

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

E·XFI

Detalls	
Product Status	Active
Applications	USB Host/Peripheral Controller
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	CYUSB
RAM Size	512K x 8
Interface	GPIF, I ² C, I ² S, MMC/SD/SDIO, SPI, UART, USB
Number of I/O	60
Voltage - Supply	1.15V ~ 1.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-FBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb3035-bzxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

OTG Connectivity

In OTG mode, FX3S can be configured to be an A, B, or dual-role device. It can connect to the following:

- ACA device
- Targeted USB peripheral
- SRP-capable USB peripheral
- HNP-capable USB peripheral
- OTG host
- HNP-capable host
- OTG device

ReNumeration

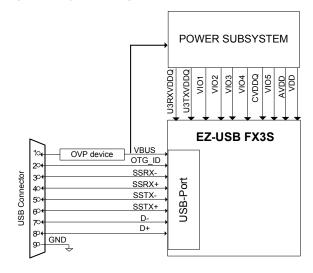
Because of FX3S's soft configuration, one chip can take on the identities of multiple distinct USB devices.

When first plugged into USB, FX3S enumerates automatically with the Cypress Vendor ID (0x04B4) and downloads firmware and USB descriptors over the USB interface. The downloaded firmware executes an electrical disconnect and connect. FX3S enumerates again, this time as a device defined by the downloaded information. This patented two-step process, called ReNumeration, happens instantly when the device is plugged in.

EZ-Dtect

FX3S supports USB Charger and accessory detection (EZ-Dtect). The charger detection mechanism complies with the Battery Charging Specification Revision 1.1. In addition to supporting this version of the specification, FX3S also provides hardware support to detect the resistance values on the ID pin.

FX3S can detect the following resistance ranges:

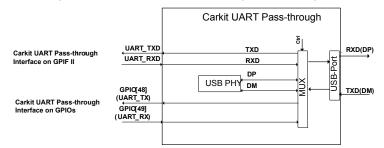

- Less than 10 Ω
- Less than 1 kΩ
- 65 kΩ to 72 kΩ
- 35 kΩ to 39 kΩ
- 99.96 kΩ to 104.4 kΩ (102 kΩ ± 2%)
- 119 kΩ to 132 kΩ
- Higher than 220 kΩ
- 431.2 kΩ to 448.8 kΩ (440 kΩ ± 2%)

FX3S's charger detects a dedicated wall charger, Host/Hub charger, and Host/Hub.

VBUS Overvoltage Protection

The maximum input voltage on FX3S's VBUS pin is 6 V. A charger can supply up to 9 V on VBUS. In this case, an external overvoltage protection (OVP) device is required to protect FX3S from damage on VBUS. Figure 4 shows the system application diagram with an OVP device connected on VBUS. Refer to the DC Specifications table for the operating range of VBUS and VBATT.

Figure 4. System Diagram with OVP Device For VBUS


Carkit UART Mode

The USB interface supports the Carkit UART mode (UART over D+/D-) for non-USB serial data transfer. This mode is based on the CEA-936A specification.

In the Carkit UART mode, the output signaling voltage is 3.3 V. When configured for the Carkit UART mode, TXD of UART (output) is mapped to the D– line, and RXD of UART (input) is mapped to the D+ line.

In the Carkit UART mode, FX3S disables the USB transceiver and D+ and D– pins serve as pass-through pins to connect to the UART of the host processor. The Carkit UART signals may be routed to the GPIF II interface or to GPIO[48] and GPIO[49], as shown in Figure 5.

In this mode, FX3S supports a rate of up to 9600 bps.

Host Processor Interface (P-Port)

A configurable interface enables FX3S to communicate with various devices such as Sensor, FPGA, Host Processor, or a Bridge chip. FX3S supports the following P-Port interfaces.

- GPIF II (16-bit)
- Slave FIFO Interface
- 16-bit Asynchronous SRAM Interface
- 16-bit Asynchronous address/data multiplexed (ADMux) Interface
- 16-bit Synchronous address/data multiplexed (ADMux) Interface
- Processor MMC slave Interface compatible with MMC System specification, MMCA Technical Committee, Version 4.2 with eMMC 4.3 and 4.4 Pass-Through boot

The following sections describe these P-Port interfaces.

GPIF II

The high-performance GPIF II interface enables functionality similar to, but more advanced than, FX2LP's GPIF and Slave FIFO interfaces.

The GPIF II is a programmable state machine that enables a flexible interface that may function either as a master or slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces may be implemented with GPIF II.

Here are a list of GPIF II features:

- Functions as master or slave
- Provides 256 firmware programmable states
- Supports 8-bit and 16-bit parallel data bus
- Enables interface frequencies up to 100 MHz
- Supports 16 configurable control pins when a 16/8 data bus is used. All control pins can be either input/output or bi-directional.

GPIF II state transitions are based on control input signals. The control output signals are driven as a result of the GPIF II state transitions. The INT# output signal can be controlled by GPIF II. Refer to the GPIFII Designer tool. The GPIF II state machine's behavior is defined by a GPIF II descriptor. The GPIF II descriptor is designed such that the required interface specifications are met. 8 kB of memory (separate from the 512 kB of embedded SRAM) is dedicated to the GPIF II waveform where the GPIF II descriptor is stored in a specific format.

Cypress's GPIF II Designer Tool enables fast development of GPIF II descriptors and includes examples for common interfaces.

Example implementations of GPIF II are the asynchronous slave FIFO and synchronous slave FIFO interfaces.

Slave FIFO Interface

The Slave FIFO interface signals are shown in Figure 6. This interface allows an external processor to directly access up to four buffers internal to FX3S. Further details of the Slave FIFO interface are described on page 35.

Note Access to all 32 buffers is also supported over the slave FIFO interface. For details, contact Cypress Applications Support.

	SLCS#	
	PKTEND	
	FLAGB	
	FLAGA	_
	A[1:0]	
External	D[15:0]	EZ-USB FX3S
Processor	SLWR#	
	SLRD#	
	SLOE#	

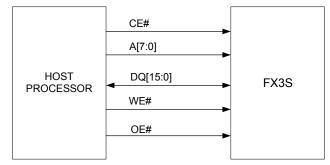
Figure 6. Slave FIFO Interface

Note: Multiple Flags may be configured.

Asynchronous SRAM

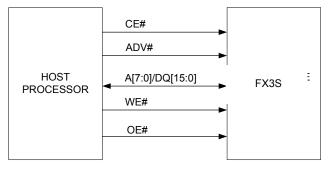
This interface consists of standard asynchronous SRAM interface signals as shown in Figure 7. This interface is used to access both the configuration registers and buffer memory of FX3S. Both single-cycle and burst accesses are supported by asynchronous interface signals.

The most significant address bit, A[7], determines whether the configuration registers or buffer memory are accessed. When the configuration registers are selected by asserting the address bit A[7], the address bus bits A[6:0] point to a configuration register. When A[7] is deasserted, the buffer memory is accessed as indicated by the P-Port DMA transfer register and the transfer size is determined by the P-Port DMA transfer size register.


Application processors with a DMA controller that use address auto-increment during DMA transfers, can override this by connecting any higher-order address line (such as A[15]/A[23]/A[31]) of the application processor to FX3S's A[7].

In the asynchronous SRAM mode, when reading from a buffer memory, FX3S supports two methods of reading out next data from the buffer. The next data may be read out on the rising edge of OE# or by toggling the least significant address bit A[0].

In this mode, the P-Port interface works with a 32.5-ns minimum access cycle providing an interface data rate of up to 61.5 MB per second.


Figure 7. Asynchronous SRAM Interface

Asynchronous Address/Data Multiplexed

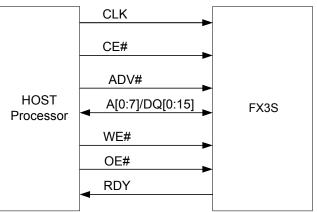
The physical ADMux memory interface consists of signals shown in Figure 8. This interface supports processors that implement a multiplexed address/data bus.

Figure 8. ADMux Memory Interface

FX3S's ADMux interface supports a 16-bit time-multiplexed address/data SRAM bus.

For read operations, assert both CE# and OE#.

For write operations, assert both CE# and WE#. OE# is "Don't Care" during a write operation (during both address and data phase of the write cycle). The input data is latched on the rising edge of WE# or CE#, whichever occurs first. Latch the addresses prior to the write operation by toggling Address Valid (ADV#). Assert Address Valid (ADV#) during the address phase of the write operation, as shown in Figure 19 on page 30.


ADV# must be LOW during the address phase of a read/write operation. ADV# must be HIGH during the data phase of a read/write operation, as shown in Figure 18 and Figure 19 on page 30.

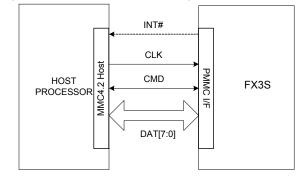
Synchronous ADMux Interface

FX3S's P-Port supports a synchronous address/data multiplexed interface. This operates at an interface frequency of up to 100 MHz and supports a 16-bit data bus.

The RDY output signal from the FX3S device indicates a data valid for read transfers and is acknowledged for write transfers.

Figure 9. Synchronous ADMux Interface

See the Synchronous ADMux Interface timing diagrams for details.


Processor MMC (PMMC) Slave Interface

FX3S supports an MMC slave interface on the P-Port. This interface is named "PMMC" to distinguish it from the S-Port MMC interface.

Figure 10 illustrates the signals used to connect to the host processor.

The PMMC interface's GO_IRQ_STATE command allows FX3S to communicate asynchronous events without requiring the INT# signal. The use of the INT# signal is optional.

Figure 10. PMMC Interface Configuration

JTAG Interface

FX3S's JTAG interface has a standard five-pin interface to connect to a JTAG debugger in order to debug firmware through the CPU-core's on-chip-debug circuitry.

Industry-standard debugging tools for the ARM926EJ-S core can be used for the FX3S application development.

Other Interfaces

FX3S supports the following serial peripherals:

- UART
- I²C
- ∎ I²S
- SPI

The SPI, UART, and ${\rm I}^2{\rm S}$ interfaces are multiplexed on the serial peripheral port.

UART Interface

The UART interface of FX3S supports full-duplex communication. It includes the signals noted in Table 1.

Table 1. UART Interface Signals

Signal	Description
ТХ	Output signal
RX	Input signal
CTS	Flow control
RTS	Flow control

The UART is capable of generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the firmware. If flow control is enabled, then FX3S's UART only transmits data when the CTS input is asserted. In addition to this, FX3S's UART asserts the RTS output signal, when it is ready to receive data.

I²C Interface

FX3S's I²C interface is compatible with the I²C Bus Specification Revision 3. This I²C interface is capable of operating only as I²C master; therefore, it may be used to communicate with other I²C slave devices. For example, FX3S may boot from an EEPROM connected to the I²C interface, as a selectable boot option.

FX3S's I²C Master Controller also supports multi-master mode functionality.

The power supply for the I^2C interface is VIO5, which is a separate power domain from the other serial peripherals. This gives the I^2C interface the flexibility to operate at a different voltage than the other serial interfaces.

The I²C controller supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum operating frequency supported is 100 kHz. When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating frequencies supported are 400 kHz and 1 MHz. The I²C controller supports the clock-stretching feature to enable slower devices to exercise flow control.

The I^2C interface's SCL and SDA signals require external pull-up resistors. The pull-up resistors must be connected to VIO5.

I²S Interface

FX3S has an I²S port to support external audio codec devices. FX3S functions as I²S Master as transmitter only. The I²S interface consists of four signals: clock line (I2S_CLK), serial data line (I2S_SD), word select line (I2S_WS), and master system clock (I2S_MCLK). FX3S can generate the system clock as an output on I2S_MCLK or accept an external system clock input on I2S_MCLK.

The sampling frequencies supported by the $\rm I^2S$ interface are 32 kHz, 44.1 kHz, and 48 kHz.

SPI Interface

FX3S supports an SPI Master interface on the Serial Peripherals port. The maximum operation frequency is 33 MHz.

The SPI controller supports four modes of SPI communication (see SPI Timing Specification on page 47 for details on the modes) with the Start-Stop clock. This controller is a single-master controller with a single automated SSN control. It supports transaction sizes ranging from 4 bits to 32 bits.

Clocking

FX3S allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are not used.

Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

FX3S has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select the crystal- or clock-frequency option. The configuration options are shown in Table 3.

Clock inputs to FX3S must meet the phase noise and jitter requirements specified in Table 4.

Table 4. FX3S Input Clock Specifications

The input clock frequency is independent of the clock and data rate of the FX3S core or any of the device interfaces (including P-Port and S-Port). The internal PLL applies the appropriate clock multiply option depending on the input frequency.

Table 3.	Crystal/Clock	Frequency	Selection
----------	---------------	-----------	-----------

FSLC[2]	FSLC[1]	FSLC[0]	Crystal/Clock Frequency
0	0	0	19.2-MHz crystal
1	0	0	19.2-MHz input CLK
1	0	1	26-MHz input CLK
1	1	0	38.4-MHz input CLK
1	1	1	52-MHz input CLK

Parameter	Description	Specifi	Units	
Falameter	Description	Min	Min Max	
Phase noise	100-Hz offset	-	-75	dB
	1- kHz offset	-	-104	dB
	10-kHz offset	-	-120	dB
	100-kHz offset	-	-128	dB
	1-MHz offset	-	-130	dB
Maximum frequency deviation		-	150	ppm
Duty cycle		30	70	%
Overshoot		-	3	%
Undershoot		-	-3	%
Rise time/fall time		_	3	ns

32-kHz Watchdog Timer Clock Input

FX3S includes a watchdog timer. The watchdog timer can be used to interrupt the ARM926EJ-S core, automatically wake up the FX3S in Standby mode, and reset the ARM926EJ-S core. The watchdog timer runs a 32-kHz clock, which may be optionally supplied from an external source on a dedicated FX3S pin.

The firmware can disable the watchdog timer.

Requirements for the optional 32-kHz clock input are listed in Table 5.

Table 5. 32-kHz Clock Input Requirements

Parameter	Min	Max	Units
Duty cycle	40	60	%
Frequency deviation	-	±200	ppm
Rise time/fall time	-	200	ns

Power

FX3S has the following power supply domains:

- IO_VDDQ: This is a group of independent supply domains for digital I/Os. The voltage level on these supplies is 1.8 V to 3.3 V. FX3S provides six independent supply domains for digital I/Os listed as follows (see Pin Description on page 18 for details on each of the power domain signals):
 - □ VIO1: GPIF II I/O
 - □ VIO2: S0-Port Supply
 - □ VIO3: S1-Port Supply
 - □ VIO4: S1-Port and Low Speed Peripherals (UART/SPI/I2S) Supply
 - □ VIO5: I²C and JTAG (supports 1.2 V to 3.3 V)
 - CVDDQ: Clock
 - V_{DD}: This is the supply voltage for the logic core. The nominal supply-voltage level is 1.2 V. This supplies the core logic circuits. The same supply must also be used for the following:
 - AVDD: This is the 1.2-V supply for the PLL, crystal oscillator, and other core analog circuits
 - U3TXVDDQ/U3RXVDDQ: These are the 1.2-V supply voltages for the USB 3.0 interface.

Table 6. Entry and Exit Methods for Low-Power Modes

VBATT/VBUS: This is the 3.2-V to 6-V battery power supply for the USB I/O and analog circuits. This supply powers the USB transceiver through FX3S's internal voltage regulator. VBATT is internally regulated to 3.3 V.

Power Modes

FX3S supports the following power modes:

- Normal mode: This is the full-functional operating mode. The internal CPU clock and the internal PLLs are enabled in this mode.
 - Normal operating power consumption does not exceed the sum of I_{CC} Core max and I_{CC} USB max (see the DC Specifications table for current consumption specifications).
 - The I/O power supplies VIO2, VIO3, VIO4, and VIO5 can be turned off when the corresponding interface is not in use. VIO1 cannot be turned off at any time if the GPIF II interface is used in the application.
- Low-power modes (see Table 6):
 - □ Suspend mode with USB 3.0 PHY enabled (L1)
 - □ Suspend mode with USB 3.0 PHY disabled (L2)
 - □ Standby mode (L3)
 - □ Core power-down mode (L4)

Low-Power Mode	Characteristics	Methods of Entry	Methods of Exit	
	The power consumption in this mode does not exceed ISB ₁			
	USB 3.0 PHY is enabled and is in U3 mode (one of the suspend modes defined by the USB 3.0 specification). This one block alone is operational with its internal clock while all other clocks are shut down	 D+ transitioning to low or high D- transitioning to low or high 		
	All I/Os maintain their previous state		■ Impedance change on	
Suspend Mode with USB 3.0 PHY	Power supply for the wakeup source and core power must be retained. All other power domains can be turned on/off individually	Firmware executing on ARM926EJ-S core can put FX3S into suspend mode. For example, on USB suspend condition, firmware may decide to put FX3S into suspend mode	 Resume condition on SSRX± 	
Enabled (L1)	 The states of the configuration registers, buffer memory, and all internal RAM are maintained External Procession 	 External Processor, through the use of mailbox registers, can put FX3S into suspend mode 	 Detection of VBUS Level detect on UART_CTS 	
	All transactions must be completed before FX3S enters Suspend mode		(programmable polarity)	
	(state of outstanding transactions are not preserved)		GPIF II interface assertion of CTL[0]	
	The firmware resumes operation from where it was suspended (except when woken up by RESET# assertion) because the program counter does not reset		Assertion of RESET#	

	FX3S Pin Description										
Din	Pin Power I/O Name S0-Port										
FIII	Domain	1/0	Name	8b	8b MMC		SD+GPIO		GPIO		
K2	VIO2	I/O	GPIO[33]	S0	_SD0		S0_SD0			GPIO	
J4	VIO2	I/O	GPIO[34]	S0	_SD1		S0_SD1			GPIO	
K1	VIO2	I/O	GPIO[35]	S0	_SD2		S0_SD2			GPIO	
J2	VIO2	I/O	GPIO[36]	S0	_SD3		S0_SD3			GPIO	
J3	VIO2	I/O	GPIO[37]	S0	_SD4		GPIO			GPIO	
J1	VIO2	I/O	GPIO[38]	S0	_SD5		GPIO			GPIO	
H2	VIO2	I/O	GPIO[39]	S0	_SD6		GPIO			GPIO	
H3	VIO2	I/O	GPIO[40]	S0	_SD7		GPIO			GPIO	
F4	VIO2	I/O	GPIO[41]	S0_	CMD	Ś	S0_CMD			GPIO	
G2	VIO2	I/O	GPIO[42]	S0	_CLK		S0_CLK			GPIO	
G3	VIO2	I/O	GPIO[43]	SC	_WP		S0_WP			GPIO	
F3	VIO2	I/O	GPIO[44]	SOS	S1_INS	S	0S1_INS		GPIO		
F2	VIO2	I/O	GPIO[45]	MMC0_	RST_OUT		GPIO		GPIO		
							S1-F	Port			
				8b MMC	SD+UART	SD+SPI	SD+GPIO	GPIO	GPIO+UART +I2S	SD+I2S	UART+SPI +I2S
F5	VIO3	I/O	GPIO[46]	S1_SD0	S1_SD0	S1_SD0	S1_SD0	GPIO	GPIO	S1_SD0	UART_RT S
E1	VIO3	I/O	GPIO[47]	S1_SD1	S1_SD1	S1_SD1	S1_SD1	GPIO	GPIO	S1_SD1	UART_CT S
E5	VIO3	I/O	GPIO[48]	S1_SD2	S1_SD2	S1_SD2	S1_SD2	GPIO	GPIO	S1_SD2	UART_TX
E4	VIO3	I/O	GPIO[49]	S1_SD3	S1_SD3	S1_SD3	S1_SD3	GPIO	GPIO	S1_SD3	UART_RX
D1	VIO3	I/O	GPIO[50]	S1_CMD	S1_CMD	S1_CMD	S1_CMD	GPIO	I2S_CLK	S1_CMD	I2S_CLK
D2	VIO3	I/O	GPIO[51]	S1_CLK	S1_CLK	S1_CLK	S1_CLK	GPIO	I2S_SD	S1_CLK	I2S_SD
D3	VIO3	I/O	GPIO[52]	S1_WP	S1_WP	S1_WP	S1_WP	GPIO	I2S_WS	S1_WP	I2S_WS
D4	VIO4	I/O	GPIO[53]	S1_SD4	UART_RTS	SPI_SCK	GPIO	GPIO	UART_RTS	GPIO	SPI_SCK
C1	VIO4	I/O	GPIO[54]	S1_SD5	UART_CTS	SPI_SSN	GPIO	GPIO	UART_CTS	I2S_CLK	SPI_SSN
C2	VIO4	I/O	GPIO[55]	S1_SD6	UART_TX		GPIO	GPIO	UART_TX	I2S_SD	SPI_MISO
D5	VIO4	I/O	GPIO[56]	S1_SD7	UART_RX	SPI_MOSI	GPIO	GPIO	UART_RX	I2S_WS	SPI_MOSI
C4	VIO4	I/O	GPIO[57]	MMC1_R ST_OUT	GPIO	GPIO	GPIO	GPIO	I2S_MCLK	I2S_MCLK	I2S_MCLK

	FX3S Pin Description					
Pin	Power Domain	I/O	Name	USB Port		
C9	VBUS/ VBATT	I	OTG_ID	OTG_ID		
A3	U3RX VDDQ	Ι	SSRXM	SSRX-		
A4	U3RX VDDQ	Ι	SSRXP	SSRX+		
A6	U3TX VDDQ	0	SSTXM	SSTX-		
A5	U3TX VDDQ	0	SSTXP	SSTX+		
A9	VBUS/ VBATT	I/O	DP	D+		
A10	VBUS/ VBATT	I/O	DM	D-		
A11			NC	No connect		
				Crystal/Clocks		
B2	CVDDQ	I	FSLC[0]	FSLC[0]		
C6	AVDD	I/O	XTALIN	XTALIN		
C7	AVDD	I/O	XTALOUT	XTALOUT		
B4	CVDDQ	Ι	FSLC[1]	FSLC[1]		
E6	CVDDQ	Ι	FSLC[2]	FSLC[2]		
D7	CVDDQ	Ι	CLKIN	CLKIN		
D6	CVDDQ	Ι	CLKIN_32	CLKIN_32		
				I2C and JTAG		
D9	VIO5	I/O	I2C_GPIO[5 8]	I2C_SCL		
D10	VIO5	I/O	I2C_GPIO[5 9]	I2C_SDA		
E7	VIO5	I	TDI	TDI		
C10	VIO5	0	TDO	TDO		
B11	VIO5	I	TRST#	TRST#		
E8	VIO5	I	TMS	TMS		
F6	VIO5	I	TCK	ТСК		
D11	VIO5	0	O[60]	Charger detect output		

				FX3S Pin Description
Pin	Power Domain	I/O	Name	Power
E10		PWR	VBATT	
B10		PWR	VDD	
A1		PWR	U3VSSQ	
E11		PWR	VBUS	
D8		PWR	VSS	
H11		PWR	VIO1	
E2		PWR	VSS	
L9		PWR	VIO1	
G1		PWR	VSS	
F1		PWR	VIO2	
G11		PWR	VSS	
E3		PWR	VIO3	
L1		PWR	VSS	
B1		PWR	VIO4	
L6		PWR	VSS	
B6		PWR	CVDDQ	
B5		PWR	U3TXVDDQ	
A2		PWR	U3RXVDDQ	
C11		PWR	VIO5	
L11		PWR	VSS	
A7		PWR	AVDD	
B7		PWR	AVSS	
C3		PWR	VDD	
B8		PWR	VSS	
E9		PWR	VDD	
B9		PWR	VSS	
F11		PWR	VDD	
H1		PWR	VDD	
L7		PWR	VDD	
J11		PWR	VDD	
L5		PWR	VDD	
K4		PWR	VSS	
L3		PWR	VSS	
K3		PWR	VSS	
L2		PWR	VSS	
A8		PWR	VSS	
				Precision Resistors
C8	VBUS/ VBATT	I/O	R_usb2	Precision resistor for USB 2.0 (Connect a 6.04 k Ω ±1% resistor between this pin and GND)
B3	U3TX VDDQ	I/O	R_usb3	Precision resistor for USB 3.0 (Connect a 200 Ω ±1% resistor between this pin and GND)

DC Specifications (continued)

Parameter	Description	Min	Max	Units	Notes
V _{IL}	Input LOW voltage	-0.3	0.25 × V _{CC}	V	V _{CC} is the corresponding I/O voltage supply.
V _{OH}	Output HIGH voltage	0.9 × V _{CC}	-	V	I_{OH} (max) = -100 µA tested at quarter drive strength. V _{CC} is the corresponding I/O voltage supply.
V _{OL}	Output LOW voltage	_	0.1 × VCC	V	I_{OL} (min) = +100 µA tested at quarter drive strength. V _{CC} is the corresponding I/O voltage supply.
I _{IX}	Input leakage current for all pins except SSTXP/SSXM/SSRXP/SSRXM	-1	1	μΑ	All I/O signals held at V_{DDQ} (For I/Os with a pull-up or pull-down resistor connected, the leakage current increases by V_{DDQ}/R_{pu} or V_{DDQ}/R_{PD}
I _{OZ}	Output High-Z leakage current for all pins except SSTXP/ SSXM/ SSRXP/SSRXM	-1	1	μA	All I/O signals held at V _{DDQ}
I _{CC} Core	Core and analog voltage operating current	-	200	mA	Total current through A _{VDD} , V _{DD}
I _{CC} USB	USB voltage supply operating current	-	60	mA	
I _{SB1}	Total suspend current during suspend mode with USB 3.0 PHY enabled (L1)	_	_	mA	Core current: 1.5 mA I/O current: 20 μA USB current: 2 mA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C.)
I _{SB2}	Total suspend current during suspend mode with USB 3.0 PHY disabled (L2)	_	_	mA	Core current: 250 μA I/O current: 20 μA USB current: 1.2 mA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 °C.)
I _{SB3}	Total standby current during standby mode (L3)	_	_	μΑ	Core current: 60 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C.)
I _{SB4}	Total standby current during core power-down mode (L4)	_	_	μΑ	Core current: 0 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C.)
V _{RAMP}	Voltage ramp rate on core and I/O supplies	0.2	50	V/ms	Voltage ramp must be monotonic
V _N	Noise level permitted on V _{DD} and I/O supplies	-	100	mV	Max p-p noise level permitted on all supplies except A _{VDD}
V _{N_AVDD}	Noise level permitted on A _{VDD} supply	-	20	mV	Max p-p noise level permitted on A _{VDD}

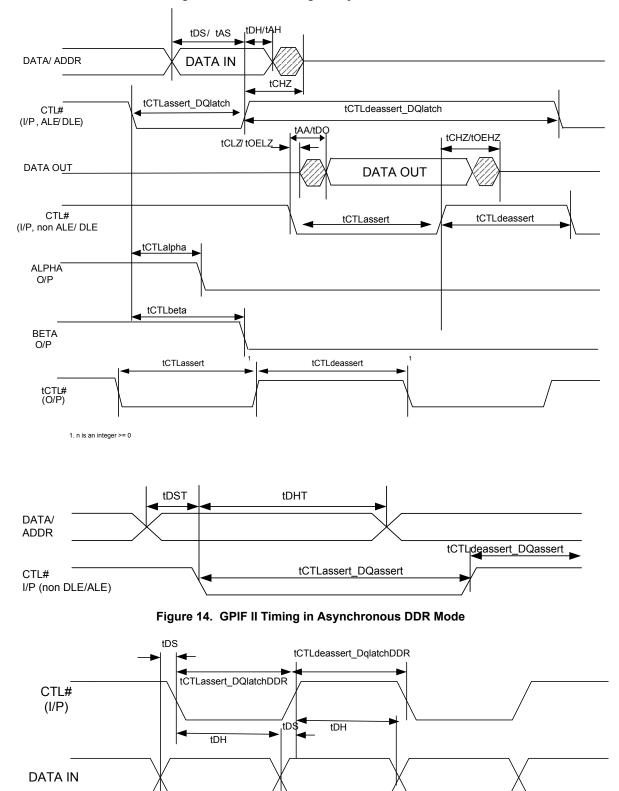
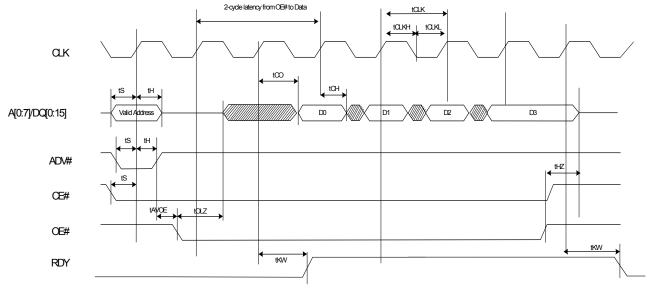


Figure 13. GPIF II Timing in Asynchronous Mode

Table 8. GPIF II Timing in Asynchronous Mode $^{\left[4\right] }$


Note The following parameters assume one state transition.

Parameter	Description	Min	Max	Units
tDS	Data In to DLE setup time. Valid in DDR async mode.	2.3	-	ns
tDH	Data In to DLE hold time. Valid in DDR async mode.	2	-	ns
tAS	Address In to ALE setup time	2.3	-	ns
tAH	Address In to ALE hold time	2	-	ns
tCTLassert	CTL I/O asserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns
tCTLdeassert	CTL I/O deasserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns
tCTLassert_DQassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	20	-	ns
tCTLdeassert_DQassert	CTL deasserted pulse width for CTL inputs that signify DQ input valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	-	ns
tCTLassert_DQdeassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the deasserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	_	ns
tCTLdeassert_DQdeassert	CTL deasserted pulse width for CTL inputs that signify DQ inputs valid at the deasserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	20	-	ns
tCTLassert_DQlatch	CTL asserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches are always close at the deasserting edge.	7	-	ns
tCTLdeassert_DQlatch	CTL deasserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches always close at the deasserting edge.	10	-	ns
tCTLassert_DQlatchDDR	CTL asserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns
tCTLdeassert_DQlatchDDR	CTL deasserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns
tAA	DQ/CTL input to DQ output time when DQ change or CTL change needs to be detected and affects internal updates of input and output DQ lines.	_	30	ns
tDO	CTL to data out when the CTL change merely enables the output flop update whose data was already established.	-	25	ns
tOELZ	CTL designated as OE to low-Z. Time when external devices should stop driving data.	0	-	ns
tOEHZ	CTL designated as OE to high-Z	8	8	ns
tCLZ	CTL (non-OE) to low-Z. Time when external devices should stop driving data.	0	-	ns
tCHZ	CTL (non-OE) to high-Z	30	30	ns
tCTLalpha	CTL to alpha change at output	_	25	ns
tCTLbeta	CTL to beta change at output	_	30	ns
tDST	Addr/data setup when DLE/ALE not used	2	-	ns
tDHT	Addr/data hold when DLE/ALE not used	20	-	ns

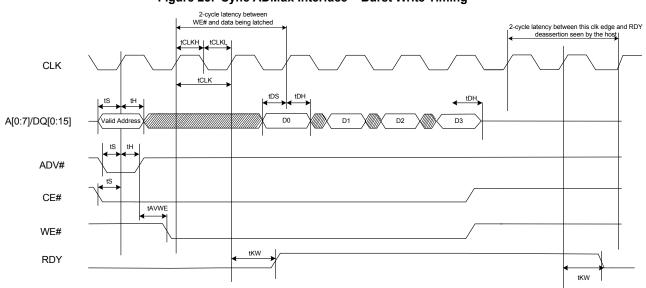
 Note

 4. All parameters guaranteed by design and validated through characterization.

Figure 22. Synchronous ADMux Interface – Burst Read Timing

Note:

1) External P-Port processor and FX3S work operate on the same clock edge


2) External processor sees RDY assert 2 cycles after OE # asserts and and sees RDY deassert a cycle after the last burst data appears on the output

3) Valid output data appears 2 cycle after OE # asserted. The last burst data is held until OE # deasserts

4) Burst size of 4 is shown. Transfer size for the operation must be a multiple of burst size. Burst size is usually power of 2. RDY will not deassert in the middle of the burst.

5) External processor cannot deassert OE in the middle of a burst. If it does so, any bytes remaining in the burst packet could get lost.

6) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)

Figure 23. Sync ADMux Interface – Burst Write Timing

Note:

1) External P-Port processor and FX3S operate on the same clock edge

2) External processor sees RDY assert 2 cycles after WE # asserts and deasserts 3 cycles after the edge sampling the last burst data.

4) Transfer size for the operation must be a multiple of burst size. Burst size is usually power of 2. RDY will not deassert in the middle of the burst. Burst size of 4 is shown
 4) External processor cannot deassert WE in the middle of a burst. If it does so, any bytes remaining in the burst packet could get lost.
 5) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)

Table 11.	Synchronous	ADMux Timing	g Parameters ^[7]
-----------	-------------	--------------	-----------------------------

Parameter	Description	Min	Мах	Unit
FREQ	Interface clock frequency	-	100	MHz
tCLK	Clock period	10	_	ns
tCLKH	Clock HIGH time	4	-	ns
tCLKL	Clock LOW time	4	-	ns
tS	CE#/WE#/DQ setup time	2	-	ns
tH	CE#/WE#/DQ hold time	0.5	-	ns
tCH	Clock to data output hold time	0	-	ns
tDS	Data input setup time	2	-	ns
tDH	Clock to data input hold	0.5	-	ns
tAVDOE	ADV# HIGH to OE# LOW	0	-	ns
tAVDWE	ADV# HIGH to WE# LOW	0	-	ns
tHZ	CE# HIGH to Data HIGH-Z	-	8	ns
tOHZ	OE# HIGH to Data HIGH-Z	-	8	ns
tOLZ	OE# LOW to Data LOW-Z	0	-	ns
tKW	Clock to RDY valid	_	8	ns

Slave FIFO Interface

Synchronous Slave FIFO Sequence Description

- FIFO address is stable and SLCS is asserted
- FLAG indicates FIFO not empty status
- SLOE is asserted. SLOE is an output-enable only, whose sole function is to drive the data bus.

SLRD is asserted

The FIFO pointer is updated on the rising edge of the PCLK, while the SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of tco (measured from the rising edge of PCLK), the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE must also be asserted.

The same sequence of events is shown for a burst read.

FLAG Usage:

The FLAG signals are monitored for flow control by the external processor. FLAG signals are outputs from FX3 that may be configured to show empty, full, or partial status for a dedicated thread or the current thread that is addressed.

Socket Switching Delay (Tssd):

The socket-switching delay is measured from the time EPSWITCH# is asserted by the master, with the new socket address on the address bus, to the time the Current_Thread_DMA_Ready flag is asserted. For the Producer socket, the flag is asserted when it is ready to receive data in the DMA buffer. For the Consumer socket, the flag is asserted when it is ready to drive data out of the DMA buffer. For a synchronous slave FIFO interface, the switching delay is measured in the number of GPIF interface clock cycles; for an asynchronous slave FIFO interface, in PIB clock cycles. This is applicable only for the 5-bit Slave FIFO interface; there is no socket-switching delay in FX3's 2-bit Slave FIFO interface, which makes use of thread switching in the GPIF™ II state machine.

Note For burst mode, the SLRD# and SLOE# are asserted during the entire duration of the read. When SLOE# is asserted, the data bus is driven (with data from the previously addressed FIFO). For each subsequent rising edge of PCLK, while the SLRD# is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

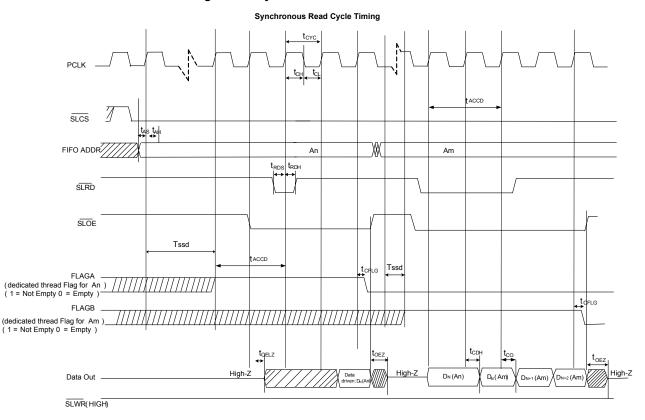


Figure 24. Synchronous Slave FIFO Read Mode

Table 12. Synchronous Slave FIFO Parameters^[8]

Parameter	Description	Min	Max	Units
FREQ	Interface clock frequency	-	100	MHz
tCYC	Clock period	10	-	ns
tCH	Clock high time	4	-	ns
tCL	Clock low time	4	-	ns
tRDS	SLRD# to CLK setup time	2	-	ns
tRDH	SLRD# to CLK hold time	0.5	-	ns
tWRS	SLWR# to CLK setup time	2	-	ns
tWRH	SLWR# to CLK hold time	0.5	-	ns
tCO	Clock to valid data	-	8	ns
tDS	Data input setup time	2	-	ns
tDH	CLK to data input hold	0.5	-	ns
tAS	Address to CLK setup time	2	-	ns
tAH	CLK to address hold time	0.5	-	ns
tOELZ	SLOE# to data low-Z	0	-	ns
tCFLG	CLK to flag output propagation delay	-	8	ns
tOEZ	SLOE# deassert to Data Hi Z	-	8	ns
tPES	PKTEND# to CLK setup	2	-	ns
tPEH	CLK to PKTEND# hold	0.5	-	ns
tCDH	CLK to data output hold	2	-	ns
tSSD	Socket switching delay	2	68	Clock cycles
tACCD	Latency from SLRD# to Data	2	2	Clock cycles
tFAD	Latency from SLWR# to FLAG 3 3 Clock cy			Clock cycles
Note Three-cycle late	ncy from ADDR to DATA/FLAGS	ł	ı	1

Asynchronous Slave FIFO Read Sequence Description

- FIFO address is stable and the SLCS# signal is asserted.
- SLOE# is asserted. This results in driving the data bus.
- SLRD # is asserted.
- Data from the FIFO is driven after assertion of SLRD#. This data is valid after a propagation delay of tRDO from the falling edge of SLRD#.
- FIFO pointer is incremented on deassertion of SLRD#

In Figure 26 on page 38, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle, SLOE# must be in an asserted state. SLRD# and SLOE# can also be tied.

The same sequence of events is also shown for a burst read.

Note In the burst read mode, during SLOE# assertion, the data bus is in a driven state (data is driven from a previously addressed FIFO). After assertion of SLRD# data from the FIFO is driven on the data bus (SLOE# must also be asserted). The FIFO pointer is incremented after deassertion of SLRD#.

^{8.} All parameters guaranteed by design and validated through characterization.

Table 13. Asynchronous Slave FIFO Parameters^[9]

Parameter	Description	Min	Max	Units
tRDI	SLRD# low	20	-	ns
tRDh	SLRD# high	10	-	ns
tAS	Address to SLRD#/SLWR# setup time	7	-	ns
tAH	SLRD#/SLWR#/PKTEND to address hold time	2	-	ns
tRFLG	SLRD# to FLAGS output propagation delay	-	35	ns
tFLG	ADDR to FLAGS output propagation delay	-	22.5	
tRDO	SLRD# to data valid	-	25	ns
tOE	OE# low to data valid	-	25	ns
tLZ	OE# low to data low-Z	0	-	ns
tOH	SLOE# deassert data output hold	-	22.5	ns
tWRI	SLWR# low	20	-	ns
tWRh	SLWR# high	10	-	ns
tWRS	Data to SLWR# setup time	7	-	ns
tWRH	SLWR# to Data Hold time	2	-	ns
tWFLG	SLWR#/PKTEND to Flags output propagation delay	-	35	ns
tPEI	PKTEND low	20	-	ns
tPEh	PKTEND high	7.5	-	ns
tWRPE	SLWR# deassert to PKTEND deassert	2	-	ns

Table 14. S-Port Timing Parameters^[10] (continued)

Parameter	Description	Min	Мах	Units
tSCLKR	Clock rise time	-	2	ns
tSCLKF	Clock fall time	_	2	ns
tSDCK	Clock cycle time	20	_	ns
SDFREQ	Clock frequency	_	50	MHz
tSDCLKOD	Clock duty cycle	40	60	%
	SD-SDR50	I		I
tSDIS CMD	Host input setup time for CMD	1.5	_	ns
tSDIS DAT	Host input setup time for DAT	1.5	_	ns
tSDIH CMD	Host input hold time for CMD	2.5	_	ns
tSDIH DAT	Host input hold time for DAT	2.5	_	ns
tSDOS CMD	Host output setup time for CMD	3	_	ns
tSDOS DAT	Host output setup time for DAT	3	_	ns
tSDOH CMD	Host output hold time for CMD	0.8	_	ns
tSDOH DAT	Host output hold time for DAT	0.8	_	ns
tSCLKR	Clock rise time	_	2	ns
tSCLKF	Clock fall time	_	2	ns
tSDCK	Clock cycle time	10	_	ns
SDFREQ	Clock frequency		100	MHz
tSDCLKOD	Clock duty cycle	40	60	%
	SD-DDR50			•
tSDIS CMD	Host input setup time for CMD	4	_	ns
tSDIS DAT	Host input setup time for DAT	0.92	_	ns
tSDIH CMD	Host input hold time for CMD	2.5	_	ns
tSDIH DAT	Host input hold time for DAT	2.5	_	ns
tSDOS CMD	Host output setup time for CMD	6	_	ns
tSDOS DAT	Host output setup time for DAT	3	_	ns
tSDOH CMD	Host output hold time for CMD	0.8	_	ns
tSDOH DAT	Host output hold time for DAT	0.8	_	ns
tSCLKR	Clock rise time	-	2	ns
tSCLKF	Clock fall time	-	2	ns
tSDCK	Clock cycle time	_	ns	
SDFREQ	Clock frequency	_	50	MHz
tSDCLKOD	Clock duty cycle	45	55	%

Document History Page

	Document Title: CYUSB303X, EZ-USB [®] FX3S SuperSpeed USB Controller Document Number: 001-84160				
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	3786345	SAMT	12/06/2012	New data sheet.	
*A	3900859	SAMT	02/11/2013	Updated Ordering Information (Updated part numbers).	
*В	4027072	SAMT	06/20/2013	Updated Ordering Information (Updated part numbers). Updated in new template.	
*C	4132176	GSZ	09/23/2013	Updated Features. Updated Applications. Updated Functional Overview. Updated Storage Port (S-Port). Replaced CYUSB3035 with CYUSB303X in all instances across the document.	
*D	4616283	MDDD	01/07/2015	Added link to related resources on page 1. Added More Information section.	
*E	4646195	RAJV	09/18/2015	Updated Slave FIFO Interface and Synchronous Slave FIFO Write Sequence Description. Updated Figure 24 and Figure 25. Updated Table 12.	
*F	5085988	ANOP	01/14/2016	No technical updates. Completing Sunset Review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2012-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-84160 Rev. *F

Revised January 14, 2016

Page 54 of 54

EZ-USB™ is a trademark and West Bridge[®] is a registered trademark of Cypress Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their respective holders.