

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx340f128ht-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3:PIN NAMES: PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F128L, AND
PIC32MX360F512L DEVICES

Pin Number	Full Pin Name
A1	PMD4/RE4
A2	PMD3/RE3
A3	TRD0/RG13
A4	PMD0/RE0
A5	PMD8/RG0
A6	PMD10/RF1
A7	ENVREG
A8	Vss
A9	IC5/PMD12/RD12
A10	OC3/RD2
A11	OC2/RD1
B1	No Connect (NC)
B2	RG15
B3	PMD2/RE2
B4	PMD1/RE1
B5	TRD3/RA7
B6	PMD11/RF0
B7	VCAP/VCORE
B8	PMRD/CN14/RD5
B0 B9	OC4/RD3
B10	Vss
B10 B11	SOSCO/T1CK/CN0/RC14
C1	PMD6/RE6
C2	
C3	TRD1/RG12
C4	TRD2/RG14
C5	TRCLK/RA6
C6	
C7	PMD15/CN16/RD7
C8	OC5/PMWR/CN13/RD4
C9	
C10	SOSCI/CN1/RC13
C11	IC4/PMCS1/PMA14/RD11
D1	T2CK/RC1
D2	PMD7/RE7
D3	PMD5/RE5
D4	Vss
D5	Vss
D6	No Connect (NC)
D7	PMD14/CN15/RD6
D8	PMD13/CN19/RD13
D9	OC1/RD0
D10	No Connect (NC)
D11	IC3/PMCS2/PMA15/RD10
E1	T5CK/RC4
E2	T4CK/RC3
E3	SCK2/PMA5/CN8/RG6
E4	T3CK/RC2
E5	Vdd
E6	PMD9/RG1
E7	Vss

Pin Number	Full Pin Name
E8	INT4/RA15
E9	RTCC/IC1/RD8
E10	IC2/RD9
E11	INT3/RA14
F1	MCLR
F2	SDO2/PMA3/CN10/RG8
F3	SS2/PMA2/CN11/RG9
F4	SDI2/PMA4/CN9/RG7
F5	Vss
F6	No Connect (NC)
F7	No Connect (NC)
F8	VDD
F9	OSC1/CLKI/RC12
F10	Vss
F11	OSC2/CLKO/RC15
G1	INT1/RE8
G2	INT2/RE9
G3	TMS/RA0
G4	No Connect (NC)
G5	VDD
G6	Vss
G7	Vss
G8	No Connect (NC)
G9	TDO/RA5
G10	SDA2/RA3
G11	TDI/RA4
H1	AN5/C1IN+/CN7/RB5
H2	AN4/C1IN-/CN6/RB4
H3	Vss
H4	VDD
H5	No Connect (NC)
H6	VDD
H7	No Connect (NC)
H8	SDI1/RF7
H9	SCK1/INT0/RF6
H10	SCL1/RG2
H11	SCL2/RA2
J1	AN3/C2IN+/CN5/RB3
J2	AN2/C2IN-/SS1/CN4/RB2
J3	PGED2/AN7/RB7
J4	AVDD
J5	AN11/PMA12/RB11
J6	TCK/RA1
J7	AN12/PMA11/RB12
- J8	No Connect (NC)
- 19 - 10	No Connect (NC)
J10	SD01/RF8
J11	SDO1/RG3
K1	PGEC1/AN1/CN3/RB1
K1 K2	PGED1/AN//CN3/RB1
K2 K3	VREF+/CVREF+/PMA6/RA10
110	

					PIC32	2MX440 2MX460 2MX460	F256L				
	1	2	3	4	5	6	7	8	9	10	11
x (RE4	RE3	R G13	RE0	RG0	RF1		O Vss	RD12	RD2	RD1
3	NC	RG15	RE2	RE1	RA7	RF0	O Vcore/ Vcap	RD5	RD3	O Vss	O RC14
;	RE6	O VDD	RG12	RG14	RA6	NC	RD7	RD4	O Vdd	O RC13	RD11
	RC1	RE7	RE5	O Vss	O Vss	NC	RD6	RD13	RD0	NC	R D10
	RC4	RC3	RG6	RC2	O Vdd	RG1	⊖ Vss	RA15	RD8	RD9	RA14
-	MCLR	RG8	RG9	RG7	O Vss	NC	NC		C RC12	O Vss	O RC15
•	RE8	RE9	RA0		VDD	O Vss	O Vss	NC	RA5	RA3	RA4
1	C RB5	C RB4	O Vss	O Vdd		O VDD	NC	VBUS	UUSB	RG2	RA2
J	C RB3	C RB2	C RB7		C RB11	C RA1	O RB12	NC	NC	RF8	C RG3
¢	C) RB1	O RB0	O RA10	C) RB8	NC	RF12	O RB14		RD15	RF3	RF2
-	C) RB6	RA9	AVss	RB9	RB10	RF13	RB13	C RB15	RD14	RF4	RF5
L	lote 1: Re	efer to Ta	ble 4 for	full pin r	names.						

Pin Diagrams (Continued)

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3 or MPLAB REAL ICE[™].

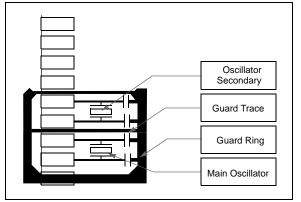
For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 Trace


The trace pins can be connected to a hardware-traceenabled programmer to provide a compress real time instruction trace. When used for trace the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0** "**Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate										
MULT/MULTU, MADD/MADDU,	16 bits	1	1										
MSUB/MSUBU	32 bits	2	2										
MUL	16 bits	2	1										
	32 bits	3	2										
DIV/DIVU	8 bits	12	11										
	16 bits	19	18										
	24 bits	26	25										
	32 bits	33	32										

TABLE 3-1:MIPS[®] M4K[®] PROCESSOR CORE HIGH-PERFORMANCE INTEGER
MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the general purpose register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, multiply-add (MADD) and multiplysubtract (MSUB), are used to perform the multiplyaccumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (kernel, user and debug), and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception
9	Count ⁽¹⁾	Processor cycle count
10	Reserved	Reserved
11	Compare ⁽¹⁾	Timer interrupt control
12	Status ⁽¹⁾	Processor status and control
12	IntCtl ⁽¹⁾	Interrupt system status and control
12	SRSCtl ⁽¹⁾	Shadow register set status and control
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set
13	Cause ⁽¹⁾	Cause of last general exception
14	EPC ⁽¹⁾	Program counter at last exception
15	PRId	Processor identification and revision
15	EBASE	Exception vector base register
16	Config	Configuration register
16	Config1	Configuration register 1
16	Config2	Configuration register 2
16	Config3	Configuration register 3

TABLE 3-2: COPROCESSOR 0 REGISTERS

Register Number	-	Function
17-22	Reserved	Reserved
23	Debug ⁽²⁾	Debug control and exception status
24	DEPC ⁽²⁾	Program counter at last debug exception
25-29	Reserved	Reserved
30	ErrorEPC ⁽¹⁾	Program counter at last error
31	DESAVE ⁽²⁾	Debug handler scratchpad register

TABLE 3-2:COPROCESSOR 0 REGISTERS (CONTINUED)

Note 1: Registers used in exception processing.

2: Registers used during debug.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 shows the exception types in order of priority.

TABLE 3-3: PIC32MX3XX/4XX FAMILY CORE EXCEPTION TYPES

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR)
DSS	EJTAG Debug Single Step
DINT	EJTAG Debug Interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input, or by setting the EjtagBrk bit in the ECR register
NMI	Assertion of NMI signal
Interrupt	Assertion of unmasked hardware or software interrupt signal
DIB	EJTAG debug hardware instruction break matched
AdEL	Fetch address alignment error Fetch reference to protected address
IBE	Instruction fetch bus error
DBp	EJTAG Breakpoint (execution of SDBBP instruction)
Sys	Execution of SYSCALL instruction
Вр	Execution of BREAK instruction
RI	Execution of a Reserved Instruction
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled
CEU	Execution of a CorExtend instruction when CorExtend is not enabled
Ov	Execution of an arithmetic instruction that overflowed
Tr	Execution of a trap (when trap condition is true)
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG Data Value Break on Store (address + value)
AdEL	Load address alignment error Load reference to protected address
AdES	Store address alignment error Store to protected address
DBE	Load or store bus error
DDBL	EJTAG data hardware breakpoint matched in load data compare

INTERRUPT REGISTERS MAP FOR PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX340F128L, PIC32MX360F256L AND PIC32MX360F512L DEVICES ONLY⁽¹⁾ **TABLE 4-3**:

SS										В	its										
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
	INTCON	31:16	_	—	-	—	_	_	_	—	—	_	_	—	—	_	—	SS0	0000		
1000	INTCON	15:0	_	_	_	MVEC			TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000		
1010	INTSTAT ⁽²⁾	31:16	—	_	—	—		_	—	—	—	_	_	—	—	_	—	—	0000		
1010		15:0	—	—	—	_	—		SRIPL<2:0>	•	—	—			VEC	<5:0>			0000		
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000		
4000	1500	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1RXIF	SPI1TXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000		
1030	IFS0	15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000		
1040	IFS1	31:16		—	_	_	_	—	—	FCEIF	_				DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000		
1040	151	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2RXIF	SPI2TXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000		
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1RXIE	SPI1TXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000		
1000	1200	15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INTOIE	CS1IE	CS0IE	CTIE	0000		
1070	IEC1	31:16	_	—	—	_	_	—	—	FCEIE	—	—	—	_	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000		
10/0	1201	15:0	RTCCIE	FSCMIE	I2C2MIE	_	—	—	—	—	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000		
1090	IPC0	31:16	—	—			INT0IP<2:0>		INT0IS<1:0>		—	—	—		CS1IP<2:0>			6<1:0>	0000		
		15:0	_	—	-		CS0IP<2:0>			CSOIS<1:0> — — — CTIP<2:0>			CTIS<1:0>		0000						
10A0	IPC1	31:16	_	—	-		INT1IP<2:0>	>		S<1:0>	—	—	—		OC1IP<2:0>	•	OC1IS<1:0>		0000		
		15:0		-	-		IC1IP<2:0>		IC1IS<1:0>		_	-	-	T1IP<2:0>		T1IS<1:0> OC2IS<1:0>		0000			
10B0	IPC2	31:16	_	_			INT2IP<2:0>	`		S<1:0>		_	_	OC2IP<2:0>					0000		
		15:0	_	_			IC2IP<2:0>			5<1:0>	_	_	_	T2IP<2:0>		T2IS<1:0		-	0000		
10C0	IPC3	31:16	_	_			INT3IP<2:0>			S<1:0>		_	_	OC3IP<2:0>		•		S<1:0>	0000		
	 	15:0	_	—	-		IC3IP<2:0>			S<1:0>	_	_	_	T3IP<2:0>				<1:0>	0000		
10D0	IPC4	31:16 15:0		_			INT4IP<2:0> IC4IP<2:0>			S<1:0> S<1:0>					OC4IP<2:0> T4IP<2:0>			S<1:0> <1:0>	0000		
		31:16					SPI1IP<2:0>			S<1:0>					OC5IP<2:0>			<1.0> S<1:0>	0000		
10E0	IPC5	15:0			_		IC5IP<2:0>	·	-	S<1:0>	_	_	_		T5IP<2:0>	•		<1:0>	0000		
		31:16					AD1IP<2:0>			S<1:0>	_				CNIP<2:0>			<1:0>	0000		
10F0	IPC6	15:0	_	_	_		I2C1IP<2:0>			S<1:0>	_	_	_		U1IP<2:0>			<1:0>	0000		
		31:16	_	_	_		SPI2IP<2:0>			S<1:0>	_	_	_	(CMP2IP<2:0	>		S<1:0>	0000		
1100	IPC7	15:0	_	_	_		CMP1IP<2:0			S<1:0>			_	PMPIP<2:0>				S<1:0>	0000		
		31:16	_	_	_		RTCCIP<2:0:			S<1:0>	_	_	_		SCMIP<2:0			S<1:0>	0000		
1110	IPC8	15:0	_	_	_		I2C2IP<2:0>			S<1:0>	_	_	_			U2IP<2:0>			U2IS<1:0>		0000
	1000	31:16	_	_	<u> </u>		DMA3IP<2:0>			DMA3IS<1:0>		A3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0>				DMA2IS<1:0>		0000			
1120	IPC9	15:0	_	_	_	C	DMA1IP<2:0	>	DMA1	S<1:0>	_	_	_	- DMA0IP<2:0> DMA		DMA0I	S<1:0>	0000			
44.40		31:16		_	_	_					_		_		_		_	—	0000		
1140	IPC11	15:0	_	_	_	_	_	_	_	_	-	_	_		FCEIP<2:0>		FCEIS	S<1:0>	0000		

PIC32MX3XX/4XX

Legend: Note 1:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

This register does not have associated CLR, SET, and INV registers. 2:

TABLE 4-13: ADC REGISTERS MAP (CONTINUED)

ess										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	31:16		ADC Result Word A (ADC1BUFA<31:0>)															0000
-		15:0																	0000
0120	ADC1BUFB	31:16		ADC Result Word B (ADC1BUFB<31:0>)														0000	
9120	ADCIBUEB	15:0		ADC Result Word B (ADC1B0FB<31:0>)													0000		
0400		31:16																	0000
9130	ADC1BUFC	15:0							ADC RE	suit word C	(ADC1BUFC	><31:0>)							0000
04.40		31:16																	0000
9140	ADC1BUFD	15:0							ADC RE	suit word D	(ADC1BUFE)<31:0>)							0000
0450		31:16																	0000
9150	ADC1BUFE	15:0							ADC Re	Suit Word E	(ADC1BUFE	:<31:0>)							0000
0400		31:16										- 24.0.)							0000
9160	ADC1BUFF	15:0							ADC RE	Suit Word F	(ADC1BUFF	<31:0>)							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-37: PARALLEL MASTER PORT REGISTERS MAP⁽¹⁾

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	_	_	_	_	—	-	—	_	_	_	_		—			_	0000
1000		15:0	ON	—	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF<	<1:0>	ALP	CS2P	CS1P		WRSP	RDSP	0000
7010	PMMODE	31:16	16											_	0000				
7010		15:0	BUSY IRQM<1:0> INCM<1:0>					MODE16	MODE	E<1:0> WAITB<1:0>			WAITM	/<3:0>		WAITE	0000		
7020	PMADDR	31:16	-	-		-	-		-	-	-	-			-			-	0000
1020	FINADDR	15:0	CS2EN/A15	CS1EN/A14							ADDR	<13:0>							0000
7030	PMDOUT	31:16								DATAOU	T-31:0>								0000
1050	T MIDOUT	15:0								DAIAOU	1<31.02								0000
7040	PMDIN	31:16								DATAIN	~31.0>								0000
7040		15:0								DATAIN	<01.02								0000
7050	PMAEN	31:16	-	-		-	-		-	-	-	-			-			-	0000
7050	FINALIN	15:0								PTEN<	:15:0>								0000
7060	PMSTAT	31:16			_	_	—	_	—			_	_	_	—	_	_		0000
1000	FINISTAL	15:0	IBF IBOV IB3F IB2F IB1F IB0F OBE OBUF OB3E OB2E OB1E OB0E 008F												008F				
Legend	1: x = u			-	nimplement	ed. read as '			wn in hexade		UDE	0201			CDOL	ODEL	UDIE	CDOL	0001

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-38: PROGRAMMING AND DIAGNOSTICS REGISTERS MAP

ess		۵								В	ts								6
Virtual Addres (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F200	DDPCON	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
F200	DDFCON	15:0			_	_	—	—	_	—	_	_	_	—	JTAGEN	TROEN	_		0008

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC32MX3XX/4XX

NOTES:

11.0 USB ON-THE-GO (OTG)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS61126) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers, and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB OTG Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Transaction Handshaking Performed by Hardware
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA to Access System RAM and Flash

Note: The implementation and use of the USB specifications, as well as other third-party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

PIC32MX3XX/4XX

NOTES:

PIC32MX3XX/4XX

NOTES:

18.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²CTM)" (DS61116) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).
 2: Some registers and accessing hits
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 18-1 illustrates the I²C module block diagram. The PIC32MX3XX/4XX devices have up to two l^2C interface modules, denoted as I2C1 and I2C2. Each l^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

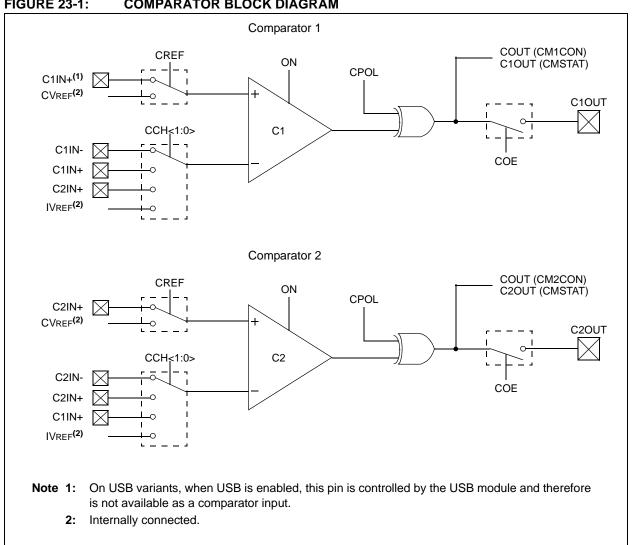
Each I^2C module, 'I2Cx' (x = 1 or 2), offers the following key features:

- I²C Interface Supporting both Master and Slave Operation.
- I²C Slave Mode Supports 7 and 10-bit Address.
- I²C Master Mode Supports 7 and 10-bit Address.
- I²C Port allows Bidirectional Transfers between Master and Slaves.
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control).
- I²C Supports Multi-master Operation; Detects Bus Collision and Arbitrates Accordingly.
- Provides Support for Address Bit Masking.

PIC32MX3XX/4XX

NOTES:

23.0 COMPARATOR


- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 19. "Comparator" (DS61110) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX Analog Comparator module contains one or more comparator(s) that can be configured in a variety of ways.

Following are some of the key features of this module:

- · Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be inverted
- · Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 23-1.

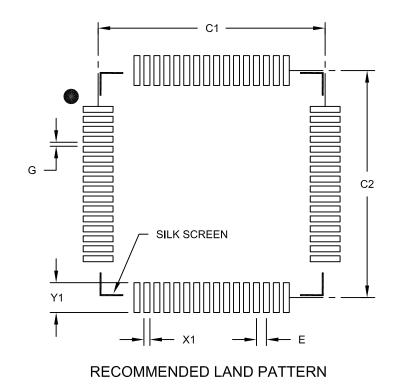
FIGURE 23-1: COMPARATOR BLOCK DIAGRAM

DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED) REGISTER 26-1:

bit 19-12 PWP<7:0>: Program Flash Write-Protect bits

Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages. 11111111 = Disabled 11111110 = 0xBD00 0FFF 11111101 = 0xBD00_1FFF 11111100 = 0xBD00_2FFF 11111011 = 0xBD00_3FFF 11111010 = 0xBD00_4FFF 11111001 = 0xBD00 5FFF 11111000 = 0xBD00_6FFF 11110111 = 0xBD00_7FFF 11110110 = 0xBD00_8FFF 11110101 = 0xBD00_9FFF 11110100 = 0xBD00_AFFF 11110011 = 0xBD00 BFFF 11110010 = 0xBD00_CFFF 11110001 = 0xBD00_DFFF 11110000 = 0xBD00_EFFF 11101111 = 0xBD00_FFFF 01111111 = 0xBD07_FFFF bit 11-4 Reserved: Write '1' ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit 1 = PGEC2/PGED2 pair is used 0 = PGEC1/PGED1 pair is used Reserved: Write '1' DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled) bit 1-0

11 = Debugger disabled


bit 3

bit 2

- 10 =Debugger enabled
- 01 = Reserved (same as '11' setting) 00 = Reserved (same as '11' setting)

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

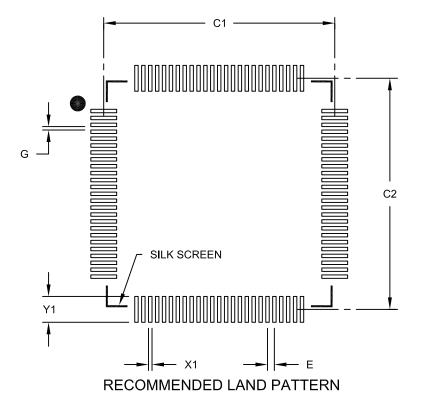
Microchip Technology Drawing No. C04-2085B

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Special Features"	Modified bit names and locations in Register 26-5 " DEVID: Device and Revision ID Register ".
	Replaced "TSTARTUP" with "TPU", and "64-ms nominal delay" with "TPWRT", in Section 26.3.1 "On-Chip Regulator and POR".
	The information that appeared in the Watchdog Timer and the Programming and Diagnostics sections of 61143E version of this data sheet has been incorporated into the Special Features section:
	 Section 26.2 "Watchdog Timer (WDT)"
	Section 26.4 "Programming and Diagnostics"
Section 29.0 "Electrical	Added the 64-Lead QFN package to Table 29-3.
Characteristics"	Updated data in Table 29-5.
	Updated data in Table 29-7.
	Updated data in Table 29-4, Table 29-5, Table 29-7 and Table 29-8.
	Updated data in Table 29-11.
	Added OS42 parameter to Table 29-17.
	Replaced Table 29-23.
	Replaced Table 29-24.
	Replaced Table 29-25.
	Updated Table 29-36.
Section 30.0 "Packaging Information"	Added 64-Lead QFN package marking information to Section 30.1 "Package Marking Information" .
	Added the 64-Lead QFN (MR) package drawing and land pattern to Section 30.2 "Package Details" .
"Product Identification System"	Added the MR package designator for the 64-Lead (9x9x0.9) QFN.