

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx320f064ht-40v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1:PIC32MX GENERAL PURPOSE – FEATURES

GENERAL PURPOSE														
Device	Pins	Packages ⁽²⁾	ZHW	Program Memory (KB)	Data Memory (KB)	Timers/Capture/Compare	Programmable DMA Channels	VREG	Trace	EUART/SPI/I ² C™	10-bit ADC (ch)	Comparators	dSd/dWd	JTAG
PIC32MX320F032H	64	PT, MR	40	32 + 12 ⁽¹⁾	8	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F064H	64	PT, MR	80	64 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F256H	64	PT, MR	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F512H	64	PT, MR	80	512 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT		(00 (0))	10	- /- /-				0/0/0	4.0	~		
PIC32MX320F128L	121	BG	80	128 + 120	16	5/5/5	0	Yes	NO	2/2/2	16	2	Yes	Yes
	100	PT		(00 (0)		- /- /-				0/0/0	4.0	~		
PIC32MX340F128L	121	BG	80	128 + 121	32	5/5/5	4	Yes	NO	2/2/2	16	2	Yes	Yes
	100	PT		(1)										
PIC32MX360F256L	121	BG	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes
	100	PT		= (= (= (()						0/0/0				
PIC32MX360F512L	121	BG	80	512 + 12 ⁽¹⁾	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes

Legend: PT = TQFP MR = QFN BG = XBGA

Note 1: This device features 12 KB Boot Flash memory.

2: See Legend for an explanation of the acronyms. See Section 30.0 "Packaging Information" for details.

TABLE 4:PIN NAMES: PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L
DEVICES (CONTINUED)

Pin Number	Full Pin Name
K4	AN8/C1OUT/RB8
K5	No Connect (NC)
K6	U2CTS/RF12
K7	AN14/PMALH/PMA1/RB14
K8	VDD
K9	U1RTS/CN21/RD15
K10	USBID/RF3
K11	U1RX/RF2
L1	PGEC2/AN6/OCFA/RB6
L2	VREF-/CVREF-/PMA7/RA9

Pin Number	Full Pin Name
L3	AVss
L4	AN9/C2OUT/RB9
L5	AN10/CVREFOUT/PMA13/RB10
L6	U2RTS/RF13
L7	AN13/PMA10/RB13
L8	AN15/OCFB/PMALL/PMA0/CN12/RB15
L9	U1CTS/CN20/RD14
L10	U2RX/PMA9/CN17/RF4
L11	U2TX/PMA8/CN18/RF5

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP/VCORE)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (< 1 Ohm) capacitor is required on the VCAP/VCORE pin, which is used to stabilize the internal voltage regulator output. The VCAP/VCORE pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 29.0** "**Electrical Characteristics**" for additional information on CEFC specifications. This mode is enabled by connecting the ENVREG pin to VDD.

2.3.2 EXTERNAL REGULATOR MODE

In this mode the core voltage is supplied externally through the VCORE/VCAP pin. A low-ESR capacitor of 10 μF is recommended on the VCAP/VCORE pin. This mode is enabled by grounding the ENVREG pin.

The placement of this capacitor should be close to the VCAP/VCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 26.3** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:

- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2:	EXAMPLE OF MCLR PIN
	CONNECTIONS

- Note 1: R ≤10 kΩ is recommended. A suggested starting value is 10 kΩ Ensure that the MCLR pin VIH and VIL specifications are met.
 - 2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.
 - **3:** The capacitor can be sized to prevent unintentional resets from brief glitches or to extend the device reset period during POR.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 Trace

The trace pins can be connected to a hardware-traceenabled programmer to provide a compress real time instruction trace. When used for trace the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0** "**Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

NOTES:

TABLE 4-33: PORTG REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess				Bits															
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6190	TRISC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	-	—	0000
0100	TRISG	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	—	TRISG9	TRISG8	TRISG7	TRISG6	—	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6100	POPTO	31:16	-	-	—	-	-	-	_	-	_	-	-	_	_	-	-	_	0000
0190	FORTG	15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	—	_	RG3	RG2	RG1	RG0	xxxx
6140		31:16	—	—	—	—	—	—	_	_	_	_	—	_	_	_	—	_	0000
OTAU	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	-	-	LATG9	LATG8	LATG7	LATG6	-	_	LATG3	LATG2	LATG1	LATG0	xxxx
61P0	00000	31:16	—	—	—	—	—	—	_	_	_	_	—	_	_	_	—	_	0000
0100	0000	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000
-				_															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-34: PORTG REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY⁽¹⁾

ess										В	its								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6190	TRISC	31:16	—	-	—	—	-	-	—	—	-	—	-	—	—	—	—	_	0000
0100	TRISG	15:0		—	—	—	—	—	TRISG9	TRISG8	TRISG7	TRISG6	_	—	TRISG3	TRISG2	—	—	03cc
6100	POPTO	31:16	_	—	—	_	—	_	_	_	—	—	_	—	—	—	_	_	0000
0190	FURIG	15:0	_	-	-	-	-	_	RG9	RG8	RG7	RG6	-	-	RG3	RG2	_	_	xxxx
6140	LATC	31:16	—	—	—	_	—	—	_	—	—	—	—	—	—	—	—	_	0000
UTAU	LAIG	15:0	_	—	—	_	—	_	LATG9	LATG8	LATG7	LATG6	_	—	LATG3	LATG2	_	_	xxxx
61P0	ODCC	31:16	_	—	—	—	—	—	—	_	—	—	_	—	—	—	—	_	0000
0100	ODCG	15:0	—	—	—	_	—	—	ODCG9	ODCG8	ODCG7	ODCG6	—	—	ODCG3	ODCG2	—	_	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-43: USB REGISTERS MAP⁽¹⁾ (CONTINUED)

SS						-		-			Bits									
Virtual Addre (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
5280	111FRMI (3)	31:16		—	_	—		_	_	_	_	—	_	—	_	_	—	_	0000	
5200		15:0	-	—	—	—	-	—		—				FRML<	7:0>				0000	
5290	U1FRMH ⁽³⁾	31:16	—	—	—	—	_	—	-	—	—	-	—	-	—	—	—	—	0000	
0200		15:0	_	_	_	—	_	_	_	_	_	—	_	_	_		FRMH<10:8>	>	0000	
52A0	U1TOK	31:16		-	—			_		—	—	—	—	—	—	—	—	—	0000	
		15:0	—	—		—	—	—	—	—		PID	<3:0>	1		EP<	<3:0>		0000	
52B0	U1SOF	31:16	_	_	—	_	_	_	_	_	—	-	—	-	—	—	—	—	0000	
		15:0	_	_	_		_	_	_	_				CNT<7	7:0>				0000	
52C0	U1BDTP2	31:16	_	_	_	_	—	_	—	_		—	_	-	-	—			0000	
		15:0		_	_	_	_	_	_					BDIPIR	1<7:0>				0000	
52D0	U1BDTP3	31:16	_	_	_		_	_	_	_	_	_	_		-	_	_	—	0000	
		15.0		_										DUPIR						
52E0	U1CNFG1	15.0																	0000	
		31.16											USBERZ	USBSIDE			_		0000	
5300	U1EP0	15.0	_	_	_	_	_	_	_	_	L SPD	RETRYDIS		FPCONDIS	FPRXEN	FPTXEN	FPSTALL	FPHSHK	0000	
		31.16		_	_	_		_		_		_			_	_	_	_	0000	
5310	U1EP1	15:0	_	_	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000	
		31:16	_	_		_	_	_	_	_	_	_	_	_					0000	
5320	U1EP2	15:0	_	_	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000	
		31:16	_	_		_	_	_	_	_	_	_	_	_	_	_			0000	
5330	U1EP3	15:0	_	_	_	—	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000	
5040		31:16		—	—	—	_	_	_	—	_	_	—	—	—	—	_	—	0000	
5340	UTEP4	15:0		_	_	—		_		_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000	
5250		31:16		—		—	-	—	_	_	_	—	—	—	—	—	—		0000	
5550	UTEF5	15:0		_	_	—	-	_		_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000	
5360	LI1EP6	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
5500	01210	15:0	_	—	—	—	_	—	_	_	-	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000	
5370	U1EP7	31:16	_	—	_	—	_	—	_	_	_	—	_	_	_	_	—	—	0000	
5010		15:0	—	—	_	_	—	_	—	—	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000	
Legen Note	a: x = 0 1: Exce Reg	unknow ept whe isters"	n value on ere noted, al for more in	Reset, — = Il registers in formation.	unimpleme n this table	nted, read a have corres	ponding CL	t values are .R, SET and	snown in h I INV regist	exadecimal ers at their v	virtual addres	ses, plus offs	ets of 0x4, 0>	8 and 0xC, res	spectively. S	ee Section	12.1.1 "CLR,	SET and IN	1V	

2:

This register does not have associated CLR, SET, and INV registers. All bits in this register are read-only; therefore, CLR, SET, and INV registers are not supported. The reset value for this bit is undefined. 3:

4:

Interrupt Source ⁽¹⁾	IRQ	Vector Number	Interrupt Bit Location							
Highest Natural Order F	Priority		Flag	Enable	Priority	Subpriority				
SPI2E – SPI2 Fault	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>				
SPI2TX – SPI2 Transfer Done	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>				
SPI2RX – SPI2 Receive Done	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>				
U2E – UART2 Error	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>				
U2RX – UART2 Receiver	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>				
U2TX – UART2 Transmitter	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>				
I2C2B – I2C2 Bus Collision Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>				
I2C2S – I2C2 Slave Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>				
I2C2M – I2C2 Master Event	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>				
FSCM – Fail-Safe Clock Monitor	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>				
RTCC – Real-Time Clock and Calendar	47	35	IFS1<15>	IEC1<15>	IPC8<28:26>	IPC8<25:24>				
DMA0 – DMA Channel 0	48	36	IFS1<16>	IEC1<16>	IPC9<4:2>	IPC9<1:0>				
DMA1 – DMA Channel 1	49	37	IFS1<17>	IEC1<17>	IPC9<12:10>	IPC9<9:8>				
DMA2 – DMA Channel 2	50	38	IFS1<18>	IEC1<18>	IPC9<20:18>	IPC9<17:16>				
DMA3 – DMA Channel 3	51	39	IFS1<19>	IEC1<19>	IPC9<28:26>	IPC9<25:24>				
FCE – Flash Control Event	56	44	IFS1<24>	IEC1<24>	IPC11<4:2>	IPC11<1:0>				
USB	57	45	IFS1<25>	IEC1<25>	IPC11<12:10>	IPC11<9:8>				
Lowest Natural Order Priority										

TABLE 7-1: INTERRUPT IRQ AND VECTOR LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX General Purpose – Features" and TABLE 2: "PIC32MX USB – Features" for available peripherals.

NOTES:

18.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²CTM)" (DS61116) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).
 2: Some registers and accessing hits
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 18-1 illustrates the I²C module block diagram. The PIC32MX3XX/4XX devices have up to two l^2C interface modules, denoted as I2C1 and I2C2. Each l^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module, 'I2Cx' (x = 1 or 2), offers the following key features:

- I²C Interface Supporting both Master and Slave Operation.
- I²C Slave Mode Supports 7 and 10-bit Address.
- I²C Master Mode Supports 7 and 10-bit Address.
- I²C Port allows Bidirectional Transfers between Master and Slaves.
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control).
- I²C Supports Multi-master Operation; Detects Bus Collision and Arbitrates Accordingly.
- Provides Support for Address Bit Masking.

NOTES:

REGISTER 26-2: DEVCEG1: DEVICE CONFIGURATION WORD 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	
31.24		—	—	-	—		_		
22:46	R/P	r-1	r-1	R/P	R/P	R/P	R/P	R/P	
23:16	FWDTEN —		—	WDTPS<4:0>					
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM<1:0>		FPBDI	V<1:0>	—	OSCIOFNC	POSCM	OD<1:0>	
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
7:0	IESO —		FSOSCEN		_	FNOSC<2:0>			

Legend:

R = Readable bit

W = Writable bitP = Programmable bit r = Reserved bit U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-24 Reserved: Write '1'

bit 23 FWDTEN: Watchdog Timer Enable bit

1 = The WDT is enabled and cannot be disabled by software

0 = The WDT is not enabled; it can be enabled in software

- bit 22-21 Reserved: Write '1'
- bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100	=	1:1048576
10011	=	1:524288
10010	=	1:262144
10001	=	1:131072
10000	=	1:65536
01111	=	1:32768
01110	=	1:16384
01101	=	1:8192
01100	=	1:4096
01011	=	1:2048
01010	=	1:1024
01001	=	1:512
01000	=	1:256
00111	=	1:128
00110	=	1:64
00101	=	1:32
00100	=	1:16
00011	=	1:8
00010	=	1:4
00001	=	1:2
		4.4

00000 = 1:1

All other combinations not shown result in operation = '10100'

bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled

Note 1: Do not disable POSC (POSCMOD = 00) when using this oscillator source.

TABLE 27-1:	MIPS32 [®] INSTRUCTION SET (CONTINUED)	
Instruction	Description	Function
BLEZL	Branch on Less Than or Equal to Zero Likely ⁽¹⁾	if Rs[31] Rs == 0
		PC += (int)offset
		else
		Ignore Next Instruction
BLTZ	Branch on Less Than Zero	if Rs[31]
		PC += (int)offset
BLTZAL	Branch on Less Than Zero and Link	GPR[31] = PC + 8
		PC += (int) offset
ρι παλιι	Branch on Less Than Zero and Link Likely(1)	$CDP[21] = DC \pm 8$
		$\frac{\text{GFR}[31]}{\text{if } \text{Rs}[31]}$
		PC += (int)offset
		else
		Ignore Next Instruction
BLTZL	Branch on Less Than Zero Likely ⁽¹⁾	if Rs[31]
		PC += (int)offset
		else
		Ignore Next Instruction
BNE	Branch on Not Equal	if Rs != Rt
		PC += (int)offset
BNEL	Branch on Not Equal Likely	if Rs != Rt
		PC += (int)offset
		Ignore Next Instruction
BREAK	Breakpoint	Break Exception
CLO	Count Leading Ones	Rd = NumLeadingOnes(Rs)
CLZ	Count Leading Zeroes	Rd = NumLeadingZeroes(Rs)
DERET	Return from Debug Exception	PC = DEPC
		Exit Debug Mode
DI	Atomically Disable Interrupts	Rt = Status; Status _{IE} = 0
DIV	Divide	LO = (int)Rs / (int)Rt
		HI = (int)Rs % (int)Rt
DIVU	Unsigned Divide	LO = (uns)Rs / (uns)Rt
		HI = (uns)Rs % (uns)Rt
EHB	Execution Hazard Barrier	Stop instruction execution
		until execution hazards are
		cleared
EI	Atomically Enable Interrupts	Rt = Status; Status _{IE} = 1
ERET	Return from Exception	if Status _{ERL}
		PC = ErrorEPC
		PC - FPC
		$Status_{RVI} = 0$
		$Status_{FDI} = 0$
		LL = 0
EXT	Extract Bit Field	Rt = ExtractField(Rs, pos,
		size)
INS	Insert Bit Field	Rt = InsertField(Rs, Rt, pos,
		size)
J	Unconditional Jump	PC = PC[31:28] offset<<2

<u></u>

Note 1: This instruction is deprecated and should not be used.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Typical ⁽³⁾	Max.	Units Conditions							
Operating	Current (ID	D) ^(1,2)								
DC20	8.5	13	mA	Code executing from Flash	-40°C, +25°C, +85°C	_	4 MHz			
	9	15			+105⁰C					
DC20c	4.0		mA	Code executing from SRAM	—					
DC21	23.5	32	mA	Code executing from Flash			20 MHz			
DC21c	16.4	_	mA	Code executing from SRAM			(Note 4)			
DC22	48	61	mA	Code executing from Flash			60 MHz			
DC22c	45		mA	Code executing from SRAM			(Note 4)			
DC23	55	75	mA	Code executing from Flash	-40°C, +25°C, +85°C	2.3V	80 MHz			
	60	100			+105⁰C					
DC23c	55	_	mA	Code executing from SRAM	_	_				
DC24	—	100	μA	—	-40°C					
DC24a	—	130	μA	—	+25°C	2.21/				
DC24b	—	670	μA	—	+85°C	2.3V				
DC24c	—	850	μA	—	+105⁰C					
DC25	94	_	μA	—	-40°C					
DC25a	125	_	μA	—	+25°C	3.3V	LPRC (31 kHz)			
DC25b	302		μA	—	+85°C					
DC25d	400		μA	—	+105⁰C		(1010 4)			
DC25c	71		μA	Code executing from SRAM	_					
DC26	_	110	μA		-40°C					
DC26a	—	180	μA	—	+25°C	3 6\/				
DC26b		700	μΑ	—	+85°C	3.0 v				
DC26c	—	900	μΑ	_	+105°C					

TABLE 29-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type as well as temperature can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by external square wave from rail to rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD.
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 29-18:PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V)

АС СНА	RACTERI	STICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +105^{\circ}C$ for V-Temp					
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Typical	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		4	_	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes
OS51	Fsys	On-Chip VCO System Frequency		60	—	120	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		_	—	2	ms	—
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25	_	+0.25	%	Measured over 100 ms period

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 80 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{80}{20}}} = \frac{D_{CLK}}{2}$$

TABLE 29-19: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +105^{\circ}C$ for V-Temp						
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions		
Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾								
F20	FRC		_	+2	%			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 29-20: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +105^{\circ}C$ for V-Temp							
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions			
LPRC @ 31.25 kHz ⁽¹⁾									
F21	LPRC	-15 — +15 % —							

Note 1: Change of LPRC frequency as VDD changes.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Microchip Technology Drawing C04-149C Sheet 1 of 2

DS61143H-page 194

APPENDIX A: REVISION HISTORY

Revision E (July 2008)

• Updated the PIC32MX340F128H features in Table 1 to include 4 programmable DMA channels.

Revision F (June 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSC0 to OSC2
- Changed all instances of VDDCORE and VDDCORE/VCAP to VCAP/VDDCORE
- Deleted registers in most sections, refer to the related section of the *"PIC32 Family Reference Manual"* (DS61132).

The other changes are referenced by their respective section in the following table.

Section Name	Update Description					
"High-Performance, General	Added a "Packages" column to Table 1 and Table 2.					
Purpose and USB 32-bit Flash Microcontrollers"	Corrected all pin diagrams to update the following pin names.					
	Changed PGC1/EMUC1 to PGEC1					
	 Changed PGD1/EMUD1 to PGED1 					
	Changed PGC2/EMUC2 to PGEC2					
	 Changed PGD2/EMUD2 to PGED2 					
	Shaded appropriate pins in each diagram to indicate which pins are 5V tolerant.					
	Added 64-Lead QFN package pin diagrams, one for General Purpose and one for USB.					
Section 1.0 "Device Overview"	Reconstructed Figure 1-1 to include Timers, ADC and RTCC in the block diagram.					
Section 2.0 "Guidelines for	Added a new section to the data sheet that provides the following information:					
Getting Started with 32-bit	Basic Connection Requirements					
Microcontrollers"	Capacitors					
	Master Clear Pin					
	 ICSP™ Pins 					
	External Oscillator Pins					
	 Configuration of Analog and Digital Pins 					
	Unused I/Os					
Section 4.0 "Memory	Updated the memory maps, Figure 4-1 through Figure 4-6.					
Organization"	All summary peripheral register maps were relocated to Section 4.0 "Memory Organization ".					
Section 7.0 "Interrupt Controller"	Removed the "Address" column from Table 7-1.					
Section 12.0 "I/O Ports"	Added a second paragraph in Section 12.1.3 "Analog Inputs" to clarify that all pins that share ANx functions are analog by default, because the AD1PCFG register has a default value of 0x0000.					

TABLE A-1: MAJOR SECTION UPDATES

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support