

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx320f064ht-40v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the PIC32MX3XX/4XX devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX3XX/4XX family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

	Pin	Number ⁽	1)	Din								
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description						
RD0	46	72	D9	I/O	ST	PORTD is a bidirectional I/O port.						
RD1	49	76	A11	I/O	ST							
RD2	50	77	A10	I/O	ST							
RD3	51	78	B9	I/O	ST							
RD4	52	81	C8	I/O	ST							
RD5	53	82	B8	I/O	ST							
RD6	54	83	D7	I/O	ST							
RD7	55	84	C7	I/O	ST							
RD8	42	68	E9	I/O	ST							
RD9	43	69	E10	I/O	ST							
RD10	44	70	D11	I/O	ST							
RD11	45	71	C11	I/O	ST							
RD12	_	79	A9	I/O	ST							
RD13		80	D8	I/O	ST							
RD14		47	L9	I/O	ST							
RD15	_	48	K9	I/O	ST							
RE0	60	93	A4	I/O	ST	PORTE is a bidirectional I/O port.						
RE1	61	94	B4	I/O	ST							
RE2	62	98	B3	I/O	ST							
RE3	63	99	A2	I/O	ST							
RE4	64	100	A1	I/O	ST							
RE5	1	3	D3	I/O	ST							
RE6	2	4	C1	I/O	ST							
RE7	3	5	D2	I/O	ST							
RE8	_	18	G1	I/O	ST							
RE9	_	19	G2	I/O	ST							
RF0	58	87	B6	I/O	ST	PORTF is a bidirectional I/O port.						
RF1	59	88	A6	I/O	ST							
RF2	34	52	K11	I/O	ST							
RF3	33	51	K10	I/O	ST							
RF4	31	49	L10	I/O	ST							
RF5	32	50	L11	I/O	ST							
RF6	35	55	H9	I/O	ST							
RF7	_	54	H8	I/O	ST							
RF8	_	53	J10	I/O	ST							
RF12	—	40	K6	I/O	ST]						
RF13	_	39	L6	I/O	ST]						
Legend:	CMOS = CM	OS compa	tible input	or outpu	t A	nalog = Analog input P = Power						
	ST = Schmitt TTL = TTL in	ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer										

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)	
			/

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

	Pin	Number ⁽	1)	Dim						
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description				
TMS	23	17	G3	I	ST	JTAG Test mode select pin.				
тск	27	38	J6	I	ST	JTAG test clock input pin.				
TDI	28	60	G11	I	ST	JTAG test data input pin.				
TDO	24	61	G9	0	—	JTAG test data output pin.				
RTCC	42	68	E9	0	_	Real-Time Clock Alarm Output.				
CVREF-	15	28	L2	I	Analog	Comparator Voltage Reference (low).				
CVREF+	16	29	K3	I	Analog	Comparator Voltage Reference (high).				
CVREFOUT	23	34	L5	0	Analog	Comparator Voltage Reference Output.				
C1IN-	12	21	H2	I	Analog	Comparator 1 Negative Input.				
C1IN+	11	20	H1	I	Analog	Comparator 1 Positive Input.				
C1OUT	21	32	K4	0	_	Comparator 1 Output.				
C2IN-	14	23	J2	I	Analog	Comparator 2 Negative Input.				
C2IN+	13	22	J1	I	Analog	Comparator 2 Positive Input.				
C2OUT	22	33	L4	0	—	Comparator 2 Output.				
PMA0	30	44	L8	I/O	TTL/ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).				
PMA1	29	43	K7	I/O	TTL/ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).				
PMA2	8	14	F3	0	_	Parallel Master Port Address (De-multiplexed Master				
PMA3	6	12	F2	0	_	Modes).				
PMA4	5	11	F4	0	—					
PMA5	4	10	E3	0	—					
PMA6	16	29	K3	0	_					
PMA7	22	28	L2	0	_					
PMA8	32	50	L11	0	_					
PMA9	31	49	L10	0	—					
PMA10	28	42	L7	0	—					
PMA11	27	41	J7	0	—					
PMA12	24	35	J5	0	_					
PMA13	23	34	L5	0	_					
PMA14	45	71	C11	0	_					
PMA15	44	70	D11	0	_					
PMCS1	45	71	C11	0	—	Parallel Master Port Chip Select 1 Strobe.				
PMCS2	44	70	D11	0	—	Parallel Master Port Chip Select 2 Strobe.				
Legend:	CMOS = CMOS compatible input or outputAnalog = Analog inputP = Power									

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)
------------	-------------------------------------

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

O = Output

I = Input

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC32MX3XX/4XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VCORE

(see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VCORE)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.8 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of ADC use and ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

TABLE 4-1: BUS MATRIX REGISTERS MAP

ess		ø									Bits								
Virtual Addr (BF88_#)	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	BMX	31:16	—	_	_	—	_	BMXCHEDMA	_	—	_	—	—	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	001F
2000	CON ⁽¹⁾	15:0	_	_	—	—	_	—	_	_	-	BMXWSDRM	_	—	—	BI	MXARB<2:0>		0042
2010	BMX	31:16	—	—	—	—	—	_	_	_	_	_	_	—	—	—	_	—	0000
2010	DKPBA ⁽¹⁾	15:0								BN	IXDKPBA	<15:0>							0000
	BMX	31:16	_	_	_	—	-	_		_		_	_	_	_	—	—		0000
2020	DUDBA ⁽¹⁾	15:0								BN	IXDUDBA	<15:0>							0000
	BMX	31:16	_	_	_	—	_	_		_		—	_	_	-	—	—		0000
2030	DUPBA ⁽¹⁾	15:0								BN	IXDUPBA	<15:0>							0000
	BMX	31:16																	xxxx
2040	DRMSZ	15:0								BN	IXDRMSZ	<31:0>							xxxx
	BMX	31:16	_	_	_	—	_	_	_	_	_	—	_	_		BMXPUPBA	<19:16>		0000
2050	PUPBA ⁽¹⁾	15:0								BN	IXPUPBA	<15:0>							0000
	BMX	31:16																	xxxx
2060	PFMSZ	15:0	BMXPFMSZ<31:0>										xxxx						
	BMX 31:16									0000									
2070	BOOTSZ	BMXBOOTSZ<31:0>							3000										

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-13: ADC REGISTERS MAP

ess										Bi	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	_	—	—	—	_	_	_	_	—	—	_	—	—	_	0000
9000	ADICONIC	15:0	ON	ON — SIDL — — FORM<2:0> SSRC<2:0> CLRASAM — ASAM SAMP DONE 0000										0000					
9010		31:16												0000					
0010		15:0	VCFG2	VCFG2 VCFG1 VCFG0 OFFCAL — CSCNA — BUFS — SMPI<3:0> BUFM ALTS 00										0000					
9020	AD1CON3 ⁽¹⁾	31:16											0000						
		15:0	ADRC		_	ļ		SAMC<4:0>						ADCS	6<7:0>				0000
9040	AD1CHS ⁽¹⁾	31:16	CH0NB		-			CHOSE	B<3:0>		CH0NA	_	_	_		CH0S/	4<3:0>	1	0000
	ļ!	15:0			_								_	_		_			0000
9060	AD1PCFG ⁽¹⁾	31:16		-	-	-		-		— 	-	-	-		-	— DOE00			0000
		15:0	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFGU	0000
9050	AD1CSSL ⁽¹⁾	15.0	 CSSI 15	CSSI 14	 CSSI 13	 CSSI 12	CSSI 11	 CSSI 10	CSSL9	CSSL8	CSSL7	CSSI 6	CSSI 5	CSSL4	CSSL3	CSSI 2	CSSL1	CSSL0	0000
	├ ───┤	31.16	CCCLIC	COCETT	COOLIG	COOLIZ	000211	COOLIG	00010	00020	00027	00020	00010	00021	00010	OUDLE	00021	00020	0000
9070	ADC1BUF0	15:0		ADC Result Word 0 (ADC1BUF0<31:0>)															
		31:16																	0000
9080	ADC1BUF1	15:0							ADC Re	sult Word 1	(ADC1BUF1	<31:0>)							0000
0000		31:16																	0000
9090	ADC1BUF2	15:0							ADC Re	Suit Word 2	(ADC1BUF2	2<31:0>)							0000
9040		31:16							ADC Re	sult Word 3		8~31.0~)							0000
3070	ABO IBOI 3	15:0							ADO NO	Suit Word 5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							0000
90B0	ADC1BUF4	31:16							ADC Re	sult Word 4	(ADC1BUF4	(<31:0>)							0000
		15:0										,							0000
90C0	ADC1BUF5	31:16							ADC Re	sult Word 5	(ADC1BUF5	5<31:0>)							0000
		15:0									•								0000
90D0	ADC1BUF6	31:16							ADC Re	sult Word 6	(ADC1BUF	6<31:0>)							0000
	ļ!	15:0																	0000
90E0	ADC1BUF7	15.0							ADC Re	sult Word 7	(ADC1BUF7	/<31:0>)							0000
	├ ────┦	31.16	0000																
90F0	ADC1BUF8	15:0	ADC Result Word 8 (ADC1BUF8<31:0>)																
	╂────┦	31:16																	0000
9100	ADC1BUF9	15:0							ADC Re	sult Word 9	(ADC1BUF9	9<31:0>)							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-29: PORTF REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L AND PIC32MX360F512L DEVICES ONLY⁽¹⁾

ess		Bits																	
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TDICE	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0140	TRISE	15:0	—	_	TRISF13	TRISF12	—	—	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
6150	DODTE	31:16	_	_	—	—	_	—	_	_	—	—	—	—	—	—	—	_	0000
0150	FURIF	15:0	—	_	RF13	RF12	—	—	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160		31:16	—	_	—	—	—	—	_	_	_	—	—	—	—	_	_	_	0000
0100	LAIF	15:0	—	—	LATF13	LATF12	—	—	—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCE	31:16	—		—	—	—	—	—		—	—	—	—	—	—	—		0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	—	—	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-30: PORTF REGISTERS MAP FOR PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess										Bi	its								s
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TDICE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0140	TRISE	15:0	—	—	TRISF13	TRISF12	—	—	_	TRISF8	—	—	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6150	DODTE	31:16	—	—	_	—	—	_	_	_	—	—	—	—	—	—	—	_	0000
0150	FURIF	15:0	—	-	RF13	RF12	-	-	_	RF8	-	-	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160		31:16	—	—	_	—	—	—	_	_	—	—	—	—	—	—	—	_	0000
0100	LAIF	15:0	—	—	LATF13	LATF12	—	_	_	LATF8	—	—	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCE	31:16	_	_	—	—	—	_	_	—	—	—	—	—	—	_	_	—	0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	—	_		ODCF8	—	—	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX3XX/4XX

NOTES:

11.0 USB ON-THE-GO (OTG)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS61126) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers, and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB OTG Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Transaction Handshaking Performed by Hardware
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA to Access System RAM and Flash

Note: The implementation and use of the USB specifications, as well as other third-party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

12.1 Parallel I/O (PIO) Ports

All port pins have three registers (TRIS, LAT and PORT) that are directly associated with their operation.

TRIS is a data direction or tri-state control register that determines whether a digital pin is an input or an output. Setting a TRISx register bit = 1 configures the corresponding I/O pin as an input; setting a TRISx register bit = 0 configures the corresponding I/O pin as an output. All port I/O pins are defined as inputs after a device Reset. Certain I/O pins are shared with analog peripherals and default to analog inputs after a device Reset.

PORT is a register used to read the current state of the signal applied to the port I/O pins. Writing to a PORTx register performs a write to the port's latch, LATx register, latching the data to the port's I/O pins.

LAT is a register used to write data to the port I/O pins. The LATx latch register holds the data written to either the LATx or PORTx registers. Reading the LATx latch register reads the last value written to the corresponding port or latch register.

Not all port I/O pins are implemented on some devices, therefore, the corresponding PORTx, LATx and TRISx register bits will read as zeros.

12.1.1 CLR, SET AND INV REGISTERS

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

Note:	Using a PORTxINV register to toggle a bit
	is recommended because the operation is
	performed in hardware atomically, using
	fewer instructions as compared to the tra-
	ditional read-modify-write method shown
	below:

PORTC ^= 0x0001;

12.1.2 DIGITAL INPUTS

Pins are configured as digital inputs by setting the corresponding TRIS register bits = 1. When configured as inputs, they are either TTL buffers or Schmitt Triggers. Several digital pins share functionality with analog inputs and default to the analog inputs at POR. Setting the corresponding bit in the AD1PCFG register = 1 enables the pin as a digital pin. The maximum input voltage allowed on the input pins is the same as the maximum VIH specification. Refer to **Section 29.0 "Electrical Characteristics"** for VIH specification details.

Note:	Analog levels on any pin that is defined as
	a digital input (including the ANx pins)
	may cause the input buffer to consume
	current that exceeds the device specifica-
	tions.

12.1.3 ANALOG INPUTS

Certain pins can be configured as analog inputs used by the ADC and Comparator modules. Setting the corresponding bits in the AD1PCFG register = 0 enables the pin as an analog input pin and must have the corresponding TRIS bit set = 1 (input). If the TRIS bit is cleared = 0 (output), the digital output level (VOH or VOL) will be converted. Any time a port I/O pin is configured as analog, its digital input is disabled and the corresponding PORTx register bit will read '0'. The AD1PCFG Register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

12.1.4 DIGITAL OUTPUTS

Pins are configured as digital outputs by setting the corresponding TRIS register bits = 0. When configured as digital outputs, these pins are CMOS drivers or can be configured as open drain outputs by setting the corresponding bits in the ODCx Open-Drain Configuration register.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Pin Diagrams"** section for the available pins and their functionality.

12.1.5 ANALOG OUTPUTS

Certain pins can be configured as analog outputs, such as the CVREF output voltage used by the comparator module. Configuring the Comparator Reference module to provide this output will present the analog output voltage on the pin, independent of the TRIS register setting for the corresponding pin.

12.1.6 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports (CNx) allows devices to generate interrupt requests in response to change of state on selected pin.

Each CNx pin also has a weak pull-up, which acts as a current source connected to the pin. The pull-ups are enabled by setting corresponding bit in CNPUE register.

15.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS61122) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC32MX3XX/4XX devices support up to five input capture channels.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- 3. Capture timer value on every edge (rising and falling), specified edge first.
- 4. Prescaler Capture Event modes
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 15-1: INPUT CAPTURE BLOCK DIAGRAM

FIGURE 19-5: UART RECEPTION WITH RECEIVE OVERRUN

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS61125) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. The following are some of the key features of this module:

- Time: Hours, Minutes and Seconds
- 24-Hour Format (Military Time)
- Visibility of One-Half-Second Period
- Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are configurable for Half of a Second, One Second, 10 Seconds, One Minute, 10 Minutes, One Hour, One Day, One Week, One Month and One Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- Leap Year Correction
- BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Calibration Range: ±0.66 Seconds Error per Month
- · Calibrates up to 260 ppm of Crystal Error
- Requirements: External 32.768 kHz Clock Crystal
- Alarm Pulse or Seconds Clock Output on RTCC pin

FIGURE 21-1: RTCC BLOCK DIAGRAM

23.0 COMPARATOR

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 19. "Comparator" (DS61110) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX Analog Comparator module contains one or more comparator(s) that can be configured in a variety of ways.

Following are some of the key features of this module:

- · Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be inverted
- · Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 23-1.

FIGURE 23-1: COMPARATOR BLOCK DIAGRAM

TADLE 27-1:		<u>-D)</u>
Instruction	Description	Function
RDPGPR	Read GPR from Previous Shadow Set	Rt = SGPR[SRSCtl _{PSS} , Rd]
ROTR	Rotate Word Right	$Rd = Rt_{sa-10} Rt_{31sa}$
ROTRV	Rotate Word Right Variable	$Rd = Rt_{Rs-10} Rt_{31Rs}$
SB	Store Byte	(byte)Mem[Rs+offset] = Rt
SC	Store Conditional Word	<pre>if LL_{bit} = 1 mem[Rs+offset> = Rt Rt = LL_{bit}</pre>
SDBBP	Software Debug Break Point	Trap to SW Debug Handler
SEB	Sign-Extend Byte	Rd = SignExtend (Rs-70)
SEH	Sign-Extend Half	Rd = SignExtend (Rs-150)
SH	Store Half	(half)Mem[Rs+offset> = Rt
SLL	Shift Left Logical	Rd = Rt << sa
SLLV	Shift Left Logical Variable	Rd = Rt << Rs[4:0]
SLT	Set on Less Than	<pre>if (int)Rs < (int)Rt Rd = 1 else Rd = 0</pre>
SLTI	Set on Less Than Immediate	<pre>if (int)Rs < (int)Immed Rt = 1 else Rt = 0</pre>
SLTIU	Set on Less Than Immediate Unsigned	<pre>if (uns)Rs < (uns)Immed Rt = 1 else Rt = 0</pre>
SLTU	Set on Less Than Unsigned	<pre>if (uns)Rs < (uns)Immed Rd = 1 else Rd = 0</pre>
SRA	Shift Right Arithmetic	Rd = (int)Rt >> sa
SRAV	Shift Right Arithmetic Variable	Rd = (int)Rt >> Rs[4:0]
SRL	Shift Right Logical	Rd = (uns)Rt >> sa
SRLV	Shift Right Logical Variable	Rd = (uns)Rt >> Rs[4:0]
SSNOP	Superscalar Inhibit No Operation	NOP
SUB	Integer Subtract	Rt = (int)Rs - (int)Rd
SUBU	Unsigned Subtract	Rt = (uns)Rs - (uns)Rd
SW	Store Word	Mem[Rs+offset] = Rt
SWL	Store Word Left	Mem[Rs+offset] = Rt
SWR	Store Word Right	Mem[Rs+offset] = Rt
SYNC	Synchronize	Orders the cached coherent and uncached loads and stores for access to the shared memory
SYSCALL	System Call	SystemCallException
TEQ	Trap if Equal	if Rs == Rt TrapException
TEQI	Trap if Equal Immediate	if Rs == (int)Immed TrapException

TABLE 27-1: MIPS32[®] INSTRUCTION SET (CONTINUED)

Note 1: This instruction is deprecated and should not be used.

29.1 DC Characteristics

TABLE 29-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp. Range	Max. Frequency		
	(in Volts)	(in °C)	PIC32MX3XX/4XX		
DC5	2.3V-3.6V	-40°C to +85°C	80 MHz (Note 1)		
DC5b	2.3V-3.6V	-40°C to +105°C	80 MHz (Note 1)		

Note 1: 40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.

TABLE 29-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-Temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)			PINT + PI/c)	W
I/O Pin Power Dissipation: I/O = S ({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJ	A	W

TABLE 29-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 121-Pin XBGA (10x10x1.1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θја	43	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θја	47	_	°C/W	1
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θја	28	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 29-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Characteristics	Min. Typical Max. Units Cond				Conditions
Operati	Operating Voltage						
DC10	Vdd	Supply Voltage	2.3	—	3.6	V	—
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75	_	—	V	_
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	—	1.95	V	_
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—		V/ms	

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 29-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Charact	eristics	tics Min. ⁽¹⁾ Max.		Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	_	μs		
			400 kHz mode	Трв * (BRG + 2)		μs	_	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	—	μs		
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	—	μs		
			400 kHz mode	Трв * (BRG + 2)	—	μs		
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	μs		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF.	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF.	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns		
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽²⁾	100	—	ns	<u> </u>	
IM26 THD:DAT		Data Input	100 kHz mode	0		μs		
		Hold Time	400 kHz mode	0	0.9	μs		
	—		1 MHz mode ⁽²⁾	0	0.3	μs		
IM30	ISU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μs	Only relevant for Repeated Start	
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μs	condition.	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)		μs		
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μs	After this period, the	
		Hold Time	400 kHz mode	Трв * (BRG + 2)		μs	TIFST CIOCK PUISE IS	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)		μs	generated.	
IM33	TSU:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		μs		
		Setup Time	400 kHz mode	Трв * (BRG + 2)	—	μs	—	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)	—	ns		
		Hold Time	400 kHz mode	Трв * (BRG + 2)	—	ns	—	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	—	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns		
		from Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	—	350	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	The amount of time the	
			400 kHz mode	1.3		μs	bus must be free	
			1 MHz mode ⁽²⁾	0.5		μs	transmission can start.	
IM50	Св	Bus Capacitive L	oading	—	400	pF	—	
IM51	TPGD	Pulse Gobbler Delay ⁽³⁾		52	312	ns	—	

Note 1: BRG is the value of the I^2C^{TM} Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

PIC32MX3XX/4XX

FIGURE 29-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 29-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв			_
PM2	TADSU	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	2 Трв		—	_
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв		—	
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	_	ns	_
PM5	Trd	PMRD Pulse Width	—	1 Трв		_	—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_		ns	_
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)		80	_	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

Revision G (April 2010)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits.

This revision also includes minor typographical and formatting changes throughout the data sheet text. Major updates are referenced by their respective section in the following table.

Section Name	Update Description				
"High-Performance, General Purpose and USB 32-bit Flash	Updated the crystal oscillator range to 3 MHz to 25 MHz (see Peripheral Features:)				
Microcontrollers"	Added the 121-pin Ball Grid Array (XBGA) pin diagram.				
	Updated Table 1: "PIC32MX General Purpose – Features" and Table 2: "PIC32MX USB – Features"				
	Added the following tables:				
	 Table 3: "Pin Names: PIC32MX320F128L, PIC32MX340F128L, and PIC32MX360F128L, and PIC32MX360F512L Devices", Table 4: "Pin Names: PIC32MX440F128L, PIC32MX460F256L and PIC32MX460F512L Devices" 				
	Updated the following pins as 5V tolerant:				
	 64-pin QFN (USB): Pin 34 (VBUS), Pin 36 (D-/RG3) and Pin 37 (D+/RG2) 				
	 64-pin TQFP (USB): Pin 34 (Vbus), Pin 36 (D-/RG3), Pin 37 (D+/RG2) and Pin 42 (IC1/RTCC/INT1/RD8) 				
	 100-pin TQFP (USB): Pin 54 (VBUS), Pin 56 (D-/RG3) and Pin 57 (D+/RG2) 				
Section 1.0 "Device Overview"	Updated the Pinout I/O Descriptions table to include the device pin numbers (see Table 1-1)				
Section 2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Updated the Ohm value for the low-ESR capacitor from less than 5 to less than 1 (see Section 2.3.1 "Internal Regulator Mode").				
	Labeled the capacitor on the VCAP/VDDCORE pin as CEFC in Figure 2-1.				
	Changed 10 µF capacitor to CEFC capacitor in Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VCORE)".				
Section 4.0 "Memory Organization"	Updated all register map tables to include the "All Resets" column.				
	Separated the PORT register maps into individual tables (see Table 4-21 through Table 4-34).				
	In addition, formatting changes were made to improve readability.				
Section 12.0 "I/O Ports"	Updated the second paragraph of Section 12.1.2 "Digital Inputs" and removed Table 12-1.				
Section 22.0 "10-bit Analog-to-Digital Converter (ADC)"	Updated the ADC Conversion Clock Period Block Diagram (see Figure 22- 2).				
Section 26.0 "Special Features"	Extensive updates were made to Section 26.2 "Watchdog Timer (WDT)" and Section 26.3 "On-Chip Voltage Regulator".				

TABLE A-2: MAJOR SECTION UPDATES