

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

ĿXFl

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                      |
| Core Size                  | 32-Bit Single-Core                                                                |
| Speed                      | 80MHz                                                                             |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART                              |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                        |
| Number of I/O              | 53                                                                                |
| Program Memory Size        | 512KB (512K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 32K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                       |
| Data Converters            | A/D 16x10b                                                                        |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 64-VFQFN Exposed Pad                                                              |
| Supplier Device Package    | 64-VQFN (9x9)                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx340f512ht-80i-mr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### High-Performance, General Purpose and USB 32-bit Flash Microcontrollers

### High-Performance 32-bit RISC CPU:

- MIPS32<sup>®</sup> M4K<sup>®</sup> 32-bit core with 5-stage pipeline
- 80 MHz maximum frequency
- 1.56 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state Flash access
- Single-cycle multiply and high-performance divide unit
- MIPS16e<sup>®</sup> mode for up to 40% smaller code size
- Two sets of 32 core register files (32-bit) to reduce interrupt latency
- Prefetch Cache module to speed execution from Flash

### **Microcontroller Features:**

- Operating temperature range of -40°C to +105°C
- Operating voltage range of 2.3V to 3.6V
- 32K to 512K Flash memory (plus an additional 12 KB of boot Flash)
- 8K to 32K SRAM memory
- Pin-compatible with most PIC24/dsPIC<sup>®</sup> DSC devices
- Multiple power management modes
- Multiple interrupt vectors with individually programmable priority
- Fail-Safe Clock Monitor Mode
- Configurable Watchdog Timer with on-chip Low-Power RC Oscillator for reliable operation

### **Peripheral Features:**

- Atomic SET, CLEAR and INVERT operation on select peripheral registers
- Up to 4-channel hardware DMA with automatic data size detection
- USB 2.0-compliant full-speed device and On-The-Go (OTG) controller
- USB has a dedicated DMA channel
- 3 MHz to 25 MHz crystal oscillator
- Internal 8 MHz and 32 kHz oscillators

- Separate PLLs for CPU and USB clocks
- Two I<sup>2</sup>C<sup>™</sup> modules
- Two UART modules with:
  - RS-232, RS-485 and LIN support
  - IrDA<sup>®</sup> with on-chip hardware encoder and decoder
- Up to two SPI modules
- Parallel Master and Slave Port (PMP/PSP) with 8-bit and 16-bit data and up to 16 address lines
- Hardware Real-Time Clock and Calendar (RTCC)
- Five 16-bit Timers/Counters (two 16-bit pairs combine to create two 32-bit timers)
- · Five capture inputs
- Five compare/PWM outputs
- Five external interrupt pins
- High-Speed I/O pins capable of toggling at up to 80 MHz
- High-current sink/source (18 mA/18 mA) on all I/O pins
- Configurable open-drain output on digital I/O pins

### **Debug Features:**

- Two programming and debugging Interfaces:
  - 2-wire interface with unintrusive access and real-time data exchange with application
  - 4-wire MIPS<sup>®</sup> standard enhanced JTAG interface
- Unintrusive hardware-based instruction trace
- IEEE Standard 1149.2-compatible (JTAG) boundary scan

### **Analog Features:**

- Up to 16-channel 10-bit Analog-to-Digital Converter:
  - 1000 ksps conversion rate
  - Conversion available during Sleep, Idle
- Two Analog Comparators





#### FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION



### 2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7  $\mu F$  to 47  $\mu F$ . This capacitor should be located as close to the device as possible.

#### 2.3 Capacitor on Internal Voltage Regulator (VCAP/VCORE)

### 2.3.1 INTERNAL REGULATOR MODE

A low-ESR (< 1 Ohm) capacitor is required on the VCAP/VCORE pin, which is used to stabilize the internal voltage regulator output. The VCAP/VCORE pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 29.0** "**Electrical Characteristics**" for additional information on CEFC specifications. This mode is enabled by connecting the ENVREG pin to VDD.

### 2.3.2 EXTERNAL REGULATOR MODE

In this mode the core voltage is supplied externally through the VCORE/VCAP pin. A low-ESR capacitor of 10  $\mu F$  is recommended on the VCAP/VCORE pin. This mode is enabled by grounding the ENVREG pin.

The placement of this capacitor should be close to the VCAP/VCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 26.3** "**On-Chip Voltage Regulator**" for details.

### 2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:

- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

| FIGURE 2-2: | EXAMPLE OF MCLR PIN |
|-------------|---------------------|
|             | CONNECTIONS         |



- Note 1: R ≤10 kΩ is recommended. A suggested starting value is 10 kΩ Ensure that the MCLR pin VIH and VIL specifications are met.
  - 2:  $\underline{R1} \leq 470\Omega$  will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.
  - **3:** The capacitor can be sized to prevent unintentional resets from brief glitches or to extend the device reset period during POR.

### 3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS61113) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). Resources for the MIPS32<sup>®</sup> M4K<sup>®</sup> Core are available Processor at: www.mips.com/products/cores/ 32-64-bit-cores/mips32-m4k/.
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The MIPS32<sup>®</sup> M4K<sup>®</sup> Processor Core is the heart of the PIC32MX3XX/4XX family processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

#### 3.1 Features

- 5-stage pipeline
- 32-bit Address and Data Paths
- MIPS32 Enhanced Architecture (Release 2)
  - Multiply-Accumulate and Multiply-Subtract Instructions
  - Targeted Multiply Instruction
  - Zero/One Detect Instructions
  - WAIT Instruction
  - Conditional Move Instructions (MOVN, MOVZ)
  - Vectored interrupts
  - Programmable exception vector base

- Atomic interrupt enable/disable
- GPR shadow registers to minimize latency for interrupt handlers
- Bit field manipulation instructions
- MIPS16e<sup>®</sup> Code Compression
  - 16-bit encoding of 32-bit instructions to improve code density
  - Special PC-relative instructions for efficient loading of addresses and constants
  - SAVE & RESTORE macro instructions for setting up and tearing down stack frames within subroutines
  - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) mechanism
- Simple Dual Bus Interface
- Independent 32-bit address and data busses
- Transactions can be aborted to improve interrupt latency
- Autonomous Multiply/Divide Unit
  - Maximum issue rate of one 32x16 multiply per clock
  - Maximum issue rate of one 32x32 multiply every other clock
  - Early-in iterative divide. Minimum 11 and maximum 34 clock latency (dividend (*rs*) sign extension-dependent)
- Power Control
  - Minimum frequency: 0 MHz
  - Low-Power mode (triggered by WAIT instruction)
  - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace
  - Support for single stepping
  - Virtual instruction and data address/value
  - breakpoints
  - PC tracing with trace compression



### TABLE 4-10: I2C1-2 REGISTERS MAP<sup>(1)</sup>

| sse                       |                  |               |                   |        |       |        |                |       |        | Bi       | ts    |        |         |         |              |      |      |      |            |
|---------------------------|------------------|---------------|-------------------|--------|-------|--------|----------------|-------|--------|----------|-------|--------|---------|---------|--------------|------|------|------|------------|
| Virtual Addre<br>(BF80_#) | Register<br>Name | Bit Range     | 31/15             | 30/14  | 29/13 | 28/12  | 27/11          | 26/10 | 25/9   | 24/8     | 23/7  | 22/6   | 21/5    | 20/4    | 19/3         | 18/2 | 17/1 | 16/0 | All Resets |
| 5000                      | I2C1CON          | 31:16         | _                 | _      | _     | —      | _              | _     | —      | _        |       | —      | —       | —       | _            | _    | —    | _    | 0000       |
| 0000                      | 12010011         | 15:0          | ON                | —      | SIDL  | SCLREL | STRICT         | A10M  | DISSLW | SMEN     | GCEN  | STREN  | ACKDT   | ACKEN   | RCEN         | PEN  | RSEN | SEN  | 1000       |
| 5010                      | I2C1STAT         | 31:16         | —                 | —      | _     | —      | _              |       | —      | —        | —     | —      | —       | —       |              | —    | —    | -    | 0000       |
|                           |                  | 15:0          | ACKSTAT           | TRSTAT |       | —      |                | BCL   | GCSTAT | ADD10    | IWCOL | I2COV  | D/A     | Р       | S            | R/W  | RBF  | TBF  | 0000       |
| 5020                      | I2C1ADD          | 31:16<br>15:0 | -                 | -      | _     | -      | _              | _     | -      | _        | _     | -      | -       | -       | _            | _    | -    | _    | 0000       |
|                           |                  |               | _                 | _      |       | -      | —              |       |        | ADD<9:0> |       |        |         |         |              |      |      |      | 0000       |
| 5030                      | I2C1MSK          | 31:16         | _                 | —      |       | _      | _              |       | —      | _        | —     | _      | _       | _       |              |      | _    |      | 0000       |
| 3030                      | 120 11001        | 15:0          | _                 | _      |       | _      | _              |       |        |          |       |        | MSK     | <9:0>   |              |      |      |      | 0000       |
| 5040                      | I2C1BRG          | 31:16         | —                 | —      | _     | —      | _              | —     | —      | —        | _     | —      | —       | —       | —            | —    | —    | —    | 0000       |
|                           | 1201010          | 15:0          | —                 | —      | —     | —      |                |       |        |          |       | I2C1BR | G<11:0> | -       |              |      | -    |      | 0000       |
| 5050                      | I2C1TRN          | 31:16         | —                 | —      | _     | —      | —              | _     | —      | —        | _     | —      | —       | —       | —            | —    | —    | —    | 0000       |
| 0000                      | 12011111         | 15:0          | —                 | —      | —     | —      | —              | —     | —      | —        |       |        |         | I2CT1DA | TA<7:0>      |      |      |      | 0000       |
| 5260                      | I2C1RCV          | 31:16         | —                 | —      | _     | —      | —              | _     | —      | —        | _     | —      | —       | —       | —            | —    | —    | —    | 0000       |
| 0200                      |                  | 15:0          | —                 | —      |       | —      | —              |       | —      | —        |       |        |         | I2CR1DA | ATA<7:0>     |      |      |      | 0000       |
| 5200                      | I2C2CON          | 31:16         | _                 | —      | _     | —      | —              | _     | —      | —        | —     | —      | —       | —       | _            | —    | —    | —    | 0000       |
|                           |                  | 15:0          | ON                | _      | SIDL  | SCLREL | STRICT         | A10M  | DISSLW | SMEN     | GCEN  | STREN  | ACKDT   | ACKEN   | RCEN         | PEN  | RSEN | SEN  | 1000       |
| 5210                      | I2C2STAT         | 31:16         | _                 | _      | _     | _      | _              | _     | —      | _        | _     | _      | _       | _       | _            | —    | _    | _    | 0000       |
|                           |                  | 15:0          | ACKSTAT           | TRSTAT | —     | —      | —              | BCL   | GCSTAT | ADD10    | IWCOL | I2COV  | D/A     | Р       | S            | R/W  | RBF  | TBF  | 0000       |
| 5220                      | I2C2ADD          | 31:16         | -                 | —      | _     | _      | —              | _     | —      | —        | _     | —      | —       | _       | —            | -    | —    | —    | 0000       |
|                           |                  | 15:0          | -                 | _      | _     | _      | _              | _     |        |          |       |        | ADD     | <9:0>   |              |      |      |      | 0000       |
| 5230                      | I2C2MSK          | 31:16         | -                 | -      | _     | _      | —              | _     | —      | —        | _     | —      | —       | —       | —            | —    | —    | —    | 0000       |
|                           |                  | 15:0          | _                 | _      | _     | _      |                | _     |        |          |       |        | MSK     | <9:0>   |              |      |      |      | 0000       |
| 5240                      | I2C2BRG          | 31:16         | _                 | _      | _     | _      | _              | _     | _      |          |       | _      | _       | _       | _            | _    | _    |      | 0000       |
|                           |                  | 15:0          | _                 | _      |       | _      |                |       |        |          |       | I2C2BR | G<11:0> |         |              |      |      |      | 0000       |
| 5250                      | I2C2TRN          | 31:16         | _                 | _      | _     | _      | _              | _     | _      | _        | _     | —      | —       |         | —<br>TA .7:0 | —    | —    | —    | 0000       |
|                           |                  | 15:0          | _                 | _      | _     | _      | _              | _     | _      | _        |       |        |         | 12CT2DA | ATA<7:0>     |      |      |      | 0000       |
| 5260                      | I2C2RCV          | 31:16         | _                 | _      | —     | _      | _              | _     | —      | —        | _     |        | —       | -       | —            | —    | —    | —    | 0000       |
| Logon                     | dı x – u         | 15:0          | —<br>Divalue on P |        |       |        | )' Reset value |       |        | —        |       |        |         | I2CR2DA | AIA :U       |      |      |      | 0000       |

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

|                               | 1 1              |           | LVIOL      |       | 1001  |       | <i>'</i> ] |       |      |        |               |        |        |        |         |        |        |        | <b>-</b>  |
|-------------------------------|------------------|-----------|------------|-------|-------|-------|------------|-------|------|--------|---------------|--------|--------|--------|---------|--------|--------|--------|-----------|
| ess                           |                  |           |            |       |       |       |            |       |      | Bi     | its           |        |        |        |         |        |        |        |           |
| Virtual Addr<br>(BF88_#)      | Register<br>Name | Bit Range | 31/15      | 30/14 | 29/13 | 28/12 | 27/11      | 26/10 | 25/9 | 24/8   | 23/7          | 22/6   | 21/5   | 20/4   | 19/3    | 18/2   | 17/1   | 16/0   | All Reset |
| 2000                          |                  | 31:16     | _          | -     | _     | —     |            | -     | _    | _      |               | —      | —      |        |         | —      |        | -      | 0000      |
| 3260                          | DCH2DPTR         | 15:0      | —          | —     | _     | —     | _          | _     | —    | _      |               |        |        | CHDPT  | R<7:0>  |        |        |        | 0000      |
| 2270                          | DCH2CEIZ         | 31:16     |            | —     | —     | —     | —          | —     | —    | —      | _             | —      | —      | —      | —       | —      | —      | —      | 0000      |
| 3270                          | DCH2COIZ         | 15:0      | —          | —     | —     | —     | _          | _     | _    | —      |               |        |        | CHCSI  | Z<7:0>  |        |        |        | 0000      |
| 2200                          |                  | 31:16     |            | —     | —     | —     | —          | —     | —    | —      | _             | —      | —      | —      | —       | —      | —      | —      | 0000      |
| 3200                          | DCH2CPTK         | 15:0      |            | —     | —     | —     | —          | —     | —    | —      |               |        |        | CHCPT  | R<7:0>  |        |        |        | 0000      |
| 2200                          |                  | 31:16     | —          | —     | —     | —     | _          | _     | _    | —      | _             | —      | —      | _      | —       | —      | —      | —      | 0000      |
| 3290 DCH2DAI 15:0 CHPDAT<7:0> |                  |           |            |       |       |       |            |       |      |        | 0000          |        |        |        |         |        |        |        |           |
| 2240                          |                  | 31:16     | _          | -     | _     | —     | —          | -     | _    | _      | —             | _      | —      | _      | _       | —      | —      | _      | 0000      |
| 32AU                          | DCH3CON          | 15:0      | _          | —     | _     | —     |            | —     | _    | CHCHNS | CHEN          | CHAED  | CHCHN  | CHAEN  |         | CHEDET | CHPR   | l<1:0> | 0000      |
| 32B0                          |                  | 31:16     | _          | —     | _     | _     | -          | —     | _    | _      | - CHAIRQ<7:0> |        |        |        |         |        |        | 00FF   |           |
| 5200                          | Densecon         | 15:0      |            |       |       | CHSIR | Q<7:0>     |       |      |        | CFORCE        | CABORT | PATEN  | SIRQEN | AIRQEN  | -      | -      | -      | FF00      |
| 3200                          | DCH3INT          | 31:16     | —          | -     | _     | —     |            | -     | —    | _      | CHSDIE        | CHSHIE | CHDDIE | CHDHIE | CHBCIE  | CHCCIE | CHTAIE | CHERIE | 0000      |
| 3200                          | DOMINI           | 15:0      | —          | —     | —     | -     |            | —     | —    | —      | CHSDIF        | CHSHIF | CHDDIF | CHDHIF | CHBCIF  | CHCCIF | CHTAIF | CHERIF | 0000      |
| 3200                          |                  | 31:16     | 31:16 0000 |       |       |       |            |       |      |        |               |        |        |        |         | 0000   |        |        |           |
| 5200                          | DOI 1300A        | 15:0      |            |       |       |       |            |       |      | 0100/  | (<01.02       |        |        |        |         |        |        |        | 0000      |
| 32E0                          |                  | 31:16     |            |       |       |       |            |       |      | CHDSA  | <31.0>        |        |        |        |         |        |        |        | 0000      |
| 0220                          | 20110207         | 15:0      |            | -     |       | -     |            | -     |      | 01120  |               |        | -      |        |         | -      |        |        | 0000      |
| 32F0                          | DCH3SSIZ         | 31:16     | _          | —     | —     | —     | _          | —     | —    | —      | —             | —      | —      | —      | —       | —      | —      | —      | 0000      |
| 02.0                          | 201100012        | 15:0      | —          | —     | —     | —     | —          | —     | —    | —      |               |        |        | CHSSI  | Z<7:0>  |        |        |        | 0000      |
| 3300                          | DCH3DSIZ         | 31:16     | —          | -     | —     | —     | _          | —     | —    | —      | —             | —      | —      | —      | —       | —      | —      | —      | 0000      |
|                               |                  | 15:0      | _          | —     | —     | —     | —          | —     |      | —      |               |        |        | CHDSI  | Z<7:0>  |        |        |        | 0000      |
| 3310                          | DCH3SPTR         | 31:16     | _          |       | —     | _     |            | -     | -    | —      | —             | —      | —      | —      | —       | —      | —      | —      | 0000      |
|                               |                  | 15:0      | _          | —     | —     | —     | —          | —     |      | —      |               |        |        | CHSTI  | R<7:0>  |        |        |        | 0000      |
| 3320                          | DCH3DPTR         | 31:16     | _          | —     | —     | —     | —          | —     |      | —      | —             | —      | —      | —      | —       | —      | —      | —      | 0000      |
|                               |                  | 15:0      | _          |       | —     | _     |            | -     | -    | —      |               |        |        | CHDPT  | R<7:0>  |        |        |        | 0000      |
| 3330                          | DCH3CSIZ         | 31:16     | _          | -     | —     | —     |            | -     | —    | —      | —             | —      | —      | —      | —       | —      | —      | —      | 0000      |
|                               |                  | 15:0      | _          | _     | —     | —     | —          | _     | —    | —      |               |        |        | CHCSI  | Z<7:0>  |        |        |        | 0000      |
| 3340                          | DCH3CPTR         | 31:16     | _          | _     | —     |       | _          | _     | _    | —      | —             | —      | —      | —      | —       | —      | —      | —      | 0000      |
|                               |                  | 15:0      | _          | _     | —     | —     | —          | _     | —    | —      |               |        |        | CHCPT  | R<7:0>  |        |        |        | 0000      |
| 3350                          | DCH3DAT          | 31:16     | —          | _     | —     | —     | _          | _     | —    | —      | —             | —      | —      | _      | —       | —      | —      | —      | 0000      |
|                               |                  | 15:0      |            | -     | —     |       | —          | —     | —    | —      |               |        |        | CHPDA  | \T<7:0> |        |        |        | 0000      |

### TABLE 4-16: DMA CHANNELS 0-3 REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES ONLY<sup>(1)</sup> (CONTINUED)

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers except DCHxSPTR, DCHxDPTR and DCHxCPTR have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX3XX/4XX

### TABLE 4-25: PORTD REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY<sup>(1)</sup>

| ess                      |                  | 0         | Bits    |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |            |
|--------------------------|------------------|-----------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|
| Virtual Addr<br>(BF88_#) | Register<br>Name | Bit Range | 31/15   | 30/14   | 29/13   | 28/12   | 27/11   | 26/10   | 25/9   | 24/8   | 23/7   | 22/6   | 21/5   | 20/4   | 19/3   | 18/2   | 17/1   | 16/0   | All Resets |
| 6000                     | TRICD            | 31:16     | —       | —       | —       | —       | —       | —       | —      | -      | —      | —      | —      | —      | —      | —      | -      | —      | 0000       |
| 0000                     | TRISD            | 15:0      | TRISD15 | TRISD14 | TRISD13 | TRISD12 | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | FFFF       |
| 6000                     |                  | 31:16     | —       | —       | —       | —       | —       | —       | —      | _      | —      | —      | —      | —      | —      | —      | _      | —      | 0000       |
| 0000                     | FORTD            | 15:0      | RD15    | RD14    | RD13    | RD12    | RD11    | RD10    | RD9    | RD8    | RD7    | RD6    | RD5    | RD4    | RD3    | RD2    | RD1    | RD0    | xxxx       |
| 60E0                     |                  | 31:16     | —       | —       | —       | _       | _       | _       | _      | —      | —      | —      | —      | —      | —      | —      | _      | _      | 0000       |
| 00EU                     | LAID             | 15:0      | LATD15  | LATD14  | LATD13  | LATD12  | LATD11  | LATD10  | LATD9  | LATD8  | LATD7  | LATD6  | LATD5  | LATD4  | LATD3  | LATD2  | LATD1  | LATD0  | xxxx       |
| 6050                     | 0000             | 31:16     | —       | —       | —       | —       | _       | —       | —      | _      | —      | —      | —      | —      | —      | —      | _      | —      | 0000       |
| 0000                     | ODCD             | 15:0      | ODCD15  | ODCD14  | ODCD13  | ODCD12  | ODCD11  | ODCD10  | ODCD9  | ODCD8  | ODCD7  | ODCD6  | ODCD5  | ODCD4  | ODCD3  | ODCD2  | ODCD1  | ODCD0  | 0000       |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

## TABLE 4-26: PORTD REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY<sup>(1)</sup>

| ess                      |                 |           |       |       |       |       |         |         |        | В      | its    |        |        |        |        |        |        |        |            |
|--------------------------|-----------------|-----------|-------|-------|-------|-------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|
| Virtual Addr<br>(BF88_#) | Registe<br>Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11   | 26/10   | 25/9   | 24/8   | 23/7   | 22/6   | 21/5   | 20/4   | 19/3   | 18/2   | 17/1   | 16/0   | All Resets |
| 6000                     | TRICD           | 31:16     | -     | —     | —     | -     | —       | —       | —      | —      | —      | -      | —      | —      | —      | —      | —      | —      | 0000       |
| 0000                     | TRIGD           | 15:0      | —     | —     | _     | —     | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | OFFF       |
| 6000                     |                 | 31:16     | _     | —     | _     | —     | _       | _       | —      | —      | —      | —      | —      | _      | —      | _      | —      | _      | 0000       |
| 0000                     | FORID           | 15:0      | —     | -     | _     | -     | RD11    | RD10    | RD9    | RD8    | RD7    | RD6    | RD5    | RD4    | RD3    | RD2    | RD1    | RD0    | xxxx       |
| 60E0                     |                 | 31:16     | —     | —     | _     | —     | _       | _       | —      | —      | —      | —      | —      | —      | —      | _      | —      | _      | 0000       |
| UULU                     | LAID            | 15:0      |       | -     | —     | -     | LATD11  | LATD10  | LATD9  | LATD8  | LATD7  | LATD6  | LATD5  | LATD4  | LATD3  | LATD2  | LATD1  | LATD0  | xxxx       |
| 60E0                     | 0000            | 31:16     | _     | —     | _     | _     | _       | _       | —      | —      | —      | _      | _      | _      | —      | _      | —      | —      | 0000       |
| 60F0                     | ODCD            | 15:0      | _     | _     | _     | _     | ODCD11  | ODCD10  | ODCD9  | ODCD8  | ODCD7  | ODCD6  | ODCD5  | ODCD4  | ODCD3  | ODCD2  | ODCD1  | ODCD0  | 0000       |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

#### TABLE 4-39: PREFETCH REGISTERS MAP

| SSS                       |                       | _         |                          |              |            |                |             |             |              | Bit    | S      |      |             |            |        |       |           |        |            |  |      |
|---------------------------|-----------------------|-----------|--------------------------|--------------|------------|----------------|-------------|-------------|--------------|--------|--------|------|-------------|------------|--------|-------|-----------|--------|------------|--|------|
| Virtual Addre<br>(BF88_#) | Register<br>Name      | Bit Range | 31/15                    | 30/14        | 29/13      | 28/12          | 27/11       | 26/10       | 25/9         | 24/8   | 23/7   | 22/6 | 21/5        | 20/4       | 19/3   | 18/2  | 17/1      | 16/0   | All Resets |  |      |
| 4000                      |                       | 31:16     | _                        |              | _          | _              |             | _           | —            | _      |        | —    | —           | _          | —      | _     |           | CHECOH | 0000       |  |      |
| 4000                      | ONECON                | 15:0      | —                        | _            | _          | —              | —           | _           | DCSZ         | <1:0>  | —      | —    | PREFE       | N<1:0>     | —      | I     | PFMWS<2:0 | >      | 0007       |  |      |
| 4010                      |                       | 31:16     | CHEWEN                   | _            |            | —              | —           | _           | _            | —      | _      | —    | —           | _          | —      | —     | —         | —      | 0000       |  |      |
| 1010                      | OTIE/100              | 15:0      | —                        | _            | _          | —              | —           | _           | _            | —      | —      | —    | —           | —          |        | CHEID | )X<3:0>   |        | 00xx       |  |      |
| 4020                      | CHETAG <sup>(1)</sup> | 31:16     | LTAGBOOT LTAG<23:16> xx: |              |            |                |             |             |              |        |        | xxx0 |             |            |        |       |           |        |            |  |      |
| .020                      | 0.12.0.10             | 15:0      |                          |              |            |                |             | LTAG<       | 15:4>        |        |        |      |             |            | LVALID | LLOCK | LTYPE     | —      | xxx2       |  |      |
| 4030                      | CHEMSK <sup>(1)</sup> | 31:16     | —                        | —            | —          | —              | —           | —           | —            | —      | —      | —    | —           |            | —      | —     | —         | —      | 0000       |  |      |
|                           |                       | 15:0      | LMASK<15:5> xxxx         |              |            |                |             |             |              |        |        |      | LMASK<15:5> |            |        |       |           |        |            |  | xxxx |
| 4040                      | CHEW0                 | 31:16     | CHEW0<31:0>              |              |            |                |             |             |              |        |        |      |             |            | xxxx   |       |           |        |            |  |      |
|                           |                       | 15:0      | XXXX                     |              |            |                |             |             |              |        |        |      |             |            |        |       |           |        |            |  |      |
| 4050                      | CHEW1                 | 31:16     |                          |              |            |                |             |             |              | CHEW1  | <31:0> |      |             |            |        |       |           |        | xxxx       |  |      |
|                           |                       | 15:0      |                          |              |            |                |             |             |              |        |        |      |             |            |        |       |           |        | XXXX       |  |      |
| 4060                      | CHEW2                 | 31:16     |                          |              |            |                |             |             |              | CHEW2  | <31:0> |      |             |            |        |       |           |        | XXXX       |  |      |
|                           |                       | 15.0      |                          |              |            |                |             |             |              |        |        |      |             |            |        |       |           |        | xxxx       |  |      |
| 4070                      | CHEW3                 | 15.0      |                          |              |            |                |             |             |              | CHEW3  | <31:0> |      |             |            |        |       |           |        | XXXX       |  |      |
|                           |                       | 31.16     | _                        | _            | _          | _              | _           | _           | _            |        |        |      | C           | HELRU<24:1 | 6>     |       |           |        | 0000       |  |      |
| 4080                      | CHELRU                | 15.0      |                          |              |            |                |             |             |              | CHELRI | <15:0> |      |             |            |        |       |           |        | 0000       |  |      |
|                           |                       | 31:16     |                          |              |            |                |             |             |              | ONEERC | 10.02  |      |             |            |        |       |           |        | xxxx       |  |      |
| 4090                      | CHEHIT                | 15:0      |                          |              |            |                |             |             |              | CHEHIT | <31:0> |      |             |            |        |       |           |        | xxxx       |  |      |
|                           |                       | 31:16     |                          |              |            |                |             |             |              |        |        |      |             |            |        |       |           |        | xxxx       |  |      |
| 40A0                      | CHEMIS                | 15:0      | CHEMIS<31:0>             |              |            |                |             |             |              |        |        |      |             | xxxx       |        |       |           |        |            |  |      |
|                           | 0                     | 31:16     |                          |              |            |                |             |             |              |        |        |      |             |            |        |       |           |        |            |  |      |
| 40C0                      | CHEPFABT              | 15:0      | CHEPFABT<31:0>           |              |            |                |             |             |              |        |        |      |             |            |        |       |           |        |            |  |      |
| Legen                     | <b>d:</b> x = ur      | hknown    | value on Res             | et, — = unir | nplemented | , read as '0'. | Reset value | es are show | n in hexadeo | imal.  |        |      |             |            |        |       |           |        |            |  |      |

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

### 6.0 RESETS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "Resets" (DS61118) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset Pin
- SWR: Software Reset
- WDTR: Watchdog Timer Reset
- BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset

A simplified block diagram of the Reset module is illustrated in Figure 6-1.





### 8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"* Section 6. *"Oscillator Configuration"* (DS61112), which is available from the Microchip web site (www.microchip.com/PIC32).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX oscillator system has the following modules and features:

- A total of four external and internal oscillator options as clock sources
- On-chip PLL (phase-locked loop) with userselectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shut down
- Dedicated on-chip PLL for USB peripheral



### 10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS61117) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32MX (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, and so on) or memory itself.

Following are some of the key features of the DMA controller module:

- · Four Identical Channels, each featuring:
  - Auto-Increment Source and Destination Address Registers
  - Source and Destination Pointers
  - Memory to Memory and Memory to Peripheral Transfers

- Automatic Word-Size Detection:
  - Transfer Granularity, down to byte level
  - Bytes need not be word-aligned at source and destination
- Fixed Priority Channel Arbitration
- Flexible DMA Channel Operating Modes:
  - Manual (software) or automatic (interrupt) DMA requests
  - One-Shot or Auto-Repeat Block Transfer modes
  - Channel-to-channel chaining
- Flexible DMA Requests:
  - A DMA request can be selected from any of the peripheral interrupt sources
  - Each channel can select any (appropriate) observable interrupt as its DMA request source
  - A DMA transfer abort can be selected from any of the peripheral interrupt sources
    Pattern (data) match transfer termination
- Multiple DMA Channel Status Interrupts:
  - DMA channel block transfer complete
  - Source empty or half empty
  - Source empty of hair empty
  - Destination full or half-full
  - DMA transfer aborted due to an external event
  - Invalid DMA address generated
- DMA Debug Support Features:
  - Most recent address accessed by a DMA channel
  - Most recent DMA channel to transfer data
- CRC Generation Module:
  - CRC module can be assigned to any of the available channels
  - CRC module is highly configurable



#### FIGURE 10-1: DMA BLOCK DIAGRAM

### 22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS61104) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1000 kilo samples per second (ksps) conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample-and-Hold Amplifier (SHA)

- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 22-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight, 32-bit output formats when it is read from the result buffer.



#### FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | MILLIMETERS |      |          |      |  |
|--------------------------|-------------|------|----------|------|--|
| Dimensior                | MIN         | NOM  | MAX      |      |  |
| Contact Pitch            | E           |      | 0.50 BSC |      |  |
| Contact Pad Spacing      | C1          |      | 11.40    |      |  |
| Contact Pad Spacing      | C2          |      | 11.40    |      |  |
| Contact Pad Width (X64)  | X1          |      |          | 0.30 |  |
| Contact Pad Length (X64) | Y1          |      |          | 1.50 |  |
| Distance Between Pads    | G           | 0.20 |          |      |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

#### 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging



|                        | Units  | N    | <b>ILLIMETER</b> | S    |  |  |  |
|------------------------|--------|------|------------------|------|--|--|--|
| Dimension              | Limits | MIN  | NOM              | MAX  |  |  |  |
| Number of Pins         | N      |      | 64               |      |  |  |  |
| Pitch                  | е      |      | 0.50 BSC         |      |  |  |  |
| Overall Height         | A      | 0.80 | 0.90             | 1.00 |  |  |  |
| Standoff               | A1     | 0.00 | 0.02             | 0.05 |  |  |  |
| Contact Thickness      | A3     |      | 0.20 REF         |      |  |  |  |
| Overall Width          | E      |      | 9.00 BSC         |      |  |  |  |
| Exposed Pad Width      | E2     | 7.05 | 7.15             | 7.50 |  |  |  |
| Overall Length         | D      |      | 9.00 BSC         |      |  |  |  |
| Exposed Pad Length     | D2     | 7.05 | 7.15             | 7.50 |  |  |  |
| Contact Width          | b      | 0.18 | 0.25             | 0.30 |  |  |  |
| Contact Length         | L      | 0.30 | 0.40             | 0.50 |  |  |  |
| Contact-to-Exposed Pad | K      | 0.20 | -                | -    |  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2