

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx360f512l-80i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES: PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES

Pin	Eull Bin Name
Number	Full Pin Name
A1	PMD4/RE4
A2	PMD3/RE3
A3	TRD0/RG13
A4	PMD0/RE0
A5	PMD8/RG0
A6	PMD10/RF1
A7	ENVREG
A8	Vss
A9	IC5/PMD12/RD12
A10	OC3/RD2
A11	OC2/RD1
B1	No Connect (NC)
B2	RG15
B3	PMD2/RE2
B4	PMD1/RE1
B5	TRD3/RA7
B6	PMD11/RF0
B7	VCAP/VCORE
B8	PMRD/CN14/RD5
B9	OC4/RD3
B10	Vss
B11	SOSCO/T1CK/CN0/RC14
C1	PMD6/RE6
C2	VDD
C3	TRD1/RG12
C4	TRD2/RG14
C4 C5	TRCLK/RA6
C3 C6	No Connect (NC)
C8 C7	
	PMD15/CN16/RD7
C8	OC5/PMWR/CN13/RD4
C9	
C10	SOSCI/CN1/RC13
C11	IC4/PMCS1/PMA14/RD11
D1	T2CK/RC1
D2	PMD7/RE7
D3	PMD5/RE5
D4	Vss
D5	Vss
D6	No Connect (NC)
D7	PMD14/CN15/RD6
D8	CN19/PMD13/RD13
D9	SDO1/OC1/INT0/RD0
D10	No Connect (NC)
D11	SCK1/IC3/PMCS2/PMA15/RD10
E1	T5CK/SDI1/RC4
E2	T4CK/RC3
E3	SCK2/PMA5/CN8/RG6
E4	T3CK/RC2
E5	VDD
E6	PMD9/RG1
E7	Vss

Pin Number	Full Pin Name
E8	SDA1/INT4/RA15
E9	RTCC/IC1/RD8
E10	SS1/IC2/RD9
E11	SCL1/INT3/RA14
F1	MCLR
F2	SDO2/PMA3/CN10/RG8
F3	SS2/PMA2/CN11/RG9
F4	SDI2/PMA4/CN9/RG7
F5	Vss
F6	No Connect (NC)
F7	No Connect (NC)
F8	Vdd
F9	OSC1/CLKI/RC12
F10	Vss
F11	OSC2/CLKO/RC15
G1	INT1/RE8
G2	INT2/RE9
G3	TMS/RA0
G4	No Connect (NC)
G5	VDD
G6	Vss
G7	Vss
G8	No Connect (NC)
G9	TDO/RA5
G10	SDA2/RA3
G11	TDI/RA4
H1	AN5/C1IN+/VBUSON/CN7/RB5
H2	AN4/C1IN-/CN6/RB4
H3	Vss
H4	VDD
H5	No Connect (NC)
H6	VDD
H7	No Connect (NC)
H8	VBUS
H9	Vusb
H10	D+/RG2
H11	SCL2/RA2
J1	AN3/C2IN+/CN5/RB3
J2	AN2/C2IN-/CN4/RB2
J3	PGED2/AN7/RB7
J4	AVdd
J5	AN11/PMA12/RB11
J6	TCK/RA1
J7	AN12/PMA11/RB12
J8	No Connect (NC)
J9	No Connect (NC)
J10	U1TX/RF8
J11	D-/RG3
K1	PGEC1/AN1/CN3/RB1
K2	PGED1/AN0/CN2/RB0
K3	VREF+/CVREF+/PMA6/RA10

	Pin	Number ⁽	1)	Pin	Buffer	
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Ріп Туре	Туре	Description
PGED2	18	27	J3	I/O	ST	Data I/O pin for programming/debugging communication channel 2.
PGEC2	17	26	L1	I	ST	Clock input pin for programming/debugging communication channel 2.
MCLR	7	13	F1	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	19	30	J4	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	L3	Р	Р	Ground reference for analog modules.
Vdd	10, 26, 38	2, 16, 37, 46, 62	C2, C9, E5, F8, G5, H4, H6, K8	Ρ	_	Positive supply for peripheral logic and I/O pins.
Vcore/ Vcap	56	85	B7	Р	_	Capacitor for Internal Voltage Regulator.
Vss	9, 25, 41	15, 36, 45, 65, 75	A8, B10, D4, D5, E7, F10, F5, G6, G7, H3	Ρ		Ground reference for logic and I/O pins.
VREF+	16	29	K3	I	Analog	Analog voltage reference (high) input.
VREF-	15	28	L2	I	Analog	Analog voltage reference (low) input.
	CMOS = CM ST = Schmitt					nalog = Analog input P = Power) = Output I = Input

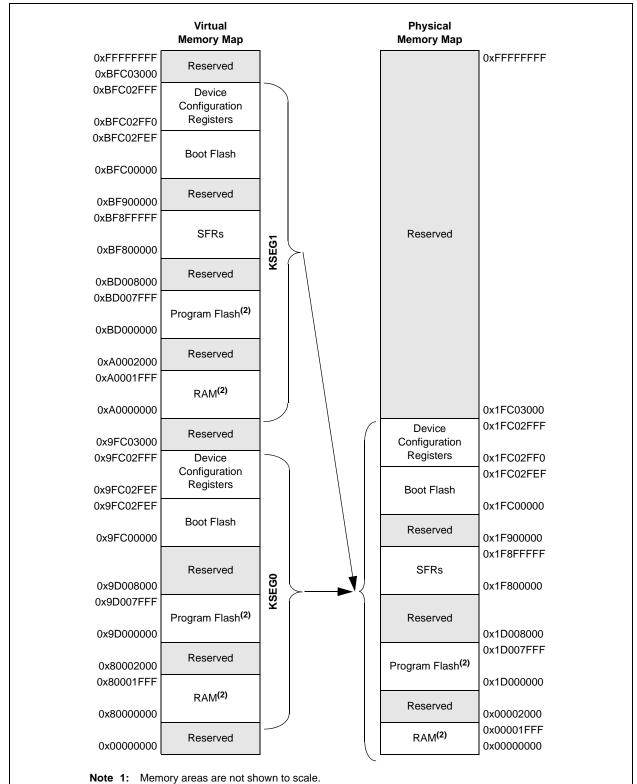
TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)	
		oonnoed/	

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2.11 Referenced Sources

This device data sheet is based on the following individual chapters of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.


Note 1: To access the documents listed below, browse to the documentation section of the PIC32MX460F512L product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS61127)
- Section 2. "CPU" (DS61113)
- Section 3. "Memory Organization" (DS61115)
- Section 4. "Prefetch Cache" (DS61119)
- Section 5. "Flash Program Memory" (DS61121)
- Section 6. "Oscillator Configuration" (DS61112)
- Section 7. "Resets" (DS61118)
- Section 8. "Interrupt Controller" (DS61108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS61114)
- Section 10. "Power-Saving Features" (DS61130)
- Section 12. "I/O Ports" (DS61120)
- Section 13. "Parallel Master Port (PMP)" (DS61128)
- Section 14. "Timers" (DS61105)
- Section 15. "Input Capture" (DS61122)
- Section 16. "Output Compare" (DS61111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS61104)
- Section 19. "Comparator" (DS61110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS61109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS61107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS61106)
- Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS61116)
- Section 27. "USB On-The-Go (OTG)" (DS61126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS61125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS61117)
- Section 32. "Configuration" (DS61124)
- Section 33. "Programming and Diagnostics" (DS61129)

PIC32MX3XX/4XX

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX320F032H AND PIC32MX420F032H DEVICES⁽¹⁾

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	—	—			—	-		_	—	_	-	—		—	SS0	00
1000	INTCOM	15:0		—	—	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	00
1010	INTSTAT ⁽²⁾	31:16	_	_	_		_		_			_			_	_	_	_	00
1010	INIGIAI	15:0	—	_	_				SRIPL<2:0>			_			VEC	<5:0>			00
1020	IPTMR	31:16 15:0					IPTMR<31:0>									00			
		31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1RXIF	SPI1TXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	00
1030	IFS0	15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	00
	1504	31:16	_	_	_	_	_	_	USBIF	FCEIF	_	_	_	_	DMA3IF	DMA2IF	DMA1IF	DMA0IF	00
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2RXIF	SPI2TXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	00
4000	15.00	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1RXIE	SPI1TXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	00
1060	IEC0	15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	00
4070	IEC1	31:16	—	—	_			-	USBIE	FCEIE		—			DMA3IE	DMA2IE	DMA1IE	DMA0IE	00
1070	IECT	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	00
1090	IPC0	31:16	—	—	—	INT0IP<2:0>		INTOIS	S<1:0>	_	—	_		CS1IP<2:0>		CS1IS	S<1:0>	00	
1090	IFCU	15:0	_	-	-	CS0IP<2:0>		CSOIS	i<1:0>	_	-	_		CTIP<2:0>		CTIS	<1:0>	00	
10A0	IPC1	31:16	—	-	-		NT1IP<2:0>		INT1IS	S<1:0>		-	-	OC1IP<2:0>		OC1IS	S<1:0>	00	
IUAU	1101	15:0	—	_	_		IC1IP<2:0>		IC1IS<1:0>			-			T1IP<2:0>		T1IS<1:0>		00
10B0	IPC2	31:16	—	—	—		NT2IP<2:0>		INT2IS<1:0>		—	—	—	OC2IP<2:0>		OC2IS<1:0>		00	
TODO	11 02	15:0	_	—	—		IC2IP<2:0>		IC2IS	<1:0>	_	—	_		T2IP<2:0>		T2IS	<1:0>	00
10C0	IPC3	31:16	_	—	—		NT3IP<2:0>			S<1:0>	_	—	_		OC3IP<2:0>			S<1:0>	00
1000		15:0	_		—		IC3IP<2:0>		IC3IS		_	—	_		T3IP<2:0>		T3IS	<1:0>	00
10D0	IPC4	31:16	_		—		NT4IP<2:0>	•	INT4IS	S<1:0>	_	—	_		OC4IP<2:0>		OC4IS	S<1:0>	00
		15:0	_		—		IC4IP<2:0>		IC4IS		_	—	_		T4IP<2:0>			<1:0>	00
10E0	IPC5	31:16	_	—	_		SPI1IP<2:0>			6<1:0>	_	—	_		OC5IP<2:0>			S<1:0>	00
		15:0	_	—	—		IC5IP<2:0>		IC5IS		—	—	_		T5IP<2:0>			<1:0>	00
10F0	IPC6	31:16	_	—	—		AD1IP<2:0>		AD1IS		—	—	_		CNIP<2:0>			<1:0>	00
		15:0	—	—	—		I2C1IP<2:0>		12C115		—	—	—		U1IP<2:0>			<1:0>	00
1100	IPC7	31:16	—	_	—		SPI2IP<2:0>		SPI2IS		_	—	_		CMP2IP<2:0			S<1:0>	00
		15:0	_	—	—		CMP1IP<2:0		CMP1I		_	—	_		PMPIP<2:0>			S<1:0>	00
1110	IPC8	31:16	_	—	—		RTCCIP<2:0>		RTCCI		—	—	—	F	SCMIP<2:0	>		S<1:0>	00
		15:0	—	—	—		I2C2IP<2:0>			S<1:0>	_	—	—		U2IP<2:0>		U2IS<1:0>		00
1120	IPC9	31:16	_	—	—		MA3IP<2:0		DMA3I		—	—	—	DMA2IP<2:0>			S<1:0>	00	
		15:0	_	_	-		0MA1IP<2:0	>	DMA1	S<1:0>	_	-	_	[DMA0IP<2:0	>	DMA0	S<1:0>	00
1140	IPC11	31:16	_	_	—	_	-	—	—	—	_	_	_	—	-	—	-		000
Legen	L	15:0		—	L —		USBIP<2:0> 0'. Reset val			5<1:0>	—	—	—		FCEIP<2:0>		FCEIS	S<1:0>	000

TABLE 4-2: INTERRUPT REGISTERS MAP FOR PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

Note 1: Except where noted, all registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX3XX/4XX

2: This register does not have associated CLR, SET, and INV registers.

TABLE 4-11: UART1-2 REGISTERS MAP

sse										Bi	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	U1MODE ⁽¹⁾	31:16		-	—	_	_	_	_	_	-	—	_	-	—	—	—	—	0000
0000	OINIODE	15:0	ON	-	SIDL	IREN	RTSMD		UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6010	U1STA ⁽¹⁾	31:16	—	-	—	-	—	-	-	ADM_EN				ADDR	2<7:0>				0000
0010	OTOTA	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6020	U1TXREG	31:16	—	-	—		_	-	-	_	-	-		-	—	—	—	—	0000
0020	UTTAKEG	15:0	—		—			I		TX8				Transmit	Register				0000
6030	U1RXREG	31:16	—		—				1	_		-			_	_	_	—	0000
0030	UINAREG	15:0	—		—					RX8				Receive	Register				0000
6040	U1BRG ⁽¹⁾	31:16	—		_					_		—			_	_	_	—	0000
0040	OTDING	15:0								BRG<	:15:0>								0000
6200	U2MODE ⁽¹⁾	31:16	—	-	—		_	-	-	_	-	-		-	—	—	—	—	0000
0200	OZIVIODE	15:0	ON		SIDL	IREN	RTSMD	I	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6210	U2STA ⁽¹⁾	31:16	—		—				1	ADM_EN				ADDR	l<7:0>				0000
0210	02017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6220	U2TXREG	31:16	—		—			I		-		-	I		_	-	—	—	0000
0220	OZTAREO	15:0	—		—				1	TX8				Transmit	Register				0000
6230	U2RXREG	31:16	—		—		_	_		_	-	_	_		—	—	—	_	0000
0230	UZIXINEO	15:0	—		—			I		RX8	B Receive Register 0					0000			
6240	U2BRG ⁽¹⁾	31:16	—		_		-	_		_	—	—	_		-	—	-	_	0000
0240	OZDING: /	15:0	15:0 BRG<15:0> 0000										0000						

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

TABLE 4-13: ADC REGISTERS MAP (CONTINUED)

ess										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	31:16		ADC Result Word A (ADC1BUFA<31:0>)															
-		15:0		000															
0120	ADC1BUFB	31:16	ADC Browth Word P (ADC4PI JEP -310-)									0000							
9120	ADCIBUEB	15:0		ADC Result Word B (ADC1BUFB<31:0>)									0000						
0400		31:16																	0000
9130	ADC1BUFC	15:0							ADC RE	suit word C	(ADC1BUFC	><31:0>)							0000
04.40		31:16																	0000
9140	ADC1BUFD	15:0							ADC RE	suit word D	(ADC1BUFE)<31:0>)							0000
0450		31:16																	0000
9150	ADC1BUFE	15:0	ADC Result Word E (ADC1BUFE<31:0>)																
0400		31:16											0000						
9160	ADC1BUFF	15:0	ADC Result Word F (ADC1BUFF<31:0>)																

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS61121) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

PIC32MX3XX/4XX devices contain an internal program Flash memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self Programming (RTSP)
- In-Circuit Serial Programming[™] (ICSP[™])
- EJTAG Programming

EXAMPLE 5-1:

 NVMCON = 0x4004;
 // Enable and configure for erase operation

 Wait(delay);
 // Delay for 6 µs for LVDstartup

 NVMKEY = 0xAA996655;
 NVMKEY = 0x556699AA;

 NVMCONSET = 0x8000;
 // Initiate operation

 while(NVMCONbits.WR==1);
 // Wait for current operation to complete

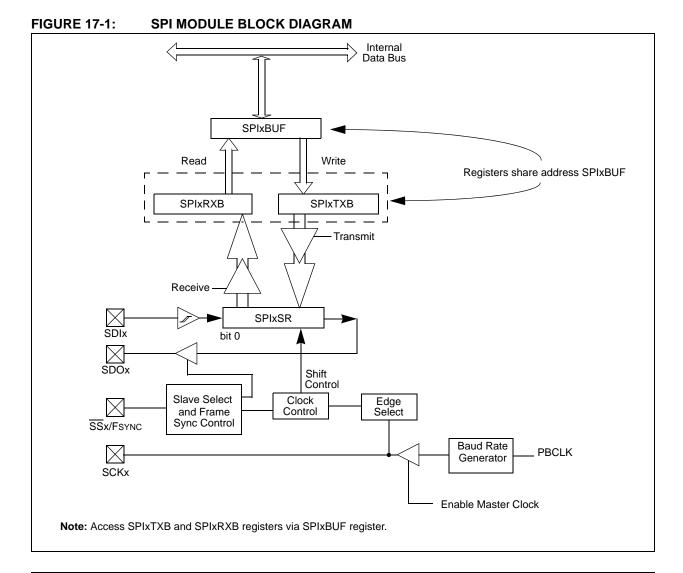
RTSP is performed by software executing from either Flash or RAM memory. EJTAG is performed using the EJTAG port of the device and a EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. RTSP techniques are described in this chapter. The ICSP and EJTAG methods are described in the "*PIC32MX Flash Programming Specification*" (DS61145), which can be downloaded from the Microchip web site.

Note: Flash LVD Delay (LVDstartup) must be taken into account between setting up and executing any Flash command operation. See Example 5-1 for a code example to set up and execute a Flash command operation.

Interrupt Source ⁽¹⁾	IRQ	Vector Number	Interrupt Bit Location							
Highest Natural Order F	Priority		Flag	Enable	Priority	Subpriority				
SPI2E – SPI2 Fault	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>				
SPI2TX – SPI2 Transfer Done	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>				
SPI2RX – SPI2 Receive Done	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>				
U2E – UART2 Error	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>				
U2RX – UART2 Receiver	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>				
U2TX – UART2 Transmitter	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>				
I2C2B – I2C2 Bus Collision Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>				
I2C2S – I2C2 Slave Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>				
I2C2M – I2C2 Master Event	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>				
FSCM – Fail-Safe Clock Monitor	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>				
RTCC – Real-Time Clock and Calendar	47	35	IFS1<15>	IEC1<15>	IPC8<28:26>	IPC8<25:24>				
DMA0 – DMA Channel 0	48	36	IFS1<16>	IEC1<16>	IPC9<4:2>	IPC9<1:0>				
DMA1 – DMA Channel 1	49	37	IFS1<17>	IEC1<17>	IPC9<12:10>	IPC9<9:8>				
DMA2 – DMA Channel 2	50	38	IFS1<18>	IEC1<18>	IPC9<20:18>	IPC9<17:16>				
DMA3 – DMA Channel 3	51	39	IFS1<19>	IEC1<19>	IPC9<28:26>	IPC9<25:24>				
FCE – Flash Control Event	56	44	IFS1<24>	IEC1<24>	IPC11<4:2>	IPC11<1:0>				
USB	57	45	IFS1<25>	IEC1<25>	IPC11<12:10>	IPC11<9:8>				
Lowest Natural Order Priority										

TABLE 7-1: INTERRUPT IRQ AND VECTOR LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX General Purpose – Features" and TABLE 2: "PIC32MX USB – Features" for available peripherals.


17.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS61106) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The PIC32MX SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

Following are some of the key features of this module:

- Master and Slave Modes Support
- Four Different Clock Formats
- Framed SPI Protocol Support
- User Configurable 8-bit, 16-bit and 32-bit Data
 Width
- Separate SPI Data Registers for Receive and Transmit
- Programmable Interrupt Event on every 8-bit, 16-bit and 32-bit Data Transfer
- Operation during CPU Sleep and Idle Mode
- Fast Bit Manipulation using CLR, SET and INV Registers

25.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS61130) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This section describes power-saving for the PIC32MX3XX/4XX. The PIC32MX devices offer a total of nine methods and modes that are organized into two categories that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

25.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK, and by individually disabling modules. These methods are grouped into the following modes:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.
- Peripheral Bus Scaling mode: peripherals are clocked at programmable fraction of the CPU clock (SYSCLK).

25.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which halt the clock to the CPU. These modes operate with all clock sources, as listed below:

• Posc Idle Mode: the system clock is derived from the Posc. The system clock source continues to operate.

Peripherals continue to operate, but can optionally be individually disabled.

- FRC Idle Mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle Mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

• LPRC Idle Mode: the system clock is derived from the LPRC.

Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.

• Sleep Mode: the CPU, the system clock source, and any peripherals that operate from the system clock source, are halted.

Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

25.3 Power-Saving Operation

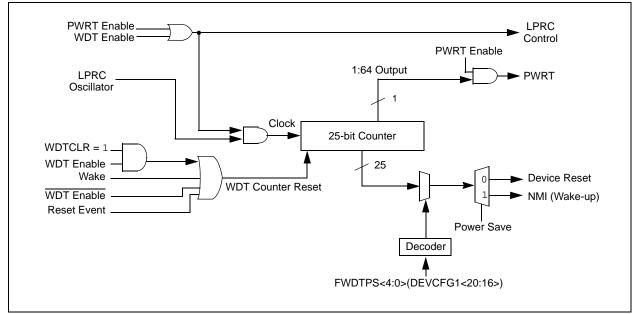
The purpose of all power-saving is to reduce power consumption by reducing the device clock frequency. To achieve this, low-frequency clock sources can be selected. In addition, the peripherals and CPU can be halted or disabled to further reduce power consumption.

25.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device Power-Saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep mode.

Sleep mode includes the following characteristics:

- The CPU is halted.
- The system clock source is typically shut down. See **Section 25.3.2 "Idle Mode**" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit, if enabled, remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator, e.g., RTCC and Timer 1.
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to Section 11.0 "USB On-The-Go (OTG)" for specific details.
- Some modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.


26.2 Watchdog Timer (WDT)

This section describes the operation of the WDT and Power-Up Timer of the PIC32MX3XX/4XX.

The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- · Can wake the device from Sleep or Idle

FIGURE 26-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

28.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

28.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

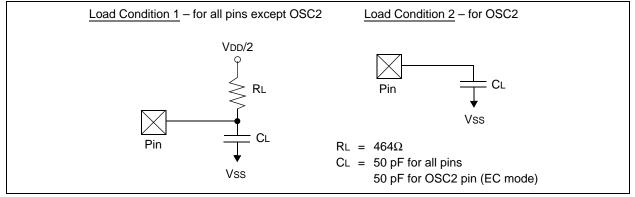
28.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines $\mathsf{PIC32MX3XX/4XX}$ AC characteristics and timing parameters.

FIGURE 29-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

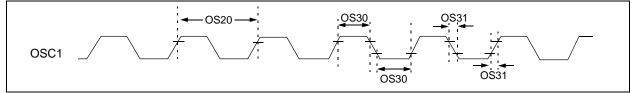


TABLE 29-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

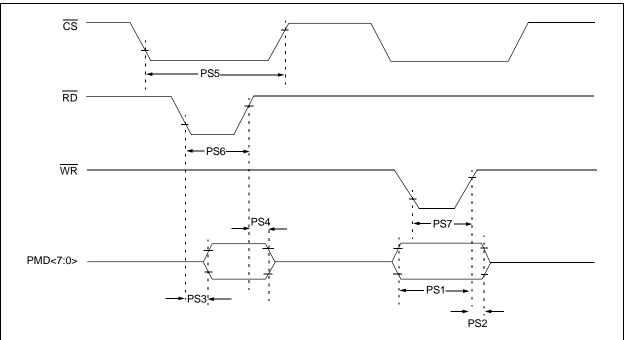
AC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp								
Param. No.	Symbol	Characteristics	Min.	Min. Typical ⁽¹⁾ Max. Units Conditions			Conditions				
DO56	Сю	All I/O pins and OSC2		_	50	pF	EC mode				
DO58	Св	SCLx, SDAx	_	—	400	pF	In l ² C™ mode				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-2: EXTERNAL CLOCK TIMING

TABLE 29-34: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHA	ARACTERIS	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp								
Param. No.	Symbol	Characteristics	Min.	Typical	-40°C ≤1/ Max.	Units	C for V-Temp Conditions				
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-			•				
AD20d	Nr	Resolution	1	0 data bits		bits	(Note 3)				
AD21d	INL	Integral Nonlinearity		_	<±1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)				
AD22d	DNL	Differential Nonlinearity	—	_	<±1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)				
AD23d	Gerr	Gain Error	—	_	<±4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)				
AD24d	EOFF	Offset Error		_	<±2	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)				
AD25d	—	Monotonicity	—	—	_	—	Guaranteed				
Dynami	c Performa	ance									
AD31b	SINAD	Signal to Noise and Distortion	55	58.5	—	dB	(Notes 3, 4)				
AD34b	ENOB	Effective Number of Bits	9.0	9.5		bits	(Notes 3, 4)				


Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with 1 kHz sinewave.

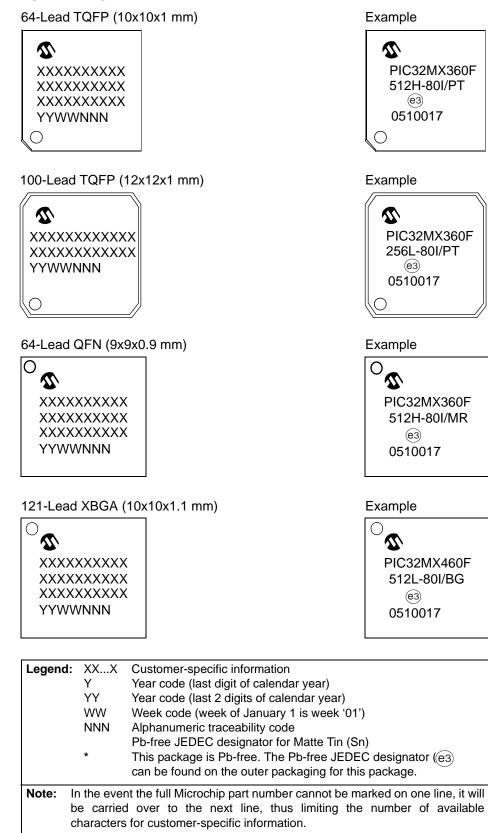
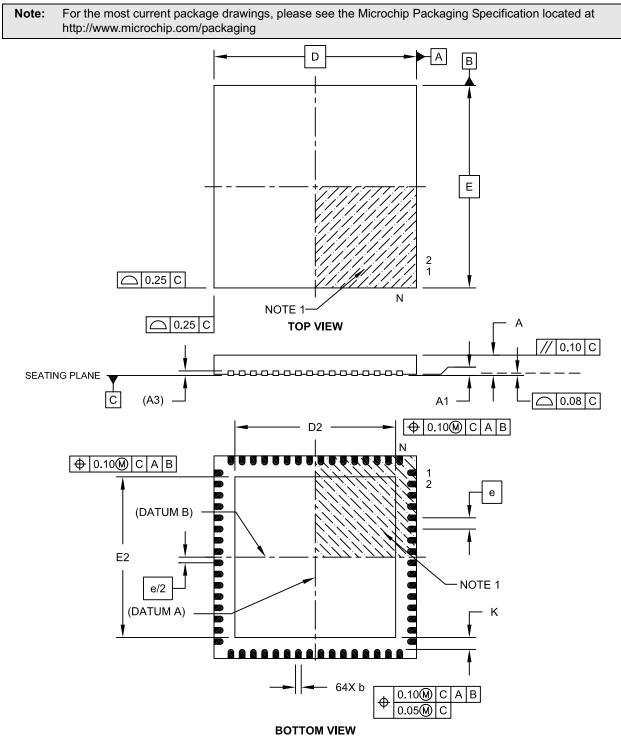

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions			
PS1	TdtV2wrH	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_			
PS2	TwrH2dtl	WR or CS Inactive to Data – In Invalid (hold time)	40		_	ns				
PS3	TrdL2dtV	\overline{RD} and \overline{CS} Active to Data – Out Valid	_		60	ns				
PS4	TrdH2dtl	RD Active or CS Inactive to Data – Out Invalid	0	_	10	ns	_			
PS5	Tcs	CS Active Time	Трв + 40	_	_	ns	—			
PS6	Twr	WR Active Time	Трв + 25	_		ns	—			
PS7	Trd	RD Active Time	Трв + 25	_		ns				

TABLE 29-37: PARALLEL SLAVE PORT REQUIREMENTS


Note 1: These parameters are characterized, but not tested in manufacturing.

30.0 PACKAGING INFORMATION

30.1 Package Marking Information

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Microchip Technology Drawing C04-149C Sheet 1 of 2

DS61143H-page 194

PIC32MX3XX/4XX

W

Watchdog Timer	
Operation	137
WWW Address	209
WWW, On-Line Support	19

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.			
Microchip Brand Architecture Product Groups Flash Memory Family Program Memory Size Pin Count Tape and Reel Flag (if Speed Temperature Range Package	PIC32 MX 3XX F 512 H T - 80 I / PT - XXX	Examples: PIC32MX320F032H-40I/PT: General purpose PIC32MX, 32 KB program memory, 64-pin, Industrial temperature, TQFP package. PIC32MX360F256L-80I/PT: General purpose PIC32MX, 256 KB program memory, 100-pin, Industrial temperature, TQFP package.	
Flash Memory Family			
Architecture	MX = 32-bit RISC MCU core		
Product Groups	3XX = General purpose microcontroller family 4XX = USB		
Flash Memory Family	F = Flash program memory		
Program Memory Size	32 = 32K 64 = 64K 128 = 128K 256 = 256K 512 = 512K		
Speed	40 = 40 MHz 80 = 80 MHz		
Pin Count	H = 64-pin L = 100-pin		
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) V = -40° C to $+105^{\circ}$ C (V-Temp)		
Package	PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) BG = 121-Lead (10x10x1.1 mm) XBGA (Plastic Thin Profile Ball Grid Array)		
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample		