E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, Ethernet, HDMI-CEC, I ² C, IrDA, LINbus, MMC/SD, SAI, SPDIFRX, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f750v8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripherals	STM32F750V8	STM32F750Z8	, STM32F750N8						
12-bit ADC		3							
Number of channels	16	2	24						
12-bit DAC Number of channels		Yes 2							
Maximum CPU frequency		216 MHz ⁽³⁾							
Operating voltage		1.7 to 3.6 V ⁽⁴⁾							
	Ambient temperate	Ambient temperatures: -40 to +85 °C /-40 to +105 °C							
Operating temperatures	Junction te	Junction temperature: -40 to + 125 °C							
Package	LQFP100	LQFP144	TFBGA216						

Table 2. STM32F750x8 features and peripheral counts (continued)

1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

3. 216 MHz maximum frequency for -40°C to + 85°C ambient temperature range (200 MHz maximum frequency for -40°C to + 105°C ambient temperature range).

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 3.17.2: Internal reset OFF).

The major features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- Support of the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.35 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception.

3.36 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.37 Cryptographic acceleration

The devices embed a cryptographic accelerator. This cryptographic accelerator provides a set of hardware acceleration for the advanced cryptographic algorithms usually needed to

3.41 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.42 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.43 Serial wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.44 Embedded Trace Macrocell™

The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F74xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or

DS12535 Rev 1

Table 10. STM32F750x8	pin and ball definition ((continued)

Pin	Num	ber			-		pin and ban definition (continued)	
LQFP100	LQFP144	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	54	P6	PF14	I/O	FT	-	I2C4_SCL, FMC_A8, EVENTOUT	-
-	55	M8	PF15	I/O	FT	-	I2C4_SDA, FMC_A9, EVENTOUT	-
-	56	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	57	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
37	58	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
38	59	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
39	60	P9	PE9	I/O	FT	-	TIM1_CH1, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	61	K8	VSS	S	-	-	-	-
-	62	L9	VDD	S	-	-	-	-
40	63	R9	PE10	I/O	FT	-	TIM1_CH2N, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT	-
41	64	P10	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS, SAI2_SD_B, FMC_D8, LCD_G3, EVENTOUT	-
42	65	R10	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK, SAI2_SCK_B, FMC_D9, LCD_B4, EVENTOUT	-
43	66	R12	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, SAI2_FS_B, FMC_D10, LCD_DE, EVENTOUT	-
44	67	P11	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI, SAI2_MCK_B, FMC_D11, LCD_CLK, EVENTOUT	-
45	68	R11	PE15	I/O	FT	-	TIM1_BKIN, FMC_D12, LCD_R7, EVENTOUT	-
46	69	P12	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT	-

Table 10. STM32F750x8	pin and ball definition	(continued)
		(0011111000)

Pin	Num	ber					pin and ball definition (continued)	
LQFP100	LQFP144	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
66	99	F14	PC9	I/O	FT	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, SDMMC1_D1, DCMI_D3, EVENTOUT	-
67	100	F15	PA8	I/O	FT	-	MCO1, TIM1_CH1, TIM8_BKIN2, I2C3_SCL, USART1_CK, OTG_FS_SOF, LCD_R6, EVENTOUT	-
68	101	E15	PA9	I/O	FT	-	TIM1_CH2, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, DCMI_D0, EVENTOUT	OTG_FS_VBUS
69	102	D15	PA10	I/O	FT	-	TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	-
70	103	C15	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT	-
71	104	B15	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT	-
72	105	A15	PA13(JTMS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
73	106	E11	VCAP_2	S	-	-	-	-
74	107	F10	VSS	S	-	-	-	-
75	108	F11	VDD	S	-	-	-	-
-	-	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	E14	PIO	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS, FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	D14	Pl1	I/O	FT	-	TIM8_BKIN2, SPI2_SCK/I2S2_CK, FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-

			Table 10. S	тмз	2F75	0x8	pin and ball definition (continued)	
Pin	Num	ber						
LQFP100	LQFP144	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	C14	Pl2	I/O	FT	-	TIM8_CH4, SPI2_MISO, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
-	-	F9	VSS	S	-	-	-	-
-	-	E10	VDD	S	-	-	-	-
76	109	A14	PA14(JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
77	110	A13	PA15(JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, HDMI-CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, UART4_RTS, EVENTOUT	-
78	111	B14	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDMMC1_D2, DCMI_D8, LCD_R2, EVENTOUT	-
79	112	B13	PC11	I/O	FT	-	SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDMMC1_D3, DCMI_D4, EVENTOUT	-
80	113	A12	PC12	I/O	FT	-	TRACED3, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9, EVENTOUT	-
81	114	B12	PD0	I/O	FT	-	CAN1_RX, FMC_D2, EVENTOUT	-
82	115	C12	PD1	I/O	FT	-	CAN1_TX, FMC_D3, EVENTOUT	-
83	116	D12	PD2	I/O	FT	-	TRACED2, TIM3_ETR, UART5_RX, SDMMC1_CMD, DCMI_D11, EVENTOUT	-
84	117	C11	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
85	118	D11	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
86	119	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	120	F8	VSS	S	-	-	-	-

Table 10. STM32F750x8	pin and ball definition	(continued)
		(0011111004)

STM32F750x8

	AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14																
	Port		AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P			TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PD0	-	-	-	-	-	-	-	-	-	CAN1_R X	-	-	FMC_D2	-	-	EVEN TOUT
	PD1	-	-	-	-	-	-	-	-	-	CAN1_T X	-	-	FMC_D3	-	-	EVEN TOUT
	PD2	TRACE D2	-	TIM3_ET R	-	-	-	-	-	UART5_ RX	-	-	-	SDMMC 1_CMD	DCMI_D 11	-	EVEN TOUT
	PD3	-	-	-	-	-	SPI2_SC K/I2S2_ CK	-	USART2 _CTS	-	-	-	-	FMC_CL K	DCMI_D 5	LCD_G7	EVEN TOUT
	PD4	-	-	-	-	-	-	-	USART2 _RTS	-	-	-	-	FMC_N OE	-	-	EVEN TOUT
	PD5	-	-	-	-	-	-	-	USART2 _TX	-	-	-	-	FMC_N WE	-	-	EVEN TOUT
	PD6	-	-	-	-	-	SPI3_M OSI/I2S3 _SD	SAI1_SD _A	USART2 _RX	-	-	-	-	FMC_N WAIT	DCMI_D 10	LCD_B2	EVEN TOUT
Port D	PD7	-	-	-	-	-	-	-	USART2 _CK	SPDIFRX _IN0	-	-	-	FMC_NE 1	-	-	EVEN TOUT
	PD8	-	-	-	-	-	-	-	USART3 _TX	SPDIFRX _IN1	-	-	-	FMC_D1 3	-	-	EVEN TOUT
	PD9	-	-	-	-	-	-	-	USART3 _RX	-	-	-	-	FMC_D1 4	-	-	EVEN TOUT
	PD10	-	-	-	-	-	-	-	USART3 _CK	-	-	-	-	FMC_D1 5	-	LCD_B3	EVEN TOUT
	PD11	-	-	-	-	I2C4_SM BA	-	-	USART3 _CTS	-	QUADSP I_BK1_IO 0	SAI2_SD_ A	-	FMC_A1 6/FMC_ CLE	-	-	EVEN TOUT
	PD12	-	-	TIM4_C H1	LPTIM1_I N1	I2C4_SC L	-	-	USART3 _RTS	-	QUADSP I_BK1_IO 1	SAI2_FS_ A	-	FMC_A1 7/FMC_ ALE	-	-	EVEN TOUT
	PD13	-	-	TIM4_C H2	LPTIM1_ OUT	I2C4_SD A	-	-	-	-	QUADSP I_BK1_IO 3	SAI2_SC K_A	-	FMC_A1 8	-	-	EVEN TOUT

Table 12. STM32F750x8 alternate function mapping (continued)

DS12535 Rev 1

577

73/199

STM32F750x8

79/199

DS1	
2535	
Rev	
\rightarrow	

5

Port		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
		SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PI7	-	-	-	TIM8_CH 3	-	-	-	-	-	-	SAI2_FS_ A	-	FMC_D2 9	DCMI_D 7	LCD_B7	EVEN TOUT
	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PI9	-	-	-	-	-	-	-	-	-	CAN1_R X	-	-	FMC_D3 0	-	LCD_VS YNC	EVEN TOUT
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RX_ER	FMC_D3 1	-	LCD_HS YNC	EVEN TOUT
Port I	PI11	-	-	-	-	-	-	-	-	-	-	OTG_HS_ ULPI_DIR	-	-	-	-	EVEN TOUT
	PI12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_HS YNC	EVEN TOUT
	PI13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_VS YNC	EVEN TOUT
	PI14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_CL K	EVEN TOUT
	PI15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R0	EVEN TOUT
	PJ0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R1	EVEN TOUT
	PJ1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R2	EVEN TOUT
	PJ2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R3	EVEN TOUT
Port J	PJ3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R4	EVEN TOUT
	PJ4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R5	EVEN TOUT
	PJ5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R6	EVEN TOUT
	PJ6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R7	EVEN TOUT

Table 12. STM32F750x8 alternate function mapping (continued)

80/199

DS12535 Rev 1

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PJ7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G0	EVEN TOUT
	PJ8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G1	EVEN TOUT
	PJ9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G2	EVEN TOUT
	PJ10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G3	EVEN TOUT
Port J	PJ11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G4	EVEN TOUT
	PJ12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B0	EVEN TOUT
	PJ13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B1	EVEN TOUT
	PJ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B2	EVEN TOUT
	PJ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B3	EVEN TOUT

 Table 12. STM32F750x8 alternate function mapping (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit	
V ₁₂	Regulator ON: 1.2 V internal voltage on V _{CAP_1} /V _{CAP_2} pins	Power Scale 3 ((VOS[1:0] bits in PWR_CR register = 0x01), 144 MHz HCLK max frequency	1.08	1.14	1.20		
		Power Scale 2 ((VOS[1:0] bits in PWR_CR register = 0x10), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON	1.20	1.26	1.32		
		Power Scale 1 ((VOS[1:0] bits in PWR_CR register = 0x11), 180 MHz HCLK max frequency with over-drive OFF or 216 MHz with over-drive ON	1.26	1.32	1.40		
	Regulator OFF: 1.2 V external voltage must be supplied from external regulator on	Max frequency 144 MHz	1.10	1.14	1.20		
		Max frequency 168MHz	1.20	1.26	1.32		
	$V_{CAP_1}/V_{CAP_2} pins^{(7)}$	Max frequency 180 MHz	1.26	1.32	1.38		
V _{IN}	Input voltage on RST and FT pins ⁽⁸⁾	2 V ≤V _{DD} ≤3.6 V	- 0.3	-	5.5		
		$V_{DD} \leq 2 V$	- 0.3	-	5.2		
	Input voltage on TTa pins	-	- 0.3	-	V _{DDA} + 0.3		
	Input voltage on BOOT pin	-	0	-	9		
	Power dissipation at T_A = 85 °C for suffix 6 or T_A = 105 °C for suffix 7 ⁽⁹⁾	LQFP100	-	-	465		
PD		LQFP144	-	-	500	mW	
		TFBGA216	-	-	690		
	Ambient temperature for 6 suffix	Maximum power dissipation	- 40	-	85	°C	
т.	version	Low power dissipation ⁽¹⁰⁾	- 40	-	105		
Та	Ambient temperature for 7 suffix	Maximum power dissipation	- 40	-	105	°C	
	version	Low power dissipation ⁽¹⁰⁾	- 40	-	125		
TJ	lunction temperature range	6 suffix version	- 40	-	105	°C	
IJ	Junction temperature range	7 suffix version	- 40	-	125	- °C	

1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.

2. 216 MHz maximum frequency for 6 suffix version (200 MHz maximum frequency for 7 suffix version).

3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

4. When the ADC is used, refer to Table 61: ADC characteristics.

5. If V_{REF+} pin is present, it must respect the following condition: $V_{DDA}-V_{REF+} < 1.2$ V.

It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.

7. The over-drive mode is not supported when the internal regulator is OFF.

8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled

9. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax}

10. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

			Typ ⁽¹⁾				Max ⁽²⁾		
Symbol	Parameter	Conditions	Т	_A = 25 °	с	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	/ _{DD} = 3.3	v	
		Backup SRAM OFF, RTC and LSE OFF	1.7	1.9	2.3	5 ⁽³⁾	15 ⁽³⁾	31 ⁽³⁾	
		Backup SRAM ON, RTC and LSE OFF	2.4	2.6	3.0	6 ⁽³⁾	20 ⁽³⁾	40 ⁽³⁾	
		Backup SRAM OFF, RTC ON and LSE in low drive mode	2.1	2.4	2.9	6	19	39	
		Backup SRAM OFF, RTC ON and LSE in medium low drive mode	2.1	2.4	2.9	6	19	39	
	Supply current in Standby	Backup SRAM OFF, RTC ON and LSE in medium high drive mode	2.2	2.5	3.0	7	20	40	μA
	mode	Backup SRAM OFF, RTC ON and LSE in high drive mode	2.3	2.6	3.1	7	20	42	μΑ
		Backup SRAM ON, RTC ON and LSE in low drive mode	2.7	3.0	3.6	8	23	49	
		Backup SRAM ON, RTC ON and LSE in Medium low drive mode	2.7	3.0	3.6	8	23	49	
		Backup SRAM ON, RTC ON and LSE in Medium high drive mode	2.8	3.1	3.7	8	24	50	
		Backup SRAM ON, RTC ON and LSE in High drive mode	2.9	3.2	3.8	8	25	51	

Table 31. Typical and maximum current consumptions in Standby mode
--

1. PDR is OFF for V_{DD} =1.7V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μ A.

2. Guaranteed by characterization results.

3. Based on characterization, tested in production.

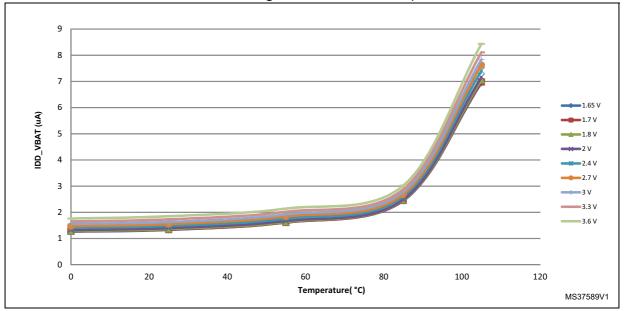


Figure 23. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in high medium drive mode)

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 55: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 34: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
+	PLL lock time	VCO freq = 100 MHz		75	-	200		
t _{LOCK}		VCO freq = 100 MHz VCO freq = 432 MHz VCO freq = 432 MHz RMS Peak peak System clock Peak 216 MHz RMS Peak peak con 1000 samples Peat 100 MHz Cycle to cycle at 50 MHz Cycle to cycle at 25 MHz Cycle to cycle at 25 MHz On 1000 samples Cycle to cycle at 1 MHz VCO freq = 100 MHz		100	-	300	μs	
			RMS	-	25	-		
Jitter ⁽³⁾	Cycle-to-cycle jitter Period Jitter		to	-	±150	-		
			RMS	-	15	-	1	
			to	-	±200	-	ps	
	Main clock output (MCO) for RMII Ethernet			-	32	-]	
	Main clock output (MCO) for MII Ethernet			-	40	-	-	
	Bit Time CAN jitter			-	330	-		
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on V_{DD}	-		0.15 0.45	-	0.40 0.75	mA	
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on V_{DDA}	VCO freq = 100 M VCO freq = 432 M		0.30 0.55	-	0.40 0.85	mA	

Table 42. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results.

Table 43. PLLI2S characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLLI2SP_OUT}	PLLI2S multiplier output clock for SPDIFRX	-	-	-	216	
f _{PLLI2SQ_OUT}	PLLI2S multiplier output clock for SAI	-	-	-	216	MHz
f _{PLLI2SR_OUT}	PLLI2S multiplier output clock for I2S	-	-	-	216	
f _{VCO_OUT}	PLLI2S VCO output	-	100	-	432	
+	PLLI2S lock time	VCO freq = 100 MHz	75	-	200	
t _{LOCK}		VCO freq = 432 MHz	100	-	300	μs

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Jitter ⁽³⁾		Cycle to cycle at	RMS	-	90	-	
	Master SAI clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	_	0.40 0.85	mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

6.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 51: EMI characteristics*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ – 1	-

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL \ IN}/ \ (4 \times f_{Mod})]$

 $f_{\mathsf{PLL_IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round[10^{6} / (4 × 10^{3})] = 250

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}]	Unit
		inequency bana	25/200 MHz		
		$V_{1} = 2.6 V_{1} = 25^{\circ} C_{1} = 10000000000000000000000000000000000$	0.1 to 30 MHz	- 4	
	V_{DD} = 3.6 V, T_A = 25 °C, TFBGA216 package, conforming to IEC61967-2 ART/L1-cache OFF,	30 to 130 MHz	9	dBµV	
		over-drive ON, all peripheral clocks enabled, clock dithering disabled.	130 MHz to 1GHz	11	
			EMI Level	3	-
		V _{DD} = 3.6 V, T _A = 25 °C, TFBGA216 package,	0.1 to 30 MHz	4 5	
6	Peak level	conforming to IEC61967-2 ART/L1-cache ON, over-drive ON, all peripheral clocks enabled, clock	30 to 130 MHz		dBµV
S _{EMI}	reak level	dithering disabled.	130 MHz to 1GHz	14	
			EMI level	3	-
			0.1 to 30 MHz	- 9	
		V_{DD} = 3.6 V, T_A = 25 °C, TFBGA216 package, conforming to IEC61967-2 ART/L1-cache ON,	30 to 130 MHz	-7	dBµV
		over-drive ON, all peripheral clocks enabled, clock dithering enabled.	130 MHz to 1GHz	-5	
			EMI level	1.5	-

Table 51. EMI characteristics

6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001-2012 and ANSI/ESD S5.3.1-2009 standards.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001-2012	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C conforming to ANSI/ESD S5.3.1-2009, LQFP100, LQFP144 and TFBGA216 packages	C3	250	V

Table 52. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table 53. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T_A = +105 °C conforming to JESD78A	II level A

6.3.16 I/O current injection characteristics

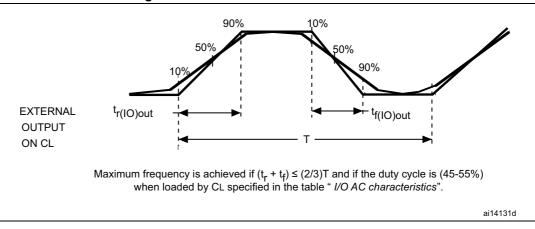
As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾	- MHz
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	
			C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
11	t _{f(IO)} out [/] t _{r(IO)} out		C _L = 30 pF, V _{DD} ≥ 2.7 V	-	4	4	- ns
		Output high to low level fall time and output low to high level rise time $C_{L} = 30 \text{ pF}, \text{ V}_{DD} \geq C_{L} = 10 \text{ pF}, \text{ V}_{DD} = 0 \text{ pF}, \text{ V}_{D} = 0 \text{ pF}, \text{ V}_{D} = 0 \text{ pF}, \text{ V}_{D} = 0 \text{ pF},$	C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	
			C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns


Table 57. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F75xxx and STM32F74xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure* 33.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 33. I/O AC characteristics definition

Table 86 gives the list of Ethernet MAC signals for MII and *Figure 50* shows the corresponding timing diagram.

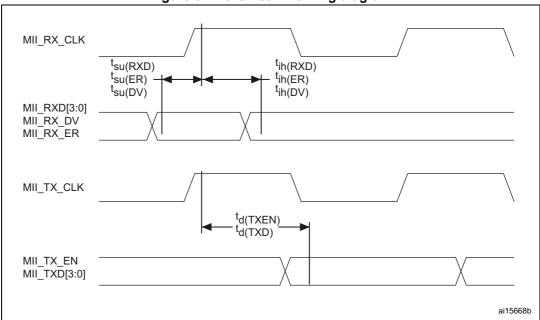


Figure 51. Ethernet MII timing diagram

Symbol	Parameter	Min	Тур	Max	Unit	
t _{su(RXD)}	Receive data setup time	3	-	-		
t _{ih(RXD)}	Receive data hold time	1.5	-	-		
t _{su(DV)}	Data valid setup time	0	-	-		
t _{ih(DV)}	Data valid hold time	1.5	-	-		
t _{su(ER)}	Error setup time	1.5	-	-	ns	
t _{ih(ER)}	Error hold time	0.5	-	-		
t _{d(TXEN)}	Transmit enable valid delay time	6.5	7	13.5		
t _{d(TXD)}	Transmit data valid delay time	6.5	7	13.5		

1. Guaranteed by characterization results.

CAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

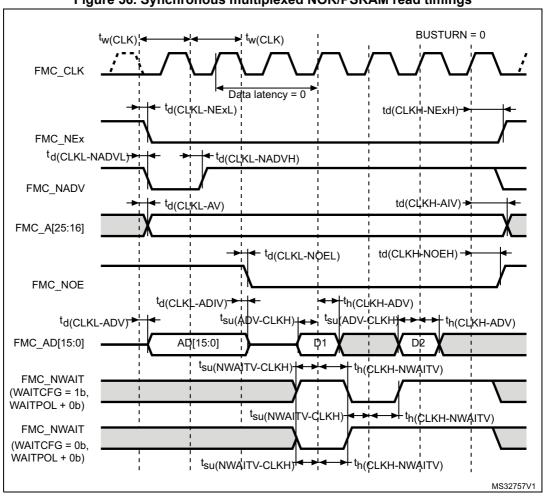


Figure 56. Synchronous multiplexed NOR/PSRAM read timings

			data				
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ссс	-	-	0.080	-	-	0.0031	

Table 111. LQPF100	, 14 x 14 mm 100-pin low-profile quad flat package mechanical
	data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

