

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

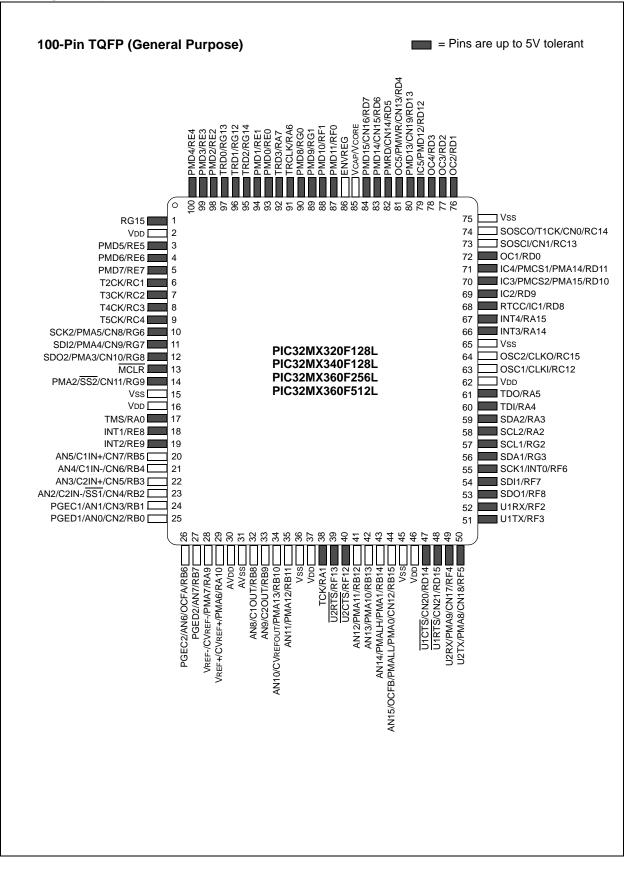
E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx340f128lt-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1:PIC32MX GENERAL PURPOSE – FEATURES


	GENERAL PURPOSE													
Device	Pins	Packages ⁽²⁾	ZHW	Program Memory (KB)	Data Memory (KB)	Timers/Capture/Compare	Programmable DMA Channels	VREG	Trace	EUART/SPI/I ² C™	10-bit ADC (ch)	Comparators	dSd/dWd	JTAG
PIC32MX320F032H	64	PT, MR	40	32 + 12 ⁽¹⁾	8	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F064H	64	PT, MR	80	64 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F256H	64	PT, MR	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F512H	64	PT, MR	80	512 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F128L	100 121	PT BG	80	128 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT	00	400 + 40(1)	20	_ /_ /_	4	Vee	Nia	0/0/0	40	0	Vee	Vee
PIC32MX340F128L	121	BG	80	128 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT		0.50 (0(1)						0/0/5				
PIC32MX360F256L	121	BG	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes
	100	PT		540 40(1)		- (- (-			~	0/0/6				
PIC32MX360F512L	121	BG	80	$512 + 12^{(1)}$	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes

Legend: PT = TQFP MR = QFN BG = XBGA

Note 1: This device features 12 KB Boot Flash memory.

2: See Legend for an explanation of the acronyms. See Section 30.0 "Packaging Information" for details.

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

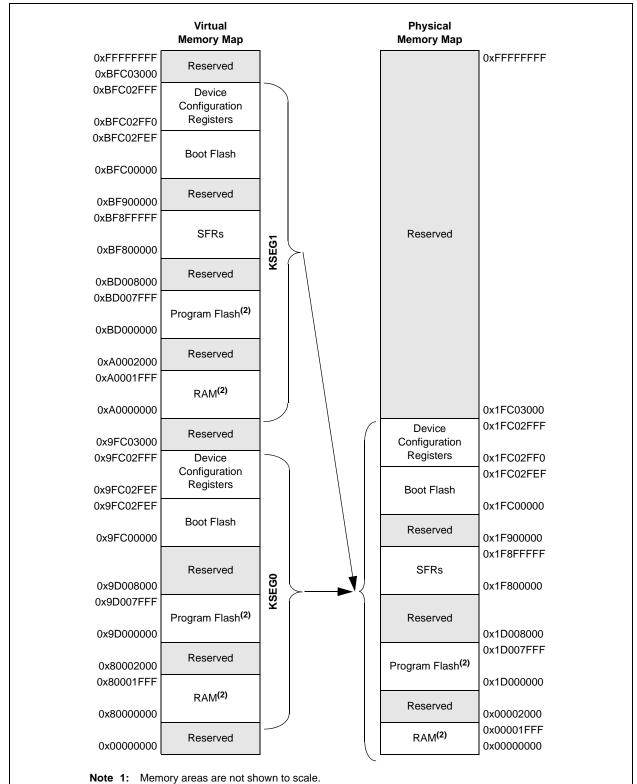
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Register Number	-	Function
17-22	Reserved	Reserved
23	Debug ⁽²⁾	Debug control and exception status
24	DEPC ⁽²⁾	Program counter at last debug exception
25-29	Reserved	Reserved
30	ErrorEPC ⁽¹⁾	Program counter at last error
31	DESAVE ⁽²⁾	Debug handler scratchpad register

TABLE 3-2:COPROCESSOR 0 REGISTERS (CONTINUED)

Note 1: Registers used in exception processing.


2: Registers used during debug.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 shows the exception types in order of priority.

TABLE 3-3: PIC32MX3XX/4XX FAMILY CORE EXCEPTION TYPES

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR)
DSS	EJTAG Debug Single Step
DINT	EJTAG Debug Interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input, or by setting the EjtagBrk bit in the ECR register
NMI	Assertion of NMI signal
Interrupt	Assertion of unmasked hardware or software interrupt signal
DIB	EJTAG debug hardware instruction break matched
AdEL	Fetch address alignment error Fetch reference to protected address
IBE	Instruction fetch bus error
DBp	EJTAG Breakpoint (execution of SDBBP instruction)
Sys	Execution of SYSCALL instruction
Вр	Execution of BREAK instruction
RI	Execution of a Reserved Instruction
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled
CEU	Execution of a CorExtend instruction when CorExtend is not enabled
Ov	Execution of an arithmetic instruction that overflowed
Tr	Execution of a trap (when trap condition is true)
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG Data Value Break on Store (address + value)
AdEL	Load address alignment error Load reference to protected address
AdES	Store address alignment error Store to protected address
DBE	Load or store bus error
DDBL	EJTAG data hardware breakpoint matched in load data compare

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX320F032H AND PIC32MX420F032H DEVICES⁽¹⁾

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

Virtual Address (BF88_#)	Register Name	Bit Range																	
/irtual Addre (BF88_#)	Register Name	ange								Bi	ts								
-		Bit R	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH0CON	31:16	-		-				-	-		—		—	—	—		_	0000
	Denteent	15:0	—	_	—		_	_	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
3070	DCH0ECON	31:16	—	—	—	—	—	—	_	—									OOFF
00/0 0		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—		FF00
3080	DCH0INT	31:16	—	—	—	—	—		_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0000	Denoirtí	15:0	—	_	—		_	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090 I	DCH0SSA	31:16 15:0								CHSSA	<31:0>								0000
30A0 I	DCH0DSA	31:16 15:0								CHDSA	<31:0>								0000
		31:16	_	—	_	_	—	—	_	—	—	—	—	_	—	—	_	_	0000
30B0 [DCH0SSIZ	15:0	_	_	_	_	_	_	_	-				CHSSI	Z<7:0>				0000
		31:16	_	_	_		_	_	_	_	_	—	_	_	—	_	—		0000
30C0 [DCH0DSIZ	15:0	_		—	_		_	_	—				CHDSI	Z<7:0>				0000
2000		31:16	_	_	—	_	_	_	-	—		—	—	—	—	—	—	—	0000
30D0 L	DCH0SPTR	15:0	_		_	_			-	—				CHST	R<7:0>				0000
2050 5		31:16	_		_	_				—		—	—	—	—	_	_	_	0000
30E0 L	OCH0DPTR	15:0	—	_	—		_	_	-	—		•		CHDPT	R<7:0>				0000
30F0 [DCH0CSIZ	31:16	_	—	—	—	—	_	—	—	_	—	—	—	—	—			0000
3050 1	DCHUCSIZ	15:0	-	—	—	—	—	—	—	—				CHCSI	Z<7:0>				0000
2100 0	OCH0CPTR	31:16	_	_	—	_	_	_	_	—	_	—	—	—	—	—	—	—	0000
3100 L	JUNUEFIK	15:0	-		—	_			_	_				CHCPT	R<7:0>				0000
3110	DCH0DAT	31:16	_		_	_				—		—		—	—	—			0000
3110	DCI10DA1	15:0	-		_	_			I	—				CHPDA	AT<7:0>				0000
3120 [DCH1CON	31:16	—		_	_				—		-		—	_	—			0000
0120	Donnoon	15:0	—		—	_			-	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
3130	OCH1ECON	31:16	—		_	_				—				CHAIR	Q<7:0>				OOFF
0100 0	John Cook	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	_	-	FF00
3140	DCH1INT	31:16	—	_	—	—	-	-	-	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
-		15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3150 I	DCH1SSA	31:16 15:0			nimplemente					CHSSA	<31:0>								0000

TABLE 4-16: DMA CHANNELS 0-3 REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DESUGE 2010 (1) DESUGE 2010 (1)

All registers except DCHxSPTR, DCHxDPTR and DCHxCPTR have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

DS61143H-page 65

PIC32MX3XX/4XX

TABLE 4-33: PORTG REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess										Bi	its								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	_	_		—						—	—		—	—	—	—	0000
0100	11100	15:0	TRISG15	TRISG14	TRISG13	TRISG12			TRISG9	TRISG8	TRISG7	TRISG6	-	-	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6190	PORTG	31:16	-	_	-	-	-	_	_	-	-	-	-	-	-	-	-	_	0000
0190	FURIG	15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	—	—	RG3	RG2	RG1	RG0	xxxx
61A0	LATG	31:16		_	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
6TAU	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	LATG1	LATG0	xxxx
61B0	ODCG	31:16	_	—	—	—	_		_	—	_	—	—	_	—	—	—	—	0000
UIDU	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	—	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-34: PORTG REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY⁽¹⁾

ess										Bi	its								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	-	_		_		—				—			—	—		—	0000
0100	IRISG	15:0	—	—	—	—	—	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	_	—	03cc
6190	PORTG	31:16		-	_	_	—	—	_	_	—	—	_	_	—	—	_	_	0000
0190	FORIG	15:0	-	-	-	_	-	-	RG9	RG8	RG7	RG6	_	-	RG3	RG2	-	-	xxxx
61A0	LATG	31:16	-	_		_		_		_	-	_	_	-	—	_		_	0000
0170	LAIG	15:0	-			-	-	-	LATG9	LATG8	LATG7	LATG6		-	LATG3	LATG2		—	xxxx
61B0	ODCG	31:16	-	_		_		—		_		—	_		—	—		_	0000
0100	0000	15:0	_	_		—		-	ODCG9	ODCG8	ODCG7	ODCG6	_	-	ODCG3	ODCG2		_	0000

Legend: x = unknown value on Reset, --- unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

NOTES:

11.0 USB ON-THE-GO (OTG)

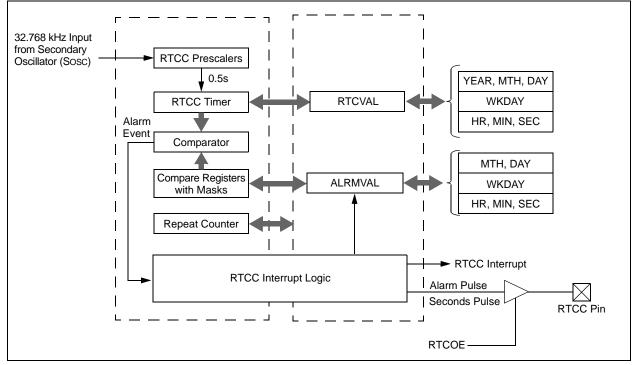
- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS61126) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers, and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB OTG Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Transaction Handshaking Performed by Hardware
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA to Access System RAM and Flash


Note: The implementation and use of the USB specifications, as well as other third-party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS61125) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. The following are some of the key features of this module:

- Time: Hours, Minutes and Seconds
- 24-Hour Format (Military Time)
- Visibility of One-Half-Second Period
- Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are configurable for Half of a Second, One Second, 10 Seconds, One Minute, 10 Minutes, One Hour, One Day, One Week, One Month and One Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- Leap Year Correction
- BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Calibration Range: ±0.66 Seconds Error per Month
- · Calibrates up to 260 ppm of Crystal Error
- Requirements: External 32.768 kHz Clock Crystal
- Alarm Pulse or Seconds Clock Output on RTCC pin

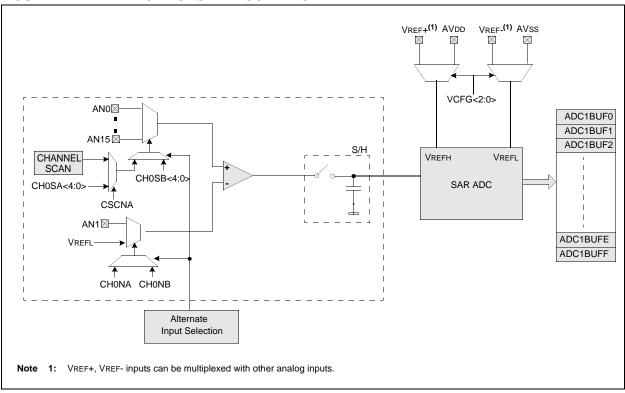
FIGURE 21-1: RTCC BLOCK DIAGRAM

22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS61104) of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1000 kilo samples per second (ksps) conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample-and-Hold Amplifier (SHA)


- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 22-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight, 32-bit output formats when it is read from the result buffer.

FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM

26.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX3XX/4XX family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-up Timer" (DS61114), Section 32. "Configuration" (DS61124) and Section 33. "Programming and Diagnostics" (DS61129) of the "PIC32 Family Reference Manual", which is available from Microchip the web site (www.microchip.com/PIC32).

PIC32MX3XX/4XX devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible Device Configuration
- Watchdog Timer
- JTAG Interface
- In-Circuit Serial Programming[™] (ICSP[™])

26.1 Configuration Bits

The Configuration bits can be programmed to select various device configurations.

REGISTE	REGISTER 26-1: DEVCEG0: DEVICE CONFIGURATION WORD 0											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P				
31:24	—	—	—	CP	_	—	—	BWP				
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P				
23:16	—	—	—	—		PWP	<7:4>					
15:8	R/P	R/P	R/P	R/P	r-1	r-1	r-1	r-1				
10.0		PWP<	<3:0>				—	—				
7.0	r-1	r-1	r-1	r-1	R/P	r-1	R/P	R/P				
7:0		—	—	_	ICESEL		DEBU	G<1:0>				
Legend:				•								
R = Read	able bit		W = Writable	e bit	P = Progran	nmable bit	r = Reserve	d bit				
U = Unim	plemented bit		-n = Bit Valu	e at POR: ('0'	, '1', x = Unk	nown)						

REGISTER 26-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

- bit 31 **Reserved:** Write '0'
- bit 30-29 Reserved: Write '1'
- bit 28 CP: Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device.

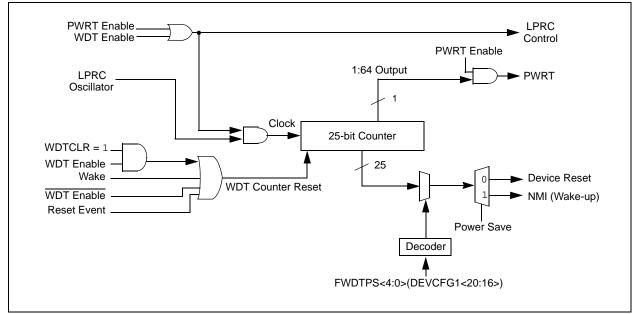
- 1 = Protection disabled
- 0 = Protection enabled

bit 27-25 Reserved: Write '1'

bit 24 BWP: Boot Flash Write-Protect bit

Prevents boot Flash memory from being modified during code execution.

- 1 = Boot Flash is writable
- 0 = Boot Flash is not writable
- bit 23-20 Reserved: Write '1'


26.2 Watchdog Timer (WDT)

This section describes the operation of the WDT and Power-Up Timer of the PIC32MX3XX/4XX.

The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- · Can wake the device from Sleep or Idle

FIGURE 26-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

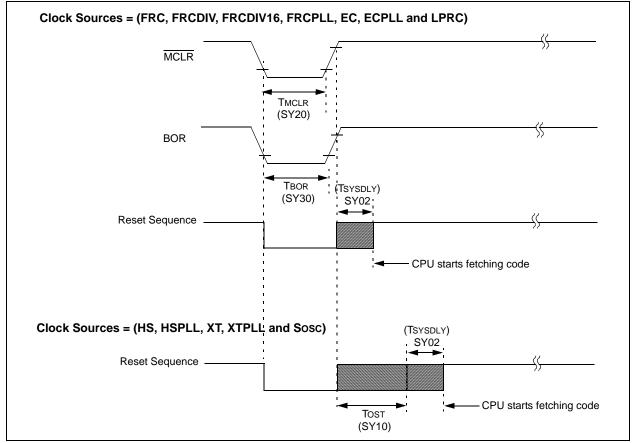
TABLE 29-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHA	RACTER	ISTICS	Standard O stated) Operating te		nditions: 2.3V to 3.6V (unless otherwise -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics	Min. Typical Max. Units Conditions								
-	Vol	Output Low Voltage									
DO10		I/O Ports	—	—	0.4	V	IOL = 7 mA, VDD = 3.6V				
			—	—	0.4	V	IOL = 6 mA, VDD = 2.3 V				
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 3.5 mA, VDD = 3.6V				
			—	—	0.4	V	IOL = 2.5 mA, VDD = 2.3 V				
	Vон	Output High Voltage									
DO20		I/O Ports	2.4	—	_	V	ЮН = -12 mA, VDD = 3.6V				
			1.4	—	_	V	Юн = -12 mA, VDD = 2.3V				
DO26		OSC2/CLKO	2.4	—	—	V	ЮН = -12 mA, VDD = 3.6V				
			1.4	—	—	V	Юн = -12 mA, VDD = 2.3V				

TABLE 29-10: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

DC CHA	RACTER	ISTICS	stated)	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +105^{\circ}C$ for V-Temp									
Param. No.	Symbol	Characteristics	Min.	Typical	Max. Units Conditions								
BO10	VBOR	BOR Event on VDD transition high-to-low	2.0	2.0 — 2.3 V —									

TABLE 29-17: EXTERNAL CLOCK TIMING REQUIREMENTS


AC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		₅₀ (3) 50(5)	MHz MHz	EC (Note 5) ECPLL (Note 4)			
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 5)			
OS12			4	_	10	MHz	XTPLL (Notes 4, 5)			
OS13			10	—	25	MHz	HS (Note 5)			
OS14			10	_	25	MHz	HSPLL (Notes 4, 5)			
OS15			32	32.768	100	kHz	Sosc (Note 5)			
OS20	Tosc	Tosc = 1/Fosc = Tcy ⁽²⁾	_		_	—	See parameter OS10 for Fosc value			
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	_	ns	EC (Note 5)			
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	_	—	0.05 x Tosc	ns	EC (Note 5)			
OS40	Тоят	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 5)			
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	_	2		ms	(Note 5)			
OS42	Gм	External Oscillator Transconductance	—	12		mA/V	VDD = 3.3V TA = +25°C (Note 5)			

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

- **3:** 40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.
- **4:** PLL input requirements: 4 MHz ≤FPLLIN ≤5 MHz (use PLL prescaler to reduce FOSC). This parameter is characterized, but tested at 10 MHz only at manufacturing.
- 5: This parameter is characterized, but not tested in manufacturing.

FIGURE 29-5: EXTERNAL RESET TIMING CHARACTERISTICS

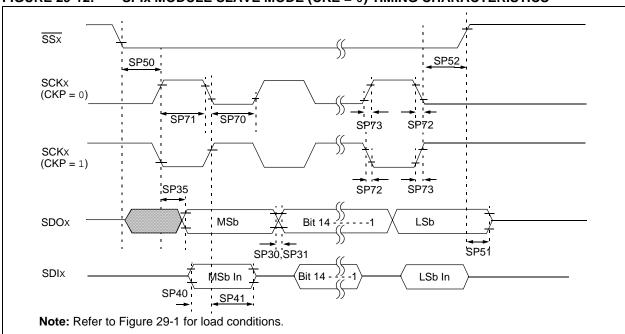


TABLE 29-22: RESETS TIMING

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp								
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions				
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled		400	600	μs	-40°C to +85°C				
SY01	TPWRT	Power-up Period External Vcore Applied (Power-Up-Timer Active)	48	64	80	ms	-40°C to +85°C				
SY02	TSYSDLY	System Delay Period: Time required to reload Device Configuration Fuses plus SYSCLK delay before first instruction is fetched.		1 μs + 8 sysclκ cycles		_	-40°C to +85°C				
SY20	TMCLR	MCLR Pulse Width (low)		2	_	μs	-40°C to +85°C				
SY30	TBOR	BOR Pulse Width (low)	—	1	—	μs	-40°C to +85°C				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

FIGURE 29-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time ⁽³⁾	Тѕск/2	_		ns	_	
SP71	TscH	SCKx Input High Time ⁽³⁾	Тѕск/2	_		ns	—	
SP72	TscF	SCKx Input Fall Time		_		ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	_	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾				ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	_	_	ns	See parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	15	ns	Vdd > 2.7V	
	TscL2doV	SCKx Edge	_	—	20	ns	Vdd < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	_	—	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	175	_	_	ns	_	
SP51	TssH2doZ	SSx	5	—	25	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_		ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 29-34: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial						
Param. No.	Symbol Characteristics		-40°C ≤TA ≤+105°C for V- Min. Typical Max. Units		C for V-Temp Conditions				
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-			•		
AD20d	Nr	Resolution	1	10 data bits		bits	(Note 3)		
AD21d	INL	Integral Nonlinearity		_	<±1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD22d	DNL	Differential Nonlinearity	—	_	<±1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)		
AD23d	Gerr	Gain Error	—	_	<±4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD24d	EOFF	Offset Error		_	<±2	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD25d	_	Monotonicity	_	_		_	Guaranteed		
Dynami	c Performa	ance							
AD31b	SINAD	Signal to Noise and Distortion	55	58.5	—	dB	(Notes 3, 4)		
AD34b	ENOB	Effective Number of Bits	9.0	9.5		bits	(Notes 3, 4)		

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

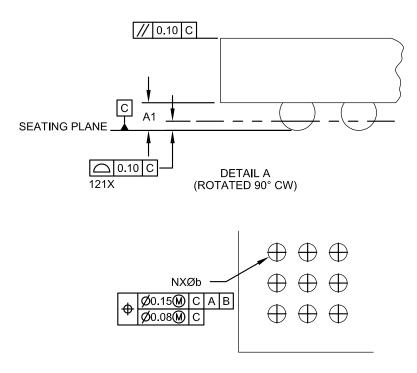
4: Characterized with 1 kHz sinewave.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Contact Pitch	E		0.50 BSC			
Optional Center Pad Width	W2			7.35		
Optional Center Pad Length	T2			7.35		
Contact Pad Spacing	C1		8.90			
Contact Pad Spacing	C2		8.90			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			0.85		
Distance Between Pads	G	0.20				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	MILLIMETERS					
Dimensior	Dimension Limits			MAX		
Number of Contacts	N	121				
Contact Pitch	e	0.80 BSC				
Overall Height	A	1.00	1.10	1.20		
Standoff	A1	0.25	0.30	0.35		
Molded Package Thickness	A2	0.55	0.60	0.65		
Overall Width	E	10.00 BSC				
Array Width	E1	8.00 BSC				
Overall Length	D	10.00 BSC				
Array Length	D1	8.00 BSC				
Contact Diameter	b	0.40 TYP				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

3. The outer rows and colums of balls are located with respect to datums A and B.

Microchip Technology Drawing C04-148 Rev B Sheet 2 of 2