

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Product Status	Active
Applications	USB Host/Peripheral Controller
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	CYUSB
RAM Size	512K x 8
Interface	GPIF, I ² C, I ² S, MMC/SD/SDIO, SPI, UART, USB
Number of I/O	60
Voltage - Supply	1.15V ~ 1.25V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-FBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb3035-bzxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CYUSB303X

Contents

Functional Overview	4
Application Examples	4
USB Interface	5
OTG	5
ReNumeration	6
EZ-Dtect	6
VBUS Overvoltage Protection	6
Carkit UART Mode	6
Host Processor Interface (P-Port)	7
GPIF II	7
Slave FIFO Interface	7
Asynchronous SRAM	7
Asynchronous Address/Data Multiplexed	8
Synchronous ADMux Interface	8
Processor MMC (PMMC) Slave Interface	8
CPU	10
Storage Port (S-Port)	10
SD/MMC Clock Stop	10
SD CLK Output Clock Stop	10
Card Insertion and Removal Detection	10
Write Protection (WP)	10
SDIO Interrupt	10
SDIO Read-Wait Feature	10
JTAG Interface	11
Other Interfaces	11
UART Interface	11
I2C Interface	11
I2S Interface	11
SPI Interface	11
Boot Options	12
Reset	12
Hard Reset	12
Soft Reset	12
Clocking	13
32-kHz Watchdog Timer Clock Input	וס 13
Power	۲۵۱۵ ۸ ۸
Dower Modes	14

Configuration Options	17
Digital I/Os	17
GPIOs	17
System-level ESD	17
Pin Description	
Absolute Maximum Ratings	22
Operating Conditions	22
DC Specifications	22
AC Timing Parameters	24
GPIF II Timing	24
Asynchronous SRAM Timing	27
ADMux Timing for Asynchronous Access	
Synchronous ADMux Timing	32
Slave FIFO Interface	35
Asynchronous Slave FIFO	
Read Sequence Description	37
Asynchronous Slave FIFO	
Write Sequence Description	
Storage Port Timing	
Senar Peripherals Timing	
Reset Sequence	
Package Diagram	50
Ordering Information	51
Ordering Code Definitions	51
Acronyms	52
Document Conventions	
Units of Measure	52
Document History Page	53
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	54
Products	54
PSoC® Solutions	54
Cypress Developer Community	54
Technical Support	54

Host Processor Interface (P-Port)

A configurable interface enables FX3S to communicate with various devices such as Sensor, FPGA, Host Processor, or a Bridge chip. FX3S supports the following P-Port interfaces.

- GPIF II (16-bit)
- Slave FIFO Interface
- 16-bit Asynchronous SRAM Interface
- 16-bit Asynchronous address/data multiplexed (ADMux) Interface
- 16-bit Synchronous address/data multiplexed (ADMux) Interface
- Processor MMC slave Interface compatible with MMC System specification, MMCA Technical Committee, Version 4.2 with eMMC 4.3 and 4.4 Pass-Through boot

The following sections describe these P-Port interfaces.

GPIF II

The high-performance GPIF II interface enables functionality similar to, but more advanced than, FX2LP's GPIF and Slave FIFO interfaces.

The GPIF II is a programmable state machine that enables a flexible interface that may function either as a master or slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces may be implemented with GPIF II.

Here are a list of GPIF II features:

- Functions as master or slave
- Provides 256 firmware programmable states
- Supports 8-bit and 16-bit parallel data bus
- Enables interface frequencies up to 100 MHz
- Supports 16 configurable control pins when a 16/8 data bus is used. All control pins can be either input/output or bi-directional.

GPIF II state transitions are based on control input signals. The control output signals are driven as a result of the GPIF II state transitions. The INT# output signal can be controlled by GPIF II. Refer to the GPIFII Designer tool. The GPIF II state machine's behavior is defined by a GPIF II descriptor. The GPIF II descriptor is designed such that the required interface specifications are met. 8 kB of memory (separate from the 512 kB of embedded SRAM) is dedicated to the GPIF II waveform where the GPIF II descriptor is stored in a specific format.

Cypress's GPIF II Designer Tool enables fast development of GPIF II descriptors and includes examples for common interfaces.

Example implementations of GPIF II are the asynchronous slave FIFO and synchronous slave FIFO interfaces.

Slave FIFO Interface

The Slave FIFO interface signals are shown in Figure 6. This interface allows an external processor to directly access up to four buffers internal to FX3S. Further details of the Slave FIFO interface are described on page 35.

Note Access to all 32 buffers is also supported over the slave FIFO interface. For details, contact Cypress Applications Support.

	SLCS#	_
	PKTEND	
	FLAGB	
	FLAGA	_
	A[1:0]	
External	D[15:0]	EZ-USB FX3S
Processor	SLWR#	
	SLRD#	
	SLOE#	

Figure 6. Slave FIFO Interface

Note: Multiple Flags may be configured.

Asynchronous SRAM

This interface consists of standard asynchronous SRAM interface signals as shown in Figure 7. This interface is used to access both the configuration registers and buffer memory of FX3S. Both single-cycle and burst accesses are supported by asynchronous interface signals.

The most significant address bit, A[7], determines whether the configuration registers or buffer memory are accessed. When the configuration registers are selected by asserting the address bit A[7], the address bus bits A[6:0] point to a configuration register. When A[7] is deasserted, the buffer memory is accessed as indicated by the P-Port DMA transfer register and the transfer size is determined by the P-Port DMA transfer size register.

Application processors with a DMA controller that use address auto-increment during DMA transfers, can override this by connecting any higher-order address line (such as A[15]/A[23]/A[31]) of the application processor to FX3S's A[7].

In the asynchronous SRAM mode, when reading from a buffer memory, FX3S supports two methods of reading out next data from the buffer. The next data may be read out on the rising edge of OE# or by toggling the least significant address bit A[0].

In this mode, the P-Port interface works with a 32.5-ns minimum access cycle providing an interface data rate of up to 61.5 MB per second.

CPU

FX3S has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU. The core has direct access to 16 kB of Instruction Tightly Coupled Memory (TCM) and 8 kB of Data TCM. The ARM926EJ-S core provides a JTAG interface for firmware debugging.

FX3S offers the following advantages:

- Integrates 512 KB of embedded SRAM for code and data and 8 KB of Instruction cache and Data cache.
- Implements efficient and flexible DMA connectivity between the various peripherals (such as, USB, GPIF II, I²S, SPI, UART), requiring firmware only to configure data accesses between peripherals, which are then managed by the DMA fabric.
- Allows easy application development on industry-standard development tools for ARM926EJ-S.

Examples of the FX3S firmware are available with the Cypress EZ-USB FX3S Development Kit. Software APIs that can be ported to an external processor are available with the Cypress EZ-USB FX3S Software Development Kit.

Storage Port (S-Port)

FX3S has two independent storage ports (S0-Port and S1-Port). Both storage ports support the following specifications:

- MMC-system specification, MMCA Technical Committee, Version 4.41
- SD specification, Version 3.0
- SDIO host controller compliant with SDIO Specification Version 3.00

Both storage ports support the following features:

SD/MMC Clock Stop

FX3S supports the stop clock feature, which can save power if the internal buffer is full when receiving data from the SD/MMC/SDIO.

SD_CLK Output Clock Stop

During the data transfer, the SD_CLK clock can be enabled (on) or disabled (stopped) at any time by the internal flow control mechanism.

SD_CLK output frequency is dynamically configurable using a clock divisor from a system clock. The clock choice for the divisor is user-configurable through a register. For example, the following frequencies may be configured:

- 400 kHz For the SD/MMC card initialization
- 20 MHz For a card with 0- to 20-MHz frequency
- 24 MHz For a card with 0- to 26-MHz frequency
- 48 MHz For a card with 0- to 52-MHz frequency (48-MHz frequency on SD_CLK is supported when the clock input to FX3S is 19.2 MHz or 38.4 MHz)
- 52 MHz For a card with 0- to 52-MHz frequency (52-MHz frequency on SD_CLK is supported when the clock input to FX3S is 26 MHz or 52 MHz)

■ 100 MHz – For a card with 0- to 100-MHz frequency

If the DDR mode is selected, data is clocked on both the rising and falling edge of the SD clock. DDR clocks run up to 52 MHz.

Card Insertion and Removal Detection

FX3S supports the two-card insertion and removal detection mechanisms.

- Use of SD_D[3] data: During system design, this signal must have an external 470-kΩ pull-down resistor connected to SD_D[3]. SD cards have an internal 10-kΩ pull-up resistor. When the card is inserted or removed from the SD/MMC connector, the voltage level at the SD_D[3] pin changes and triggers an interrupt to the CPU. The older generations of MMC cards do not support this card detection mechanism.
- Use of the S0/S1_INS pin: Some SD/MMC connectors facilitate a micro switch for card insertion/removal detection. This micro switch can be connected to S0/S1_INS. When the card is inserted or removed from the SD/MMC connector, it turns the micro switch on and off. This changes the voltage level at the pin that triggers the interrupt to the CPU. The card-detect micro switch polarity is assumed to be the same as the write-protect micro switch polarity. A low indicates that the card is inserted. This S0/S1_INS pin is shared between the two S-Ports. Register configuration determines which port gets to use this pin. This pin is mapped to the S1VDDQ power domain; if S0VDDQ and S1VDDQ are at different voltage levels, this pin cannot be used as S1 INS.

Write Protection (WP)

The S0_WP/S1_WP (SD Write Protection) on S-Port is used to connect to the WP micro switch of SD/MMC card connector. This pin internally connects to a CPU-accessible GPIO for firmware to detect the SD card write protection.

SDIO Interrupt

The SDIO interrupt functionality is supported as specified in the SDIO specification Version 2.00 (January 30, 2007).

SDIO Read-Wait Feature

FX3S supports the optional read-wait and suspend-resume features as defined in the SDIO specification Version 2.00 (January 30, 2007).

Clocking

FX3S allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are not used.

Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

FX3S has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select the crystal- or clock-frequency option. The configuration options are shown in Table 3.

Clock inputs to FX3S must meet the phase noise and jitter requirements specified in Table 4.

Table 4. FX3S Input Clock Specifications

The input clock frequency is independent of the clock and data rate of the FX3S core or any of the device interfaces (including P-Port and S-Port). The internal PLL applies the appropriate clock multiply option depending on the input frequency.

FSLC[2]	FSLC[1]	FSLC[0] Crystal/Clock Frequency	
0	0	0	19.2-MHz crystal
1	0	0	19.2-MHz input CLK
1	0	1	26-MHz input CLK
1	1	0	38.4-MHz input CLK
1	1	1	52-MHz input CLK

Paramotor	Description	Specifi	Units	
i alameter	Description	Min	Max	Onits
Phase noise	100-Hz offset	-	-75	dB
	1- kHz offset	-	-104	dB
	10-kHz offset	-	-120	dB
	100-kHz offset	-	-128	dB
	1-MHz offset	-	-130	dB
Maximum frequency deviation		-	150	ppm
Duty cycle		30	70	%
Overshoot		-	3	%
Undershoot		-	-3	%
Rise time/fall time		_	3	ns

32-kHz Watchdog Timer Clock Input

FX3S includes a watchdog timer. The watchdog timer can be used to interrupt the ARM926EJ-S core, automatically wake up the FX3S in Standby mode, and reset the ARM926EJ-S core. The watchdog timer runs a 32-kHz clock, which may be optionally supplied from an external source on a dedicated FX3S pin.

The firmware can disable the watchdog timer.

Requirements for the optional 32-kHz clock input are listed in Table 5.

Table 5. 32-kHz Clock Input Requirements

Parameter	Min	Max	Units
Duty cycle	40	60	%
Frequency deviation	-	±200	ppm
Rise time/fall time	-	200	ns

	FX3S Pin Description										
Pin	Pin Power 1/0 Name S0-Port										
F 111	Domain	"0	Name	8b	8b MMC SD+GPIO				GPIO		
K2	VIO2	I/O	GPIO[33]	S0_SD0 S0_SD0		GPIO					
J4	VIO2	I/O	GPIO[34]	SO	_SD1		S0_SD1			GPIO	
K1	VIO2	I/O	GPIO[35]	SO	_SD2		S0_SD2			GPIO	
J2	VIO2	I/O	GPIO[36]	SO	_SD3		S0_SD3			GPIO	
J3	VIO2	I/O	GPIO[37]	SO	_SD4		GPIO			GPIO	
J1	VIO2	I/O	GPIO[38]	SO	_SD5		GPIO			GPIO	
H2	VIO2	I/O	GPIO[39]	SO	_SD6		GPIO			GPIO	
H3	VIO2	I/O	GPIO[40]	SO	_SD7		GPIO			GPIO	
F4	VIO2	I/O	GPIO[41]	S0	CMD	Ś	S0_CMD			GPIO	
G2	VIO2	I/O	GPIO[42]	SO	_CLK		S0_CLK			GPIO	
G3	VIO2	I/O	GPIO[43]	SC	_WP		S0_WP			GPIO	
F3	VIO2	I/O	GPIO[44]	SOS	S1_INS	S	0S1_INS			GPIO	
F2	VIO2	I/O	GPIO[45]	MMC0_	RST_OUT	GPIO GPIO					
							S1-F	Port			
				8b MMC	SD+UART	SD+SPI	SD+GPIO	GPIO	GPIO+UART	SD+I2S	UART+SPI
F5	VI03	1/0	GPIO[46]	S1 SD0	S1 SD0	S1 SD0	S1 SD0	GPIO	GPIO	S1 SD0	LIART RT
	viee	2		01_000	01_000	01_000	01_000		0110	01_000	s
E1	VIO3	I/O	GPIO[47]	S1_SD1	S1_SD1	S1_SD1	S1_SD1	GPIO	GPIO	S1_SD1	UART_CT S
E5	VIO3	I/O	GPIO[48]	S1_SD2	S1_SD2	S1_SD2	S1_SD2	GPIO	GPIO	S1_SD2	UART_TX
E4	VIO3	I/O	GPIO[49]	S1_SD3	S1_SD3	S1_SD3	S1_SD3	GPIO	GPIO	S1_SD3	UART_RX
D1	VIO3	I/O	GPIO[50]	S1_CMD	S1_CMD	S1_CMD	S1_CMD	GPIO	I2S_CLK	S1_CMD	I2S_CLK
D2	VIO3	I/O	GPIO[51]	S1_CLK	S1_CLK	S1_CLK	S1_CLK	GPIO	I2S_SD	S1_CLK	I2S_SD
D3	VIO3	I/O	GPIO[52]	S1_WP	S1_WP	S1_WP	S1_WP	GPIO	I2S_WS	S1_WP	I2S_WS
D4	VIO4	I/O	GPIO[53]	S1_SD4	UART_RTS	SPI_SCK	GPIO	GPIO	UART_RTS	GPIO	SPI_SCK
C1	VIO4	I/O	GPIO[54]	S1_SD5	UART_CTS	SPI_SSN	GPIO	GPIO	UART_CTS	I2S_CLK	SPI_SSN
C2	VIO4	I/O	GPIO[55]	S1_SD6	UART_TX	SPI_MISO	GPIO	GPIO	UART_TX	I2S_SD	SPI_MISO
D5	VIO4	I/O	GPIO[56]	S1_SD7	UART_RX	SPI_MOSI	GPIO	GPIO	UART_RX	I2S_WS	SPI_MOSI
C4	VIO4	I/O	GPIO[57]	MMC1_R ST_OUT	GPIO	GPIO	GPIO	GPIO	I2S_MCLK	I2S_MCLK	I2S_MCLK

DC Specifications (continued)

Parameter	Description	Min	Max	Units	Notes
V _{IL}	Input LOW voltage	-0.3	$0.25 \times V_{CC}$	V	V _{CC} is the corresponding I/O voltage supply.
V _{OH}	Output HIGH voltage	0.9 × V _{CC}	_	V	I_{OH} (max) = -100 µA tested at quarter drive strength. V _{CC} is the corresponding I/O voltage supply.
V _{OL}	Output LOW voltage	-	0.1 × VCC	V	I_{OL} (min) = +100 µA tested at quarter drive strength. V _{CC} is the corresponding I/O voltage supply.
I _{IX}	Input leakage current for all pins except SSTXP/SSXM/SSRXP/SSRXM	-1	1	μΑ	All I/O signals held at V_{DDQ} (For I/Os with a pull-up or pull-down resistor connected, the leakage current increases by V_{DDQ}/R_{pu} or V_{DDQ}/R_{PD}
l _{oz}	Output High-Z leakage current for all pins except SSTXP/ SSXM/ SSRXP/SSRXM	-1	1	μA	All I/O signals held at V _{DDQ}
I _{CC} Core	Core and analog voltage operating current	-	200	mA	Total current through A _{VDD} , V _{DD}
I _{CC} USB	USB voltage supply operating current	-	60	mA	
I _{SB1}	Total suspend current during suspend mode with USB 3.0 PHY enabled (L1)	_	_	mA	Core current: 1.5 mA I/O current: 20 μA USB current: 2 mA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C.)
I _{SB2}	Total suspend current during suspend mode with USB 3.0 PHY disabled (L2)	-	_	mA	Core current: 250 μA I/O current: 20 μA USB current: 1.2 mA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 °C.)
I _{SB3}	Total standby current during standby mode (L3)	_	_	μΑ	Core current: 60 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C.)
I _{SB4}	Total standby current during core power-down mode (L4)	_	_	μΑ	Core current: 0 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C.)
V _{RAMP}	Voltage ramp rate on core and I/O supplies	0.2	50	V/ms	Voltage ramp must be monotonic
V _N	Noise level permitted on V _{DD} and I/O supplies	-	100	mV	Max p-p noise level permitted on all supplies except A _{VDD}
V _{N_AVDD}	Noise level permitted on A _{VDD} supply	-	20	mV	Max p-p noise level permitted on A _{VDD}

Asynchronous SRAM Timing

Figure 16. Non-multiplexed Asynchronous SRAM Write Timing (WE# and CE# Controlled)

Write Cycle 1 WE# Controlled, OE# High During Write

Write Cycle 2 CE# Controlled, OE# High During Write

Write Cycle 3 WE# Controlled. OE# Low

Note: tWP must be adjusted such that tWP > tWHZ + tDS

Table 11.	Synchronous	ADMux	Timing	Parameters [[]	7]
-----------	-------------	-------	--------	-------------------------	----

Parameter	Description	Min	Max	Unit
FREQ	Interface clock frequency	-	100	MHz
tCLK	Clock period	10	_	ns
tCLKH	Clock HIGH time	4	_	ns
tCLKL	Clock LOW time	4	-	ns
tS	CE#/WE#/DQ setup time	2	_	ns
tH	CE#/WE#/DQ hold time	0.5	-	ns
tCH	Clock to data output hold time	0	_	ns
tDS	Data input setup time	2	_	ns
tDH	Clock to data input hold	0.5	_	ns
tAVDOE	ADV# HIGH to OE# LOW	0	_	ns
tAVDWE	ADV# HIGH to WE# LOW	0	_	ns
tHZ	CE# HIGH to Data HIGH-Z	-	8	ns
tOHZ	OE# HIGH to Data HIGH-Z	_	8	ns
tOLZ	OE# LOW to Data LOW-Z	0	_	ns
tKW	Clock to RDY valid	_	8	ns

Synchronous Slave FIFO Write Sequence Description

- FIFO address is stable and the signal SLCS# is asserted
- External master or peripheral outputs the data to the data bus
- SLWR# is asserted
- While the SLWR# is asserted, data is written to the FIFO and on the rising edge of the PCLK, the FIFO pointer is incremented
- The FIFO flag is updated after a delay of t_{WFLG} from the rising edge of the clock

The same sequence of events is also shown for burst write

Note For the burst mode, SLWR# and SLCS# are asserted for the entire duration, during which all the required data values are written. In this burst write mode, after the SLWR# is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge of PCLK. The FIFO pointer is updated on each rising edge of PCLK.

Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.

Zero-Length Packet: The external device or processor can signal a Zero-Length Packet (ZLP) to FX3S simply by asserting PKTEND#, without asserting SLWR#. SLCS# and address must be driven as shown in Figure 25.

Figure 25. Synchronous Slave FIFO Write Mode

Figure 26. Asynchronous Slave FIFO Read Mode

Asynchronous Slave FIFO Write Sequence Description

- FIFO address is driven and SLCS# is asserted
- SLWR# is asserted. SLCS# must be asserted with SLWR# or before SLWR# is asserted
- Data must be present on the tWRS bus before the deasserting edge of SLWR#
- Deassertion of SLWR# causes the data to be written from the data bus to the FIFO, and then the FIFO pointer is incremented
- The FIFO flag is updated after the tWFLG from the deasserting edge of SLWR.

The same sequence of events is shown for a burst write.

Note that in the burst write mode, after SLWR# deassertion, the data is written to the FIFO, and then the FIFO pointer is incremented.

Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.

Zero-Length Packet: The external device or processor can signal a zero-length packet (ZLP) to FX3S simply by asserting PKTEND#, without asserting SLWR#. SLCS# and the address must be driven as shown in Figure 27 on page 39.

FLAG Usage: The FLAG signals are monitored by the external processor for flow control. FLAG signals are FX3S outputs that can be configured to show empty, full, and partial status for a dedicated address or the current address.

tWRPE: SLWR# de-assert to PKTEND deassert = 2ns min (This means that PKTEND should not be be deasserted before SLWR#) Note: PKTEND must be asserted at the same time as SLWR#.

Storage Port Timing

The S0-Port and S1-Port support the MMC Specification Version 4.41 and SD Specification Version 3.0. Table 14 lists the timing parameters for S-Port of the FX3S device.

Table 14. S-Port Timing Parameters^[10]

Parameter	Description	Min	Max	Units
MMC-20				
tSDIS CMD	Host input setup time for CMD	4.8	-	ns
tSDIS DAT	Host input setup time for DAT	4.8	-	ns
tSDIH CMD	Host input hold time for CMD	4.4	-	ns
tSDIH DAT	Host input hold time for DAT	4.4	-	ns
tSDOS CMD	Host output setup time for CMD	5	-	ns
tSDOS DAT	Host output setup time for DAT	5	-	ns
tSDOH CMD	Host output hold time for CMD	5	-	ns
tSDOH DAT	Host output hold time for DAT	5	-	ns
tSCLKR	Clock rise time	-	2	ns
tSCLKF	Clock fall time	_	2	ns
tSDCK	Clock cycle time	50	-	ns
SDFREQ	Clock frequency	-	20	MHz
tSDCLKOD	Clock duty cycle	40	60	%
	MMC-26			
tSDIS CMD	Host input setup time for CMD	10	_	ns
tSDIS DAT	Host input setup time for DAT	10	-	ns
tSDIH CMD	Host input hold time for CMD	9	-	ns
tSDIH DAT	Host input hold time for DAT	9	-	ns
tSDOS CMD	Host output setup time for CMD	3	-	ns
tSDOS DAT	Host output setup time for DAT	3	_	ns
tSDOH CMD	Host output hold time for CMD	3	_	ns
tSDOH DAT	Host output hold time for DAT	3	-	ns
tSCLKR	Clock rise time	-	2	ns
tSCLKF	Clock fall time	-	2	ns
tSDCK	Clock cycle time	38.5	-	ns
SDFREQ	Clock frequency	-	26	MHz
tSDCLKOD	Clock duty cycle	40	60	%
MC-HS				
tSDIS CMD	Host input setup time for CMD	4	_	ns
tSDIS DAT	Host input setup time for DAT	4	-	ns
tSDIH CMD	Host input hold time for CMD	3	-	ns
tSDIH DAT	Host input hold time for DAT	3	_	ns
tSDOS CMD	Host output setup time for CMD	3	_	ns
tSDOS DAT	Host output setup time for DAT	3	-	ns
tSDOH CMD	Host output hold time for CMD	3	-	ns
tSDOH DAT	Host output hold time for DAT	3	_	ns

Note

10. All parameters guaranteed by design and validated through characterization.

Table 14. S-Port Timing Parameters^[10] (continued)

Parameter	Description	Min	Мах	Units
tSCLKR	Clock rise time	-	2	ns
tSCLKF	Clock fall time	-	2	ns
tSDCK	Clock cycle time	20	-	ns
SDFREQ	Clock frequency	-	50	MHz
tSDCLKOD	Clock duty cycle	40	60	%
	SD-SDR50	·		
tSDIS CMD	Host input setup time for CMD	1.5	-	ns
tSDIS DAT	Host input setup time for DAT	1.5	-	ns
tSDIH CMD	Host input hold time for CMD	2.5	-	ns
tSDIH DAT	Host input hold time for DAT	2.5	-	ns
tSDOS CMD	Host output setup time for CMD	3	-	ns
tSDOS DAT	Host output setup time for DAT	3	-	ns
tSDOH CMD	Host output hold time for CMD	0.8	-	ns
tSDOH DAT	Host output hold time for DAT	0.8	-	ns
tSCLKR	Clock rise time	-	2	ns
tSCLKF	Clock fall time	-	2	ns
tSDCK	Clock cycle time	10	-	ns
SDFREQ	Clock frequency		100	MHz
tSDCLKOD	Clock duty cycle	40	60	%
	SD-DDR50			
tSDIS CMD	Host input setup time for CMD	4	_	ns
tSDIS DAT	Host input setup time for DAT	0.92	_	ns
tSDIH CMD	Host input hold time for CMD	2.5	_	ns
tSDIH DAT	Host input hold time for DAT	2.5	_	ns
tSDOS CMD	Host output setup time for CMD	6	-	ns
tSDOS DAT	Host output setup time for DAT	3	-	ns
tSDOH CMD	Host output hold time for CMD	0.8	-	ns
tSDOH DAT	Host output hold time for DAT	0.8	-	ns
tSCLKR	Clock rise time	-	2	ns
tSCLKF	Clock fall time	-	2	ns
tSDCK	Clock cycle time	20	-	ns
SDFREQ	Clock frequency	-	50	MHz
tSDCLKOD	Clock duty cycle	45	55	%

Serial Peripherals Timing

I²C Timing

SPI Timing Specification

SPI Master Timing for CPHA = 1

Table 17. SPI Timing Parameters^[13]

Parameter	Description	Min	Мах	Units
fop	Operating frequency	0	33	MHz
tsck	Cycle time	30	-	ns
twsck	Clock high/low time	13.5	-	ns
tlead	SSN-SCK lead time	1/2 tsck ^[14] -5	1.5 tsck ^[14] + 5	ns
tlag	Enable lag time	0.5	1.5 tsck ^[14] +5	ns
trf	Rise/fall time	-	8	ns
tsdd	Output SSN to valid data delay time	-	5	ns
tdv	Output data valid time	-	5	ns
tdi	Output data invalid	0	-	ns
tssnh	Minimum SSN high time	10	-	ns
tsdi	Data setup time input	8	-	ns
thoi	Data hold time input	0	-	ns
tdis	Disable data output on SSN high	0	-	ns

Notes 13. All parameters guaranteed by design and validated through characterization. 14. Depends on LAG and LEAD setting in the SPI_CONFIG register.

Package Diagram

DIMENSIONS IN MILLIMETERS REFERENCE JEDEC : PUB 95, DEIGN GUIDE 4.5 PACKAGE WEIGHT : 0.2gr

001-54471 *D

Acronyms

Acronym	Description
DMA	Direct Memory Access
HNP	Host Negotiation Protocol
MMC	Multimedia Card
MTP	Media Transfer Protocol
PLL	Phase Locked Loop
PMIC	Power Management IC
SD	Secure Digital
SDIO	Secure Digital Input/Output
SLC	Single-Level Cell
SLCS	Slave Chip Select
SLOE	Slave Output Enable
SLRD	Slave Read
SLWR	Slave Write
SPI	Serial Peripheral Interface
SRP	Session Request Protocol
USB	Universal Serial Bus
WLCSP	Wafer Level Chip Scale Package

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
Mbps	megabits per second
MBps	megabytes per second
MHz	megahertz
μA	microampere
μs	microsecond
mA	milliampere
ms	millisecond
ns	nanosecond
Ω	ohm
pF	picofarad
V	volt

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2012-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-84160 Rev. *F

Revised January 14, 2016

Page 54 of 54

EZ-USB™ is a trademark and West Bridge[®] is a registered trademark of Cypress Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their respective holders.