

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx340f256h-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U S A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-149-0

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the PIC32MX3XX/4XX devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX3XX/4XX family of devices.

 Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

s		-								В	its								Τ
Virtual Addres (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000		31:16	—	—	—	—	—	—	-	—	—	—	—	—	—	—	—	SS0	0000
1000	INTCON	15:0	_	—	_	MVEC	—		TPC<2:0>		—	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT(2)	31:16	—	—	—	-	—	—	—	—	—	—	—	—	—	_	—	—	0000
1010		15:0	—	—	—	—	—		SRIPL<2:0>	•	—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000
4000	1500	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1RXIF	SPI1TXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
1030	IFS0	15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1040	1504	31:16	—	_	—		—	—	—	FCEIF	—	—	—	—	—	—	—	—	0000
1040	151	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2RXIF	SPI2TXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
1060	IECO	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1RXIE	SPI1TXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
1060	IECO	15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
1070	IEC1	31:16	-	-	-	_	-	_	-	FCEIE	-	-	-	-	-	-	-	-	0000
1070	IECT	15:0	RTCCIE	FSCMIE	I2C2MIE		—	_	—	_	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
1090	IPC0	31:16	—	—	_		INT0IP<2:0>		INTOIS	S<1:0>	_	_	_		CS1IP<2:0>		CS1IS	6<1:0>	0000
1030	11 00	15:0	—	—	—		CS0IP<2:0>		CSOIS	S<1:0>	—	—	—		CTIP<2:0>		CTIS	<1:0>	0000
10A0	IPC1	31:16	—	—	—		INT1IP<2:0>	•	INT1IS	S<1:0>	—	—	—		OC1IP<2:0>	•	OC1IS	S<1:0>	0000
		15:0	—	—	_		IC1IP<2:0>		IC1IS	i<1:0>	—	_	_		T1IP<2:0>		T1IS	<1:0>	0000
10B0	IPC2	31:16	—	—	—		INT2IP<2:0>	•	INT2IS	S<1:0>	—	—	—		OC2IP<2:0>		OC2IS	S<1:0>	0000
	_	15:0	—	—			IC2IP<2:0>		IC2IS	i<1:0>	—				T2IP<2:0>		T2IS	<1:0>	0000
10C0	IPC3	31:16	—	_	—		INT3IP<2:0>	•	INT3IS	S<1:0>	—	—	_		OC3IP<2:0>	•	OC3IS	S<1:0>	0000
		15:0	_	_	_		IC3IP<2:0>		IC3IS	5<1:0>	_	_	_		T3IP<2:0>		T3IS	<1:0>	0000
10D0	IPC4	31:16					IN14IP<2:0>	•	IN 141	5<1:0>			_		OC4IP<2:0>	•	0048	5<1:0>	0000
		15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	_		14IP<2:0>		1415	<1:0>	0000
10E0	IPC5	15.0		_			1051D - 2:05	•		3<1.0>					TEID - 2:0>			-1:0>	0000
		31.16					AD110-2:0>			2-1.0>					CNIP-2:0>		CNIS	<1.0>	0000
10F0	IPC6	15.0					12C1IP<2:02		120110	S<1.0>					LI1IP<2:0>			<1.0>	0000
		31.16	_	_	_		SPI2IP<2:02		SPI2IS	S<1:0>	_	_	_	(CMP2IP<2:02	>	CMP2	S<1.0>	0000
1100	IPC7	15:0	_	_	_	(CMP1IP<2:0	>	CMP1	S<1:0>	_	_	_		PMPIP<2:0>		PMPI	S<1:0>	0000
		31:16	_	_	_	F	RTCCIP<2:0	>	RTCC	S<1:0>	_	_	_	F	SCMIP<2:0	>	FSCM	S<1:0>	0000
1110	IPC8	15:0	_	_	_		12C2IP<2:0>	•	12C2I	S<1:0>	_	_	_	-	U2IP<2:0>		U2IS	<1:0>	0000
<u> </u>		31:16	_	_	_	—	_		-	_	_	_	_	—	_	_	_		0000
1140	IPC11	15:0	_	—	_	-	—	—	_	_	—	_	_		FCEIP<2:0>		FCEIS	S<1:0>	0000

TABLE 4-4: INTERRUPT REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H AND PIC32MX320F128L DEVICES ONLY⁽¹⁾

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated CLR, SET, and INV registers.

TABLE 4-8: INPUT CAPTURE1-5 REGISTERS MAP

ess										Bi	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	IC1CON ⁽¹⁾	31:16		_	—	—	_	—	-	_	—		—	—	—	_	—	_	0000
2000	IOTOON	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
2010	2010 IC1BUF 31:16 IC1BUF<31:0>								xxxx										
		15:0																	xxxx
2200	IC2CON ⁽¹⁾	31:16	-	_	-	_	_	_	—	-	-	-	—	—	—	—	—	—	0000
		15:0	ON _ SIDL FEDGE C32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 00										0000						
2210	IC2BUF	31:16	IC2BUF<31:0>																
		15:0																	XXXX
2400	IC3CON ⁽¹⁾	31:16	-	_	-	_	_	_	-	-	-	-	-	-		_	-	—	0000
		15:0	UN	-	SIDL	—	-	_	FEDGE	032	ICTMR		:1:0>	ICOV	ICBNE		ICM<2:0>		0000
2410	IC3BUF	31:16								IC3BUF	<31:0>								xxxx
		15.0																	XXXX
2600	IC4CON ⁽¹⁾	15.0						_	EEDCE				(1:0>			_			0000
		31.16	ON		SIDL	_	_	_	FEDGE	032	ICTIVIK		.1.0>	1000	ICDINE		10111<2.0>		0000
2610	IC4BUF	15.0								IC4BUF	<31:0>								~~~~
		31.16		_		_	_		_	_	_	_			_	_	_		0000
2800	IC5CON ⁽¹⁾	15.0	ON	_	SIDI	_	_	_	FEDGE	C32	ICTMR	ICI<	1.0>	ICOV	ICBNE		ICM<2:0>		0000
		31.16	011		0.DL				. 1901	0.02		1014							****
2810	IC5BUF	15.0								IC5BUF	<31:0>								XXXX
Legend	1: x = u	nknown	value on R	eset. — = ur	nimplemente	d. read as '0)'. Reset val	ues are show	vn in hexade	cimal.									AAAA

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual" Section 6. "Oscillator Configuration" (DS61112), which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX oscillator system has the following modules and features:

- A total of four external and internal oscillator options as clock sources
- On-chip PLL (phase-locked loop) with userselectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shut down
- Dedicated on-chip PLL for USB peripheral

PIC32MX3XX/4XX

NOTES:

22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS61104) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1000 kilo samples per second (ksps) conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample-and-Hold Amplifier (SHA)

- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 22-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight, 32-bit output formats when it is read from the result buffer.

FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM

23.0 COMPARATOR

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 19. "Comparator" (DS61110) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX Analog Comparator module contains one or more comparator(s) that can be configured in a variety of ways.

Following are some of the key features of this module:

- Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be inverted
- Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 23-1.

REGISTER 26-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits

- 11 = PBCLK is SYSCLK divided by 8
- 10 = PBCLK is SYSCLK divided by 4
- 01 = PBCLK is SYSCLK divided by 2

00 = PBCLK is SYSCLK divided by 1

- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 OR 00)
 - 0 = CLKO output disabled
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary oscillator disabled
 - 10 = HS oscillator mode selected
 - 01 = XT oscillator mode selected
 - 00 = External clock mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode enabled (Two-Speed Start-up enabled)
 - 0 = Internal External Switchover mode disabled (Two-Speed Start-up disabled)
- bit 6 Reserved: Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable Posc (POSCMOD = 00) when using this oscillator source.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	
31.24	—	—	—	—	—	_	—	—	
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P	
23:16	—	—	—	—	—	FPLLODIV<2:0>			
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P	
15:8	UPLLEN	—	—	—	—	UPLLIDIV<2:0>			
7.0	r-1	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
7:0		F	PLLMUL<2:0	>	_	FPLLIDIV<2:0>			

REGISTER 26-3: DEVCFG2: DEVICE CONFIGURATION WORD 2

Legend:

R = Readable bitW = Writable bitP = Programmable bitr = Reserved bitU = Unimplemented bit-n = Bit Value at POR: ('0', '1', x = Unknown)

bit 18-16 FPLLODIV<2:0>: Default Postscaler for PLL bits

- 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1
- bit 15 UPLLEN: USB PLL Enable bit 1 = Disable and bypass USB PLL 0 = Enable USB PLL
- bit 14-11 **Reserved:** Write '1'
- bit 10-8 UPLLIDIV<2:0>: PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- bit 7 Reserved: Write '1'

bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits

- 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier
- 011 = 18x multiplier
- 010 = 17x multiplier
- 001 = 16x multiplier
- 000 = 15x multiplier
- bit 3 Reserved: Write '1'
- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider 010 = 3x divider
 - 010 = 3x divider001 = 2x divider
 - 001 = 2x divider 000 = 1x divider

bit 31-19 Reserved: Write '1'

REGISTER 26-6:	DDPCON: DEBUG DATA PORT CONTROL REGISTER
----------------	--

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
31:24	—	—	—	—	—	—	—	—
00.40	r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
23:16	—	—	—	—	—	—	—	—
45.0	r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
15:8	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	r-x	r-x
7:0	DDPUSB	DDPU1	DDPU2	DDPSPI1	JTAGEN	TROEN	—	—

Legend:

R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('0',	'1', x = Unknown)	

bit 31-8 Reserved: Write '0'; ignore read

- bit 7 **DDPUSB:** Debug Data Port Enable for USB bit 1 = USB peripheral ignores USBFRZ (U1CNFG1<5>) setting 0 = USB peripheral follows USBFRZ setting
- bit 6 **DDPU1:** Debug Data Port Enable for UART1 bit 1 = UART1 peripheral ignores FRZ (U1MODE<14>) setting 0 = UART1 peripheral follows FRZ setting
- bit 5 **DDPU2:** Debug Data Port Enable for UART2 bit 1 = UART2 peripheral ignores FRZ (U2MODE<14>) setting 0 = UART2 peripheral follows FRZ setting
- bit 4 **DDPSPI1:** Debug Data Port Enable for SPI1 bit 1 = SPI1 peripheral ignores FRZ (SPI1CON<14>) setting 0 = SPI1 peripheral follows FRZ setting
- bit 3 **JTAGEN:** JTAG Port Enable bit
 - 1 = Enable JTAG Port
 - 0 = Disable JTAG Port
- bit 2 TROEN: Trace Output Enable bit
 - 1 = Enable Trace Port
 - 0 = Disable Trace Port
- bit 1-0 **Reserved:** Write '1'; ignore read

DC CHAR	ACTERISTIC	cs	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp									
Param. No.	Typical ⁽³⁾	Max.	Units	Units Conditions								
Operating	Current (ID	D) ^(1,2)										
DC20	8.5	8.5 13 mA Code executing from Flash		-40°C, +25°C, +85°C	_	4 MHz						
	9	15			+105⁰C							
DC20c	4.0		mA	Code executing from SRAM	—							
DC21	23.5	32	mA	Code executing from Flash			20 MHz					
DC21c	16.4	_	mA	Code executing from SRAM			(Note 4)					
DC22	48	61	mA	Code executing from Flash			60 MHz					
DC22c	45	_	mA	Code executing from SRAM			(Note 4)					
DC23	55		mA	Code executing from Flash	-40°C, +25°C, +85°C	2.3V	80 MHz					
	60	100			+105⁰C							
DC23c	55	_	mA	Code executing from SRAM	_	_						
DC24	—	100	μA	—	-40°C							
DC24a	—	130	μA	—	+25°C	2.21/						
DC24b	—	670	μA	—	+85°C	2.3V						
DC24c	—	850	μA	—	+105⁰C							
DC25	94	_	μA	—	-40°C							
DC25a	125	_	μA	—	+25°C	2 21/						
DC25b	302		μA	—	+85°C	3.3V	(Note 4)					
DC25d	400		μA	—	+105⁰C		(1010 4)					
DC25c	71		μA	Code executing from SRAM	_							
DC26	_	110	μA		-40°C							
DC26a	DC26a — 180		μA	—	+25°C	3 6\/						
DC26b		700	μΑ	—	+85°C	3.0 v						
DC26c	—	900	μΑ	_	+105°C							

TABLE 29-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type as well as temperature can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by external square wave from rail to rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD.
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 29-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

				Standa (unless Opera	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Chara	cteristic	cs ⁽¹⁾	Min.	Max.	Units	itions		
TB10	ТтхН	TxCK High Time	Synchr with pro	onous, escaler	[(12.5 ns or 1TPB)/N] + 25 ns		ns	Must also meet parameter TB15.	N = prescale value (1, 2, 4, 8, 16,	
TB11	T⊤xL	TxCK Low Time	Synchr with pro	onous, escaler	[(12.5 ns or 1ТРВ)/N] + 25 ns	_	ns Must also meet parameter TB15.		32, 64, 256)	
TB15	ΤτχΡ	TxCK Input	Synchr with pro	onous, escaler	[(Greater of 25 ns or 2 TPB)/N] + 30 ns	—	ns	VDD > 2.7V		
		Period			[(Greater of 25 ns or 2 Трв)/N] + 50 ns	_	ns	VDD < 2.7V	—	
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment			_	1	Трв	_	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX3XX/4XX

TABLE 29-40: OTG ELECTRICAL SPECIFICATIONS

AC CHA	RACTER	ISTICS	Standar (unless o Operatir	d Operat otherwise ng tempe	Operating Conditions: 2.3V to 3.6V nerwise stated) temperature -40°C ≤TA ≤+85°C for Industri -40°C ≤TA ≤+105°C for V-Tem				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур	Max.	Units	Conditions		
USB313	VUSB	USB Voltage	3.0		3.6	V	Voltage on VUSB must be in this range for proper USB operation.		
USB315	VILUSB	Input Low Voltage for USB Buffer	_	_	0.8	V	—		
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0			V	—		
USB318	VDIFS	Differential Input Sensitivity	_		0.2	V	The difference between D+ and D- must exceed this value while VCM is met.		
USB319	VCM	Differential Common Mode Range	0.8	_	2.5	V	—		
USB320	Zout	Driver Output Impedance	28.0	_	44.0	Ω	_		
USB321	Vol	Voltage Output Low	0.0	_	0.3	V	1.5 k Ω load connected to 3.6V.		
USB322	Voh	Voltage Output High	2.8		3.6	V	1.5 k Ω load connected to ground.		

Note 1: These parameters are characterized, but not tested in manufacturing.

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148B Sheet 1 of 2

PIC32MX3XX/4XX

NOTES:

INDEX

1	۱.
r	۰.

AC Characteristics	. 161
Internal RC Accuracy	. 163
AC Electrical Specifications	
Parallel Master Port Read Requirements	. 186
Parallel Master Port Write Requirements	. 187
Parallel Slave Port Requirements	. 185
Assembler	
MPASM Assembler	. 148

В

Block Diagrams	
ADC Module	
Comparator I/O Operating Modes	
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator.	
Input Capture	
JTAG Compliant Application Showing	
Daisy-Chaining of Components	
Output Compare Module	
Reset System	
RTCC	
Type B Timer	37, 95, 105
UART	
WDT	
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	

С

C Compiloro	
MPLAB C18	
Comparator	
Operation	126
Comparator Voltage Reference	
Configuring	
CPU Module	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
••	

D

-	
DC Characteristics	152
I/O Pin Input Specifications	157
I/O Pin Output Specifications	158
Idle Current (IIDLE)	154
Operating Current (IDD)	153
Power-Down Current (IPD)	155
Program Memory	159
Temperature and Voltage Specifications	152
Development Support	147
E	
Electrical Characteristics	151
AC	161
Errata	19
F	
Flash Program Memory	85
RTSP Operation	85
I	
I/O Ports	101, 115
Parallel I/O (PIO)	
Internet Address	

Μ

Microchip Internet Web Site				
MPLAB PM3 Device Programmer 150				
MPLAB FIND Device Flograniner				
MPLAB REAL ICE IN-CIrcuit Emulator System				
P				
Packaging 101				
Patraila 102				
Details				
PIC32 Family USB Interface Diagram 100				
Pinout I/O Descriptions (table)				
Power-on Reset (POR)				
and On-Chip Voltage Regulator 138				
D				
n				
Reader Response				
e				
5				
Serial Peripheral Interface (SPI) 87, 97, 111, 119, 121, 130				
Software Simulator (MPLAB SIM) 149				
Special Features				
T				
1				
Timer1 Module				
Timing Diagrams				
10-bit Analog-to-Digital Conversion (CHPS<1:0> = 01,				
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) 183				
10-bit Analog-to-Digital Conversion (CHPS<1:0> = 01.				
SIMSAM = 0 ASAM = 1 SSRC< 2° = 111				
SAMC > -00001 184				
12Cx Bus Data (Master Mode)				
12Cx Bus Data (Master Mode)				
12CX Bus Data (Slave Wode)				
12CX Bus Start/Stop Bits (Master Mode)				
I2Cx Bus Start/Stop Bits (Slave Mode) 177				
Input Capture (CAPX)				
OC/PWM 170				
Output Compare (OCx) 169				
Parallel Master Port Write 186, 187				
Parallel Slave Port 185				
SPIx Master Mode (CKE = 0) 171				
SPIx Master Mode (CKE = 1) 172				
SPIx Slave Mode (CKE = 0) 173				
SPIx Slave Mode (CKE = 1) 174				
Timer1, 2, 3, 4, 5 External Clock 167				
Transmission (8-bit or 9-bit Data) 116				
UART Reception with Receive Overrun 117				
Timing Requirements				
CLKO and I/O				
Timing Specifications				
I2Cx Bus Data Requirements (Master Mode)				
I2Cx Bus Data Requirements (Slave Mode) 178				
Output Compare Requirements				
Simple OC/PWM Mode Requirements 170				
SPly Master Mode (CKE = 0) Requirements 171				
SPIN Master Mode ($CKE = 0$) Requirements				
SPIN Slove Mode (CKE = 1) Requirements 172				
3 Fix Slave Would (UNE = 1) Requirements				
V				
Voltage Reference Specifications				
Voltage Reference opconications				

Voltage Regulator (On-Chip) 138

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent			
Fror	n: Name				
1101	Company				
	Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Арр	lication (optional):				
Wou	uld you like a reply?YN				
Dev	ice: PIC32MX3XX/4XX	Literature Number: DS61143H			
Que	estions:				
1.	What are the best features of this document?				
•					
2.	How does this document meet your hardware and software development needs?				
3.	. Do you find the organization of this document easy to follow? If not, why?				
4.	. What additions to the document do you think would enhance the structure and subject?				
5.	What deletions from the document could be made without affecting the overall usefulness?				
6.	Is there any incorrect or misleading information (what and where)?				
7.	How would you improve this document?				