

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx320f064ht-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance, General Purpose and USB 32-bit Flash Microcontrollers

High-Performance 32-bit RISC CPU:

- MIPS32[®] M4K[®] 32-bit core with 5-stage pipeline
- 80 MHz maximum frequency
- 1.56 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state Flash access
- Single-cycle multiply and high-performance divide unit
- MIPS16e[®] mode for up to 40% smaller code size
- Two sets of 32 core register files (32-bit) to reduce interrupt latency
- Prefetch Cache module to speed execution from Flash

Microcontroller Features:

- Operating temperature range of -40°C to +105°C
- Operating voltage range of 2.3V to 3.6V
- 32K to 512K Flash memory (plus an additional 12 KB of boot Flash)
- 8K to 32K SRAM memory
- Pin-compatible with most PIC24/dsPIC[®] DSC devices
- Multiple power management modes
- Multiple interrupt vectors with individually programmable priority
- Fail-Safe Clock Monitor Mode
- Configurable Watchdog Timer with on-chip Low-Power RC Oscillator for reliable operation

Peripheral Features:

- Atomic SET, CLEAR and INVERT operation on select peripheral registers
- Up to 4-channel hardware DMA with automatic data size detection
- USB 2.0-compliant full-speed device and On-The-Go (OTG) controller
- USB has a dedicated DMA channel
- 3 MHz to 25 MHz crystal oscillator
- Internal 8 MHz and 32 kHz oscillators

- Separate PLLs for CPU and USB clocks
- Two I²C[™] modules
- Two UART modules with:
 - RS-232, RS-485 and LIN support
 - IrDA[®] with on-chip hardware encoder and decoder
- Up to two SPI modules
- Parallel Master and Slave Port (PMP/PSP) with 8-bit and 16-bit data and up to 16 address lines
- Hardware Real-Time Clock and Calendar (RTCC)
- Five 16-bit Timers/Counters (two 16-bit pairs combine to create two 32-bit timers)
- · Five capture inputs
- Five compare/PWM outputs
- Five external interrupt pins
- High-Speed I/O pins capable of toggling at up to 80 MHz
- High-current sink/source (18 mA/18 mA) on all I/O pins
- Configurable open-drain output on digital I/O pins

Debug Features:

- Two programming and debugging Interfaces:
 - 2-wire interface with unintrusive access and real-time data exchange with application
 - 4-wire MIPS[®] standard enhanced JTAG interface
- Unintrusive hardware-based instruction trace
- IEEE Standard 1149.2-compatible (JTAG) boundary scan

Analog Features:

- Up to 16-channel 10-bit Analog-to-Digital Converter:
 - 1000 ksps conversion rate
 - Conversion available during Sleep, Idle
- Two Analog Comparators

	Pin	Number ⁽	1)	Pin	Buffer	
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Ріп Туре	Туре	Description
PGED2	18	27	J3	I/O	ST	Data I/O pin for programming/debugging communication channel 2.
PGEC2	17	26	L1	I	ST	Clock input pin for programming/debugging communication channel 2.
MCLR	7	13	F1	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	19	30	J4	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	L3	Р	Р	Ground reference for analog modules.
Vdd	10, 26, 38	2, 16, 37, 46, 62	C2, C9, E5, F8, G5, H4, H6, K8	Ρ	_	Positive supply for peripheral logic and I/O pins.
Vcore/ Vcap	56	85	B7	Р	_	Capacitor for Internal Voltage Regulator.
Vss	9, 25, 41	15, 36, 45, 65, 75	A8, B10, D4, D5, E7, F10, F5, G6, G7, H3	Ρ		Ground reference for logic and I/O pins.
VREF+	16	29	K3	I	Analog	Analog voltage reference (high) input.
VREF-	15	28	L2	I	Analog	Analog voltage reference (low) input.
	CMOS = CM ST = Schmitt					nalog = Analog input P = Power) = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)	
		oonnoed/	

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2.9 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analogto-Digital input pins (ANx) as "digital" pins by setting all bits in the ADPCFG register.

The bits in this register that correspond to the Analogto-Digital pins that are initialized by MPLAB ICD 2, ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain Analog-to-Digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.10 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternately, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

NOTES:

TABLE 4-7: TIMER1-5 REGISTERS MAP⁽¹⁾

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	T1CON	31:16		—	—	—	—	_	—	—	—		—	_	—	—	_	_	0000
		15:0	ON	—	SIDL	TWDIS	TWIP	—	—	—	TGATE		TCKPS	S<1:0>	—	TSYNC	TCS	—	0000
0610	TMR1	31:16	_	_	_	—	—	—	—	-	-	—	—	—	—	_	—	—	0000
		15:0 TMR1<15:0> 31:16 - - - - - - -													0000				
0620	PR1											0000							
		T5:0 PR1<15:0> 31:16 - - - - - - -									FFFF 0000								
0800	T2CON	15:0	ON	_	SIDL					_	 TGATE		TCKPS<2:0>			_			0000
		31:16	_	_	-					_		_	_	_	-	_	_		0000
0810	TMR2	15:0								TMR2<	<15:0>								0000
		31:16			_			_	_	_	_	_		_			_		0000
0820	PR2	15:0								PR2<	15:0>								FFFF
	TROOM	31:16		_	_	_	_	_	_	_	_	_		_		_	_	_	0000
0A00	T3CON	15:0	ON	_	SIDL	_	_	_	_	_	TGATE		TCKPS<2:0>	·	_	_	TCS ⁽²⁾	_	0000
0A10	TMR3	31:16	—	—	—	—	_	_	_	_	_		—	—	—	—	-	—	0000
UATU	TIVIR 3	15:0								TMR3	<15:0>								0000
0A20	PR3	31:16	—	—	—	—	_		-	—	—		—		_	—			0000
0420	110	15:0								PR3<	15:0>				-				FFFF
0C00	T4CON	31:16	_	—	—	—		—	—	—	—	—		—	—	—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	—	-	TGATE		TCKPS<2:0>	>	T32	—	TCS ⁽²⁾	—	0000
0C10	TMR4	31:16		—	—	-		—	—	—	—	—		—	—	—	—	—	0000
		15:0								TMR4	<15:0>								0000
0C20	PR4	31:16	—	—	—	—	_	—	_	-	—	—	—	—	—	_	—	—	0000
		15:0								PR4<									FFFF
0E00	T5CON	31:16	-	_	-	_	_	_	_	_	-			—		—	— —	_	0000
		15:0	ON	_	SIDL	_	_	_	_	_	TGATE		TCKPS<2:0>		_	_	TCS ⁽²⁾		0000
0E10	TMR5	31:16	_	—	_	—	—	—	—	— TMR5<		—	—	—	—	—	—	—	0000
		15:0 31:16								IMR5<	(15:0>								0000
0E20	PR5	31:16 15:0	_	—	_	—	_	—	—	— PR5<	15:0>	—	_	—	—	_	—	—	0000 FFFF
Leaend				Deset				lues are sho			10.02								rrrF

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This bit is not available on 64-pin devices.

TABLE 4-37: PARALLEL MASTER PORT REGISTERS MAP⁽¹⁾

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	_	_	_	_	—	-	—	_	_	_	_		—			_	0000
1000		15:0	ON	—	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF<	<1:0>	ALP	CS2P	CS1P		WRSP	RDSP	0000
7010	PMMODE	31:16	—	—	_	-	_	_	_	—	—	-	_		—			_	0000
7010		15:0	0 BUSY IRQM<1:0> INCM<1:0>				MODE16 MODE<1:0>			WAITB<1:0>			WAITM	/<3:0>		WAITE<1:0>		0000	
7020	PMADDR	31:16	-	-		-	-		-	-	-	-			-			-	0000
1020	FINADDR	15:0	CS2EN/A15	CS1EN/A14							ADDR	<13:0>							0000
7030	PMDOUT	31:16								DATAOU	T-31:0>								0000
1050	T MIDOUT	15:0								DAIAOU	1<31.02								0000
7040	PMDIN	31:16								DATAIN	~31.0>								0000
7040		15:0								DATAIN	<01.02								0000
7050	PMAEN	31:16	-	-		-	-		-	-	-	-			-			-	0000
7050	FINALIN	15:0								PTEN<	:15:0>								0000
7060	PMSTAT	31:16			_	_	—	_	—			_	_	_	—	_	_		0000
1000	FINISTAL	15:0	IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	_	OB3E	OB2E	OB1E	OB0E	008F
Legend	1: x = u	unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-38: PROGRAMMING AND DIAGNOSTICS REGISTERS MAP

ess	Bits																		
Virtual Addres (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F200	DDPCON	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
F200	DDFCON	15:0			_	_	—	—	_	—	_	_	_	—	JTAGEN	TROEN	_		0008

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: USB REGISTERS MAP⁽¹⁾

0
S
ဂ
<u> </u>
4
ω
T
—
÷
×
<u>س</u>
g
ē
τυ.
~
ω
N

ess											Bits								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040	U10TG	31:16	_					_		—	—	—	_	_	_	—	—	_	
3040	IR ⁽²⁾	15:0	_					—		—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF	0000
5050	U1OTG	31:16	_	_	_	_	-	—	_	—	—	—	—	—	—	—	-	—	0000
	IE	15:0	_					—		—	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	-	VBUSVDIE	
5060	U1OTG STAT ⁽³⁾	31:16	—	_		_	_	—		—	-	—	—	—	—	—	—	—	0000
	STAT	15:0	_	_	_	_		—	_	—	ID	—	LSTATE	—	SESVD	SESEND	_	VBUSVD	0000
5070	U1OTG CON	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	CON	15:0	-	—	_	—	-	—	_	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN		OTGEN	VBUSCHG	VBUSDIS	0000
5080	U1PWRC	31:16	_	_	_	_	_		_	_	—	_	—	—	_	-	—	—	0000
		15:0	_							_	UACTPND ⁽⁴⁾	_	_	USLPGRD			USUSPEND	USBPWR	0000
	(2)	31:16	_	_	_	_	_	_	_	_	-	—	_		_	-	-	-	0000
5200	00 U1IR ⁽²⁾	15:0	_	—	_	—	_	_	_	_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
		31:16												_			_	DETACHIF	
5210	U1IE	31:16	_	_	_	_			_	—		_	_	_	—	—	_		0000
5210	OTIE	15:0	_	—	—	—	—	—	—	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE	
		31:16	_				_	_	_		_		_	_	_	_	_	—	0000
5220	U1EIR	51.10															CRC5EF		0000
5220	OTEIR	15:0	—	—	—	—	—	—	—	—	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF	PIDEF	0000
		31:16	_	_		_		_		_	-	_	_	_	_	_	_	_	0000
5230	U1EIE	00															CRC5EE		0000
		15:0	-	—	-	—	_	—	-	—	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE	0000
	(0)	31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	_		0000
5240	U1STAT ⁽³⁾	15:0	_	_	_	_	_	_	_	_		ENDP	T<3:0> ⁽⁴⁾		DIR	PPBI	_	_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
5250	U1CON										(4)	a==(/)	PKTDIS					USBEN	0000
		15:0	-	—	-	—	_	_	-	-	JSTATE ⁽⁴⁾	SE0 ⁽⁴⁾	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
5000		31:16	_		_		_	_	_	_	_		—		—	—	_		0000
5260	U1ADDR	15:0	_	_	—	_	_	—	—	_	LSPDEN			DE	VADDR<6:0	>			0000
5070		31:16	_	—	_	—	_	—	—	—	-	—	_	_	_	—	—	_	0000
5270	U1BDTP1	15:0	_	_	_	_	—	_	_	_			В	DTPTRL<7:1>				_	0000
egen	d: x = u	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

Legend: Note 1:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

This register does not have associated CLR, SET, and INV registers. 2:

All bits in this register are read-only; therefore, CLR, SET, and INV registers are not supported. 3:

4: The reset value for this bit is undefined.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS61121) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

PIC32MX3XX/4XX devices contain an internal program Flash memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self Programming (RTSP)
- In-Circuit Serial Programming[™] (ICSP[™])
- EJTAG Programming

EXAMPLE 5-1:

 NVMCON = 0x4004;
 // Enable and configure for erase operation

 Wait(delay);
 // Delay for 6 µs for LVDstartup

 NVMKEY = 0xAA996655;
 NVMKEY = 0x556699AA;

 NVMCONSET = 0x8000;
 // Initiate operation

 while(NVMCONbits.WR==1);
 // Wait for current operation to complete

RTSP is performed by software executing from either Flash or RAM memory. EJTAG is performed using the EJTAG port of the device and a EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. RTSP techniques are described in this chapter. The ICSP and EJTAG methods are described in the "*PIC32MX Flash Programming Specification*" (DS61145), which can be downloaded from the Microchip web site.

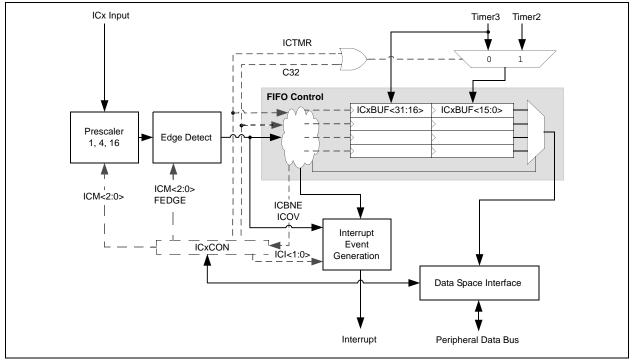
Note: Flash LVD Delay (LVDstartup) must be taken into account between setting up and executing any Flash command operation. See Example 5-1 for a code example to set up and execute a Flash command operation.

15.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS61122) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC32MX3XX/4XX devices support up to five input capture channels.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:


- 1. Simple Capture Event modes
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- 3. Capture timer value on every edge (rising and falling), specified edge first.
- 4. Prescaler Capture Event modes
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 15-1: INPUT CAPTURE BLOCK DIAGRAM

NOTES:

25.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS61130) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

This section describes power-saving for the PIC32MX3XX/4XX. The PIC32MX devices offer a total of nine methods and modes that are organized into two categories that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

25.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK, and by individually disabling modules. These methods are grouped into the following modes:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.
- Peripheral Bus Scaling mode: peripherals are clocked at programmable fraction of the CPU clock (SYSCLK).

25.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which halt the clock to the CPU. These modes operate with all clock sources, as listed below:

• Posc Idle Mode: the system clock is derived from the Posc. The system clock source continues to operate.

Peripherals continue to operate, but can optionally be individually disabled.

- FRC Idle Mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle Mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

• LPRC Idle Mode: the system clock is derived from the LPRC.

Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.

• Sleep Mode: the CPU, the system clock source, and any peripherals that operate from the system clock source, are halted.

Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

25.3 Power-Saving Operation

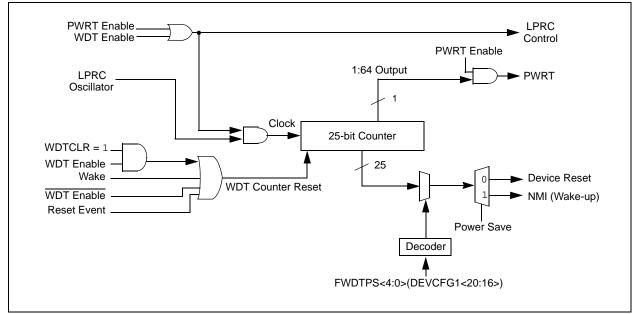
The purpose of all power-saving is to reduce power consumption by reducing the device clock frequency. To achieve this, low-frequency clock sources can be selected. In addition, the peripherals and CPU can be halted or disabled to further reduce power consumption.

25.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device Power-Saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep mode.

Sleep mode includes the following characteristics:

- The CPU is halted.
- The system clock source is typically shut down. See **Section 25.3.2 "Idle Mode**" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit, if enabled, remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator, e.g., RTCC and Timer 1.
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to Section 11.0 "USB On-The-Go (OTG)" for specific details.
- Some modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.


26.2 Watchdog Timer (WDT)

This section describes the operation of the WDT and Power-Up Timer of the PIC32MX3XX/4XX.

The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- · Can wake the device from Sleep or Idle

FIGURE 26-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

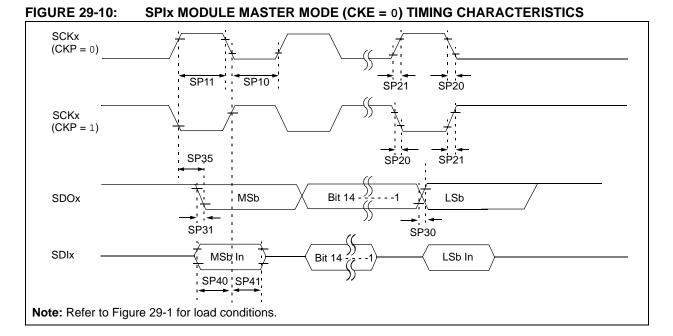
27.0 INSTRUCTION SET

The PIC32MX3XX/4XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. PIC32MX does not support the following features:

- CoreExtend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Instruction	Description	Function
ADD	Integer Add	Rd = Rs + Rt
ADDI	Integer Add Immediate	Rt = Rs + Immed
ADDIU	Unsigned Integer Add Immediate	$Rt = Rs +_{U} Immed$
ADDU	Unsigned Integer Add	$Rd = Rs +_{U} Rt$
AND	Logical AND	Rd = Rs & Rt
ANDI	Logical AND Immediate	$Rt = Rs \& (0_{16} Immed)$
В	Unconditional Branch (Assembler idiom for: BEQ r0, r0, offset)	PC += (int)offset
BAL	Branch and Link (Assembler idiom for: BGEZAL r0, offset)	GPR[31] = PC + 8 PC += (int)offset
BEQ	Branch on Equal	if Rs == Rt PC += (int)offset
BEQL	Branch on Equal Likely ⁽¹⁾	if Rs == Rt PC += (int)offset else Ignore Next Instruction
BGEZ	Branch on Greater Than or Equal to Zero	<pre>if !Rs[31] PC += (int)offset</pre>
BGEZAL	Branch on Greater Than or Equal to Zero and Link	<pre>GPR[31] = PC + 8 if !Rs[31] PC += (int)offset</pre>
BGEZALL	Branch on Greater Than or Equal to Zero and Link Likely ⁽¹⁾	<pre>GPR[31] = PC + 8 if !Rs[31] PC += (int)offset else Ignore Next Instruction</pre>
BGEZL	Branch on Greater Than or Equal to Zero Likely ⁽¹⁾	<pre>if !Rs[31] PC += (int)offset else Ignore Next Instruction</pre>
BGTZ	Branch on Greater Than Zero	if !Rs[31] && Rs != 0 PC += (int)offset
BGTZL	Branch on Greater Than Zero Likely ⁽¹⁾	<pre>if !Rs[31] && Rs != 0 PC += (int)offset else Ignore Next Instruction</pre>
BLEZ	Branch on Less Than or Equal to Zero	if $Rs[31] Rs == 0$

TABLE 27-1: MIPS32[®] INSTRUCTION SET


Table 27-1 provides a summary of the instructions that are implemented by the PIC32MX3XX/4XX family core.

Note:	
	grammers Volume II: The MIPS32 $^{ extsf{ iny R}}$
	Instruction Set" at www.mips.com for
	more information.

Note 1: This instruction is deprecated and should not be used.

PC += (int)offset

NOTES:

TABLE 29-28: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	RACTERIST	īCS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp								
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions				
SP10	TscL	SCKx Output Low Time ⁽³⁾	Тѕск/2	—		ns	_				
SP11	TscH	SCKx Output High Time ⁽³⁾	Тѕск/2	—		ns	—				
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	—	_	ns	See parameter DO32				
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	_	_	ns	See parameter DO31				
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	_	—	_	ns	See parameter DO32				
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	—	_	ns	See parameter DO31				
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	15	ns	Vdd > 2.7V				
	TscL2doV	SCKx Edge	_	—	20	ns	Vdd < 2.7V				
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	_		ns	_				
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

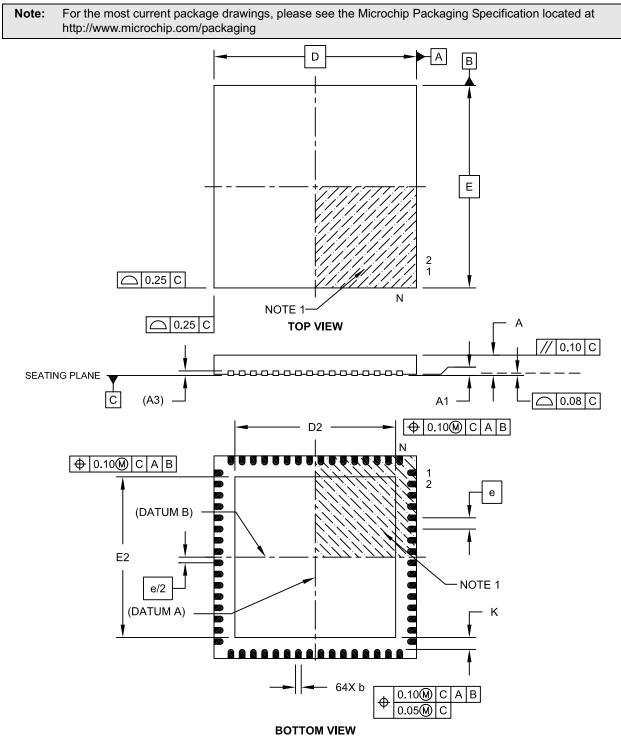

4: Assumes 50 pF load on all SPIx pins.

TABLE 29-40: OTG ELECTRICAL SPECIFICATIONS

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp								
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур	Max.	Units	Conditions				
USB313	VUSB	USB Voltage	3.0		3.6	V	Voltage on VUSB must be in this range for proper USB operation.				
USB315	VILUSB	Input Low Voltage for USB Buffer	—	_	0.8	V	—				
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—				
USB318	VDIFS	Differential Input Sensitivity			0.2	V	The difference between D+ and D- must exceed this value while VCM is met.				
USB319	VCM	Differential Common Mode Range	0.8	_	2.5	V	—				
USB320	Ζουτ	Driver Output Impedance	28.0	_	44.0	Ω	—				
USB321	Vol	Voltage Output Low	0.0	_	0.3	V	1.5 k Ω load connected to 3.6V.				
USB322	Voн	Voltage Output High	2.8	—	3.6	V	1.5 k Ω load connected to ground.				

Note 1: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Microchip Technology Drawing C04-149C Sheet 1 of 2

DS61143H-page 194

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

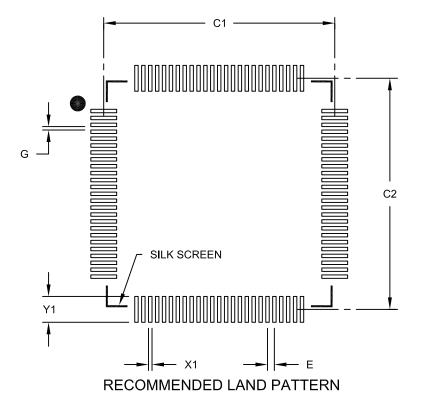
	Units	Inits MILLIMETERS		
Dimens	Dimension Limits		NOM	MAX
Number of Pins	N	64		
Pitch	е	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.50
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Jnits MILLIME		ETERS	
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Е	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

NOTES: