	EDG7B	EDG7A	EDG6B	EDG6A	EDG5B	EDG5A	EDG4B	EDG4A
\$004B	TCTL4	Read: Write:	EDG3B	EDG3A	EDG2B	EDG2A	EDG1B	EDG1A	EDG0B	EDG0A
\$004C	TIE	Read: Write:	C7I	C6I	C5I	C4I	C3I	C2I	C1I	COI
\$004D	TSCR2	Read: Write:	ΤΟΙ	0	0	0	TCRE	PR2	PR1	PR0
\$004E	TFLG1	Read: Write:	C7F	C6F	C5F	C4F	C3F	C2F	C1F	C0F
\$004F	TFLG2	Read: Write:	TOF	0	0	0	0	0	0	0
\$0050	TC0 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0051	TC0 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0052	TC1 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$006C	Reserved	Read: Write:								
\$006D	TIMTST	Read:	0	0	0	0	0	0	ТСВҮР	0
	Test Only	Write:								
\$006E	Reserved	Read: Write:								
\$006F	Reserved	Read: Write:								
\$0070	PBCTL	Read: Write:	0	PBEN	0	0	0	0	PBOVI	0
\$0071	PBFLG	Read: Write:	0	0	0	0	0	0	PBOVF	0
\$0072	PA3H	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0073	PA2H	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0074	PA1H	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0075	PA0H	Write: Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write: Read:								
\$0076	MCCNT (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0077	MCCNT (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0078	TC0H (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0079	TC0H (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$007A	TC1H (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$007B	TC1H (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$007C	TC2H (hi)	Write: Read:	Bit 15	14	13	12	11	10	9	Bit 8
çoo. o	10211 (11)	Write:	D:4 7	0	5	4	0	0	4	Dit 0
\$007D	TC2H (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$007E	TC3H (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$007F	TC3H (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0080 - \$009F

ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0080	ATD0CTL0	Read:	0	0	0	0	0	0	0	0
\$0080	AIDUCILU	Write:								
\$0081	ATD0CTL1	Read:	0	0	0	0	0	0	0	0
φυυστ	AIDUCILI	Write:								

\$0280 - \$02BF CAN4 (Mc

CAN4 (Motorola Scalable CAN - MSCAN)

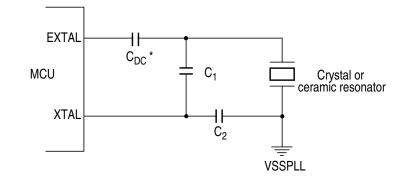
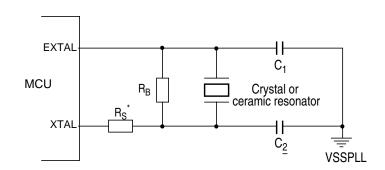
Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$028C	Reserved	Read:	0	0	0	0	0	0	0	0
*		Write:	0	0	0	0	0	0	0	0
\$028D	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$028E	CAN4RXERR	Read: Write:	RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0
\$028F	CAN4TXERR	Read: Write:	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0
\$0290	CAN4IDAR0	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0291	CAN4IDAR1	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0292	CAN4IDAR2	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0293	CAN4IDAR3	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0294	CAN4IDMR0	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0295	CAN4IDMR1	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0296	CAN4IDMR2	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0297	CAN4IDMR3	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0298	CAN4IDAR4	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0299	CAN4IDAR5	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029A	CAN4IDAR6	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029B	CAN4IDAR7	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029C	CAN4IDMR4	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$029D	CAN4IDMR5	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$029E	CAN4IDMR6	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$029F	CAN4IDMR7	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$02A0 -	CAN4RXFG	Read:								
\$02AF		Write:								
\$02B0 - \$02BF	CAN4TXFG	Read: Write:								

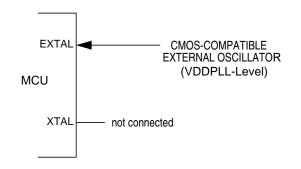
Section 2 Signal Description

This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block User Guides of the individual IP blocks on the device.

2.1 Device Pinout

The MC9S12DT256/MC9S12DJ256/MC9S12DG256 and MC9S12A256 is available in a 112-pin low profile quad flat pack (LQFP) and MC9S12DJ256/MC9S12DG256 and MC9S12A256 is also available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1** and **Figure 2-2** show the pin assignments.


Figure 2-4 Colpitts Oscillator Connections (PE7=1)

* Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal .Please contact the crystal manufacturer for crystal DC

* Rs can be zero (shorted) when use with higher frequency crystals. Refer to manufacturer's data.

2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.16 PE4 / ECLK — Port E I/O Pin 4

PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference.

2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3

PE3 is a general purpose input or output pin. In MCU expanded modes of operation, $\overline{\text{LSTRB}}$ can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, $\overline{\text{TAGLO}}$ is used to tag the low half of the instruction word being read into the instruction queue.

2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).

2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).

2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).

2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module.

2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6

PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module.

2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]

PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode .

2.3.32 PK7 / ECS / ROMONE — Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output ($\overline{\text{ECS}}$). During MCU normal expanded wide and narrow modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMONE). At the rising edge of $\overline{\text{RESET}}$, the state of this pin is latched to the ROMON bit.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS5} or V_{DD5}).

Num	Rating	Symbol	Min	Max	Unit
1	I/O, Regulator and Analog Supply Voltage	V _{DD5}	-0.3	6.0	V
2	Digital Logic Supply Voltage ²	V _{DD}	-0.3	3.0	V
3	PLL Supply Voltage ²	V _{DDPLL}	-0.3	3.0	V
4	Voltage difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.3	0.3	V
5	Voltage difference VSSX to VSSR and VSSA	Δ _{VSSX}	-0.3	0.3	V
6	Digital I/O Input Voltage	V _{IN}	-0.3	6.0	V
7	Analog Reference	V _{RH,} V _{RL}	-0.3	6.0	V
8	XFC, EXTAL, XTAL inputs	V _{ILV}	-0.3	3.0	V
9	TEST input	V _{TEST}	-0.3	10.0	V
10	Instantaneous Maximum Current Single pin limit for all digital I/O pins ³	I _D	-25	+25	mA
11	Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ⁴	I _{DL}	-25	+25	mA
12	Instantaneous Maximum Current Single pin limit for TEST ⁵	I _{DT}	-0.25	0	mA
13	Storage Temperature Range	T _{stg}	- 65	155	°C

gs ¹
1

NOTES:

1. Beyond absolute maximum ratings device might be damaged.

A.2 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

A.2.1 ATD Operating Characteristics

The **Table A-8** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

 $V_{SSA} \le V_{RL} \le V_{IN} \le V_{RH} \le V_{DDA}$. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.

Condit	tions	s are shown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	Reference Potential Low High	V _{RL} V _{RH}	V _{SSA} V _{DDA} /2		V _{DDA} /2 V _{DDA}	V V
2	С	Differential Reference Voltage ¹	$V_{RH} - V_{RL}$	4.50	5.00	5.25	V
3	D	ATD Clock Frequency	f _{ATDCLK}	0.5		2.0	MHz
4	D	ATD 10-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV10} T _{CONV10}	14 7		28 14	Cycles μs
5	D	ATD 8-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}		12 6		26 13	Cycles μs
6	D	Recovery Time (V _{DDA} =5.0 Volts)	t _{REC}			20	μs
7	Р	Reference Supply current 2 ATD blocks on	I _{REF}			0.750	mA
8	Р	Reference Supply current 1 ATD block on	I _{REF}			0.375	mA

Table A-8	ATD Operating	Characteristics
-----------	---------------	-----------------

NOTES:

1. Full accuracy is not guaranteed when differential voltage is less than 4.50V

2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.

A.2.2 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD.

A.2.2.1 Source Resistance:

Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S

A.4 Voltage Regulator

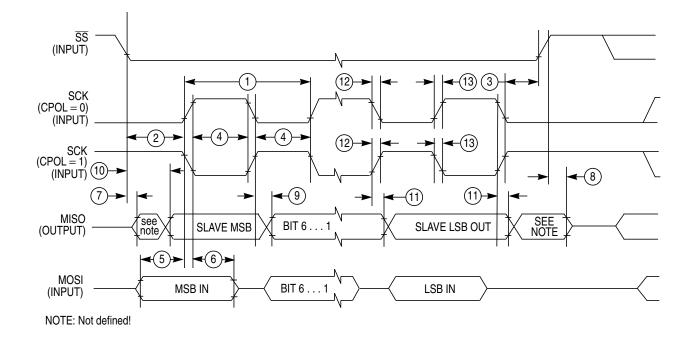

The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC load is allowed.

 Table A-13
 Voltage Regulator Recommended Load Capacitances

Rating	Symbol	Min	Тур	Мах	Unit
Load Capacitance on VDD1, 2	C _{LVDD}		220		nF
Load Capacitance on VDDPLL	C _{LVDDfcPLL}		220		nF

A.7.2 Slave Mode

In Figure A-8 the timing diagram for slave mode with transmission format CPHA=0 is depicted.

Figure A-8 SPI Slave Timing (CPHA=0)

In Figure A-9 the timing diagram for slave mode with transmission format CPHA=1 is depicted.

A.8 External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in **Figure A-10** with the actual timing values shown on table **Table A-21**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

A.8.1 General Muxed Bus Timing

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.

B.3 80-pin QFP package

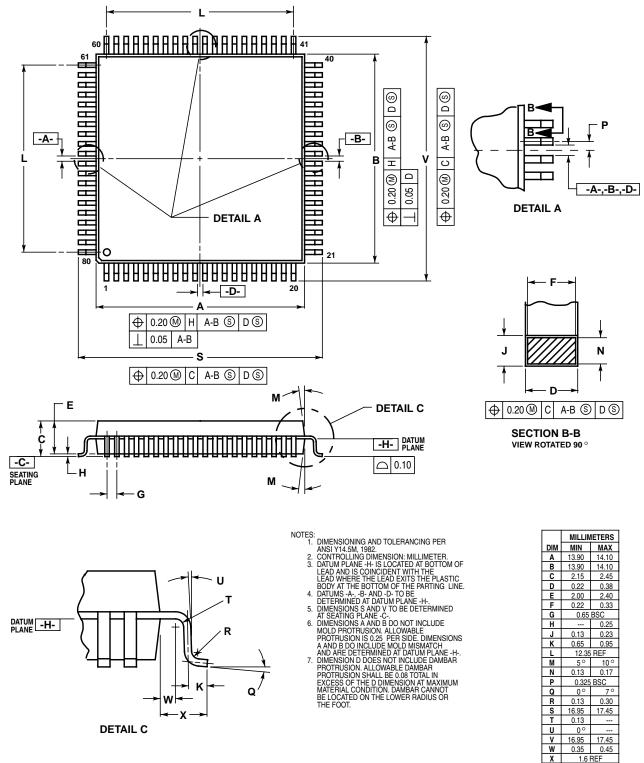


Figure B-2 80-pin QFP Mechanical Dimensions (case no. 841B)