

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx360f512l-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					PIC32 PIC32 PIC32	2MX440 2MX460 2MX460	F128L F256L F512L				
	1	2	3	4	5	6	7	8	9	10	11
	RE4	RE3	RG13	RE0	RG0	RF1		O Vss	RD12	RD2	RD1
;	NC	RG15	RE2	RE1	RA7	RF0	O Vcore/ Vcap	RD5	RD3	O Vss	O RC14
;	RE6	O VDD	RG12	RG14	RA6	NC	RD7	RD4	O Vdd	O RC13	RD11
)	RC1	RE7	RE5	⊖ Vss	⊖ Vss	NC	RD6	RD13	RD0	NC	RD10
	RC4	RC3	RG6	RC2	O Vdd	RG1	⊖ Vss	RA15	RD8	RD9	RA14
-	MCLR	RG8	RG9	RG7	⊖ Vss	NC	NC	O Vdd	O RC12	⊖ Vss	O RC15
6	RE8	RE9	RA0	NC	O Vdd	⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4
•	O RB5	O RB4	⊖ Vss	O Vdd	NC	O Vdd	NC	V BUS	О Vusb	RG2	RA2
,	O RB3	O RB2	O RB7	O AVdd	O RB11	O RA1	O RB12	NC	NC	RF8	O RG3
c	O RB1	O RB0	O RA10	O RB8	NC	R F12	O RB14	O Vdd	RD15	RF3	RF2
-	O RB6	O RA9) AVss	O RB9	O RB10	R F13	O RB13	O RB15	RD14	RF4	RF5

Pin Diagrams (Continued)

3.2 Architecture Overview

The MIPS32[®] M4K[®] Processor Core contains several logic blocks working together in parallel, providing an efficient high performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e Support
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32[®] M4K[®] Processor Core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit general purpose registers used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Bypass multiplexers used to avoid stalls when executing instructions streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and Store Aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32[®] M4K[®] Processor Core includes a multiply/divide unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32MX core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16bit-wide rs, 15 iterations are skipped, and for a 24-bitwide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32MX core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

PIC32MX3XX/4XX

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX320F032H AND PIC32MX420F032H DEVICES⁽¹⁾

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

PIC32MX3XX/4XX

FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX320F128H AND PIC32MX320F128L DEVICES⁽¹⁾

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

s		-								в	its								
es		ø		1	1		1	r		В	115	r	r	r			r	r	Ś
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1000		31:16	—	—	—	—	—	—	-	—	—	—	—	—	—	—	—	SS0	0000
1000	INTCON	15:0	—	—	—	MVEC	_		TPC<2:0>		—	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT(2)	31:16	—	—	—		-	—	-	—	—	—	—	—			—	—	0000
1010		15:0	—	—	—	_	—		SRIPL<2:0>	•	—	—			VEC	<5:0>			0000
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								0000
		31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1RXIF	SPI1TXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
1030	IFS0	15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
4040	1504	31:16	_	_	—	_	_	_	—	FCEIF	_	_	_	_	_	_	_	_	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2RXIF	SPI2TXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
4000	15.00	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1RXIE	SPI1TXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
1060	IEC0	15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
1070		31:16	—	—	—	-	—	—	—	FCEIE	—	—	—	—			—	—	0000
1070	IECT	15:0	RTCCIE	FSCMIE	I2C2MIE	—	—		—	—	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
1000	IPCO	31:16	_	_	-		INT0IP<2:0>	•	INTOIS	S<1:0>	-	-			CS1IP<2:0>		CS1IS	S<1:0>	0000
1090	IFCU	15:0	_	—	_		CS0IP<2:0>		CSOIS	S<1:0>	—	—	—		CTIP<2:0>		CTIS	<1:0>	0000
1040	IPC1	31:16	—	—	—		INT1IP<2:0>	•	INT1IS	S<1:0>	_	_	_		OC1IP<2:0>		OC1IS	6<1:0>	0000
10/10	11 01	15:0	—	—	—		IC1IP<2:0>		IC1IS	i<1:0>	_	_	_		T1IP<2:0>		T1IS	<1:0>	0000
10B0	IPC2	31:16	—	—	—		INT2IP<2:0>	•	INT2IS	S<1:0>	_				OC2IP<2:0>		OC2IS	S<1:0>	0000
TOBO	11 02	15:0	—	—	—		IC2IP<2:0>		IC2IS	<1:0>	—	—	—		T2IP<2:0>		T2IS	<1:0>	0000
10C0	IPC3	31:16	—	—	-		INT3IP<2:0>	•	INT3IS	S<1:0>	_	_	_		OC3IP<2:0>		OC3IS	S<1:0>	0000
		15:0	—	—	—		IC3IP<2:0>		IC3IS	i<1:0>	_	—	_		T3IP<2:0>		T3IS	<1:0>	0000
10D0	IPC4	31:16	—	—	—		INT4IP<2:0>	•	INT4IS	S<1:0>	—	—			OC4IP<2:0>		OC4IS	S<1:0>	0000
		15:0	—	_	—		IC4IP<2:0>		IC4IS	<1:0>	—	—	_		T4IP<2:0>		T4IS	<1:0>	0000
10E0	IPC5	31:16	_	_	_		SPI1IP<2:0>	•	SPI1IS	5<1:0>	_	_	_		OC5IP<2:0>		OC5IS	5<1:0>	0000
		15:0			_		IC5IP<2:0>		IC5IS	6<1:0>			_		15IP<2:0>		1515	<1:0>	0000
10F0	IPC6	31:16			_		AD1IP<2:0>		AD1IS	5<1:0>			_		CNIP<2:0>		CNIS	<1:0>	0000
		15:0	_	_	_			•		5<1:0>							0115 CMD0	<1:0>	0000
1100	IPC7	31:16	_	_	_		SPIZIP<2:0>	•	SPIZE	5<1:0>				(>		5<1:0>	0000
-		15:0	_			(>	DIVIPTI	S<1:0>	_	_	_				FINIPE	S<1:U>	0000
1110 IPC8 15:0						1	120210-2-0-	<i>></i>	120210	3<1.U>				F	11210-2.0-	2	LIDIE	2<1.0>	0000
<u> </u>		31.16							12021						0215<2.0>		0215		0000
1140	IPC11	15.0	_				_	_			_			_	FCEIP-2:0>	_	FOEIS	 S<1:0>	0000
1	1	15.0															TOER	~	0000

TABLE 4-4: INTERRUPT REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H AND PIC32MX320F128L DEVICES ONLY⁽¹⁾

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register does not have associated CLR, SET, and INV registers.

TABLE 4-27: PORTE REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess										Bi	ts								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	TDICE	31:16	—	—	—	—	—	—	—	-	-	—	—	—	—	—	—		0000
0100	TRISE	15:0	—	_	—	—	_	—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
6110	DODTE	31:16	_	-	-	—	-	-	-	-	-	-	-	-	-	_	_	_	0000
0110	FORTE	15:0	—	_	—	—	_	—	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6100		31:16	—	_	—	—	_	—	_	—	_	—	—	—	—	_	_		0000
6120	LATE	15:0	_	—	—	—	—	—	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6120	ODCE	31:16	—	_	—	—	_	—	_	—	_	—	—	—	—	_	_		0000
0130	ODCE	15:0	_	_	_	_	_	_	ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PORTE REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, **TABLE 4-28:** PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H **DEVICES ONLY⁽¹⁾**

ess										В	its								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	TDICE	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0100	TRISE	15:0	—	_	_	—	_	_	—	—	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
6110	DODTE	31:16	—	_	_	—	_	_	—	—	—	—	_	—	_	—	_	_	0000
0110	PURIE	15:0	_	—	_	_	_	—	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6120		31:16	—	_	_	—	_	_	—	—	—	—	_	—	_	—	_	_	0000
0120	LATE	15:0	—	_	_	—	_	_	—	—	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6120	ODCE	31:16	—	-	-	-	_	-	-	-	-	-	_	-	-	-	_	-	0000
0130	ODCE	15:0	_	_		_		_	_	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000

Legend

unimplemented, read as '0'. Reset values are shown in hexadecimal

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 4-35: CHANGE NOTICE AND PULL-UP REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess										Bi	ts								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	CNCON	31:16	—	—	_	—	_	_	_	_	—	_	_	_	_	—	—		0000
0100	CINCOIN	15:0	ON	-	SIDL	-	-	-			-	-	-	-		-	-		0000
6100	CNEN	31:16	-	-	-	_	_	-	-	-	-	_	CNEN21	CNEN20	CNEN19	CNEN18	CNEN17	CNEN16	0000
0100	CINEIN	15:0	CNEN15	CNEN14	CNEN13	CNEN12	CNEN11	CNEN10	CNEN9	CNEN8	CNEN7	CNEN6	CNEN5	CNEN4	CNEN3	CNEN2	CNEN1	CNEN0	0000
61E0		31:16	—	-	-	_	_	-	-	-	-	_	CNPUE21	CNPUE20	CNPUE19	CNPUE18	CNPUE17	CNPUE16	0000
DIEU	CINPUE	15:0	CNPUE15	CNPUE14	CNPUE13	CNPUE12	CNPUE11	CNPUE10	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE1	0000
Logon	d. v _	unknow	un voluo on	Pocot - I	inimplomont	ad road ac	'0' Pocot vo	luce are cho	wn in hovod	onimal									

Legend unimplemented, read as '0'. Reset values are shown in hexadecimal

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information

TABLE 4-36: CHANGE NOTICE AND PULL-UP REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY⁽¹⁾

ess										Bi	ts								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	CNICON	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
6100	CINCOIN	15:0	ON	_	SIDL	_	_	—	_	_	_	—	—	_	_	—	—	_	0000
C4 D0		31:16			—			_	_			—	—	—		CNEN18	CNEN17	CNEN16	0000
61D0	CINEIN	15:0	CNEN15	CNEN14	CNEN13	CNEN12	CNEN11	CNEN10	CNEN9	CNEN8	CNEN7	CNEN6	CNEN5	CNEN4	CNEN3	CNEN2	CNEN1	CNEN0	0000
6150		31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	CNPUE18	CNPUE17	CNPUE16	0000
DIEU	CINPUE	15:0	CNPUE15	CNPUE14	CNPUE13	CNPUE12	CNPUE11	CNPUE10	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE1	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information

TABLE 4-42: DEVICE AND REVISION ID SUMMARY

ess		é								Bi	ts								ŝ
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
F000		31:16		VER	<3:0>							DEVID	<27:16>						xxxx
F220	DEVID	15:0		DEVID<15:0> XXXX															
Legend	d: x = u	nknown	value on R	eset, — = ur	nimplemente	d, read as '	'. Reset valu	ues are shov	vn in hexade	ecimal.									

Interrupt Source ⁽¹⁾	IRQ	Vector Number		Interrupt	Bit Location	
Highest Natural Order F	Priority		Flag	Enable	Priority	Subpriority
SPI2E – SPI2 Fault	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>
SPI2TX – SPI2 Transfer Done	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>
SPI2RX – SPI2 Receive Done	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>
U2E – UART2 Error	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>
U2RX – UART2 Receiver	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>
U2TX – UART2 Transmitter	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>
I2C2B – I2C2 Bus Collision Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>
I2C2S – I2C2 Slave Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>
I2C2M – I2C2 Master Event	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>
FSCM – Fail-Safe Clock Monitor	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>
RTCC – Real-Time Clock and Calendar	47	35	IFS1<15>	IEC1<15>	IPC8<28:26>	IPC8<25:24>
DMA0 – DMA Channel 0	48	36	IFS1<16>	IEC1<16>	IPC9<4:2>	IPC9<1:0>
DMA1 – DMA Channel 1	49	37	IFS1<17>	IEC1<17>	IPC9<12:10>	IPC9<9:8>
DMA2 – DMA Channel 2	50	38	IFS1<18>	IEC1<18>	IPC9<20:18>	IPC9<17:16>
DMA3 – DMA Channel 3	51	39	IFS1<19>	IEC1<19>	IPC9<28:26>	IPC9<25:24>
FCE – Flash Control Event	56	44	IFS1<24>	IEC1<24>	IPC11<4:2>	IPC11<1:0>
USB	57	45	IFS1<25>	IEC1<25>	IPC11<12:10>	IPC11<9:8>
		Lowest Na	tural Order Pri	ority		

TABLE 7-1: INTERRUPT IRQ AND VECTOR LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX General Purpose – Features" and TABLE 2: "PIC32MX USB – Features" for available peripherals.

PIC32MX3XX/4XX

NOTES:

PIC32MX3XX/4XX

NOTES:

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS61107) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The UART module is one of the serial I/O modules available in PIC32MX3XX/4XX family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols such as RS-232, RS-485, LIN 1.2 and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, odd or no parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 20 Mbps at 80 MHz
- 4-level-deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-level-deep FIFO Receive Data Buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt only on address detect (9th bit = 1)
- Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS61125) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. The following are some of the key features of this module:

- Time: Hours, Minutes and Seconds
- 24-Hour Format (Military Time)
- Visibility of One-Half-Second Period
- Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are configurable for Half of a Second, One Second, 10 Seconds, One Minute, 10 Minutes, One Hour, One Day, One Week, One Month and One Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- Leap Year Correction
- BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Calibration Range: ±0.66 Seconds Error per Month
- · Calibrates up to 260 ppm of Crystal Error
- Requirements: External 32.768 kHz Clock Crystal
- Alarm Pulse or Seconds Clock Output on RTCC pin

FIGURE 21-1: RTCC BLOCK DIAGRAM

25.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS61130) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This section describes power-saving for the PIC32MX3XX/4XX. The PIC32MX devices offer a total of nine methods and modes that are organized into two categories that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

25.1 Power-Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK, and by individually disabling modules. These methods are grouped into the following modes:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.
- Peripheral Bus Scaling mode: peripherals are clocked at programmable fraction of the CPU clock (SYSCLK).

25.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which halt the clock to the CPU. These modes operate with all clock sources, as listed below:

• Posc Idle Mode: the system clock is derived from the Posc. The system clock source continues to operate.

Peripherals continue to operate, but can optionally be individually disabled.

- FRC Idle Mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle Mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

• LPRC Idle Mode: the system clock is derived from the LPRC.

Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.

• Sleep Mode: the CPU, the system clock source, and any peripherals that operate from the system clock source, are halted.

Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

25.3 Power-Saving Operation

The purpose of all power-saving is to reduce power consumption by reducing the device clock frequency. To achieve this, low-frequency clock sources can be selected. In addition, the peripherals and CPU can be halted or disabled to further reduce power consumption.

25.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device Power-Saving operating modes. The CPU and most peripherals are halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep mode.

Sleep mode includes the following characteristics:

- The CPU is halted.
- The system clock source is typically shut down. See **Section 25.3.2 "Idle Mode**" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit, if enabled, remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator, e.g., RTCC and Timer 1.
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to Section 11.0 "USB On-The-Go (OTG)" for specific details.
- Some modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC32MX3XX/4XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX3XX/4XX are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings (Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on VCORE with respect to Vss	0.3V to 2.0V
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

- **Note 1:** Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 29-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

DC CHAR	ACTERISTIC	cs	Standard (unless Operatin	d Operating Conditions: 2.3V t otherwise stated) Ig temperature -40°C ≤TA ≤+85 -40°C ≤TA ≤+10	o 3.6V i°C for Indus 95°C for V-Te	trial mp	
Param. No.	Typical ⁽³⁾	Max.	Units		Conditions		
Operating	Current (ID	D) ^(1,2)					
DC20	8.5	13	mA	Code executing from Flash	-40°C, +25°C, +85°C	_	4 MHz
	9	15			+105⁰C		
DC20c	4.0		mA	Code executing from SRAM	—		
DC21	23.5	32	mA	Code executing from Flash			20 MHz
DC21c	16.4	_	mA	Code executing from SRAM			(Note 4)
DC22	48	61	mA	Code executing from Flash			60 MHz
DC22c	45		mA	Code executing from SRAM			(Note 4)
DC23	55	75	mA	Code executing from Flash	-40°C, +25°C, +85°C	2.3V	80 MHz
	60	100			+105⁰C		
DC23c	55	_	mA	Code executing from SRAM	_	_	
DC24	—	100	μA	—	-40°C		
DC24a	—	130	μA	—	+25°C	2.21/	
DC24b	—	670	μA	—	+85°C	2.3V	
DC24c	—	850	μA	—	+105⁰C		
DC25	94	_	μA	—	-40°C		
DC25a	125	_	μA	—	+25°C	2 21/	
DC25b	302		μA	—	+85°C	3.3V	(Note 4)
DC25d	400		μA	—	+105⁰C		(1010 4)
DC25c	71		μA	Code executing from SRAM	_		
DC26	_	110	μA		-40°C		
DC26a	—	180	μA	—	+25°C	3 6\/	
DC26b		700	μΑ	—	+85°C	3.0 v	
DC26c	—	900	μΑ	_	+105°C		

TABLE 29-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type as well as temperature can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by external square wave from rail to rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD.
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines $\mathsf{PIC32MX3XX/4XX}$ AC characteristics and timing parameters.

FIGURE 29-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 29-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHA	RACTER	ISTICS	Standa (unless Opera	ard Operatin s otherwise s ting tempera	n g Con estated) ature -	ditions: 40°C ≤⊺ 40°C ≤⊺	2.3V to 3.6V ΓΑ ≤+85°C for Industrial ΓΑ ≤+105°C for V-Temp
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO56	Сю	All I/O pins and OSC2		—	50	pF	EC mode
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C™ mode

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-2: EXTERNAL CLOCK TIMING

TABLE 29-17: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4	—	₅₀ (3) 50 ⁽⁵⁾	MHz MHz	EC (Note 5) ECPLL (Note 4)
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 5)
OS12			4	—	10	MHz	XTPLL (Notes 4, 5)
OS13			10	—	25	MHz	HS (Note 5)
OS14			10	—	25	MHz	HSPLL (Notes 4, 5)
OS15			32	32.768	100	kHz	Sosc (Note 5)
OS20	Tosc	Tosc = 1/Fosc = Tcy ⁽²⁾	_	—	—	—	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	—	ns	EC (Note 5)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	0.05 x Tosc	ns	EC (Note 5)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 5)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 5)
OS42	Gм	External Oscillator Transconductance	_	12	_	mA/V	VDD = 3.3V TA = +25°C (Note 5)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

- **3:** 40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.
- 4: PLL input requirements: 4 MHz ≤FPLLIN ≤5 MHz (use PLL prescaler to reduce FOSC). This parameter is characterized, but tested at 10 MHz only at manufacturing.
- 5: This parameter is characterized, but not tested in manufacturing.

FIGURE 29-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Тѕск/2	_	_	ns	_
SP71	TscH	SCKx Input High Time ⁽³⁾	Тѕск/2	—		ns	_
SP72	TscF	SCKx Input Fall Time		—		ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time		_	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾		_		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾		—	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	_	—	20	ns	Vdd < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10		—	ns	_
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	175			ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	5	—	25	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 29.0 "Electrical Characteristics"	Added the new V-Temp temperature range (-40°C to +105°C) to the heading of all specification tables.
	Updated the Ambient temperature under bias, updated the Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V, and added Voltage on VBUS with respect to Vss in Absolute Maximum Ratings.
	Added the characteristic, DC5a to Operating MIPS vs. Voltage (see Table 29-1).
	Updated or added the following parameters to the Operating Current (IDD) DC Characteristics: DC20, DC23, DC24c, DC25d, DC26c (see Table 29-5).
	Added the following parameters to the Idle Current (IIDLE) DC Characteristics: DC30c, DC31c, DC32c, DS33c, DC34c, DC35c, and DC36c (see Table 29-6).
	Added the following parameters to the Power-down Current (IPD) DC Characteristics: DC40g, DC40h, DC40i, DC41g, DC41h, DC42g, DC42h, DC42i, DC43h, and DC43i (see Table 29-7).
	Added the Brown-out Reset (BOR) Electrical Characteristics (see Table 29-10).
	Removed all Conditions from the Program Memory DC Characteristics (see Table 29-11).
	Removed the AC Characteristics voltage reference table (Table 29-15).
	Added Note 2 to the PLL Clock Timing Specifications (see Table 29-18).
	Updated the OC/PWM Module Timing Characteristics (see Figure 29-9).
	Added parameter IM51 and Note 3 to the I2Cx Bus Data Timing Requirements (Master Mode) (see Table 29-32).
	Added parameter numbers (AD13, AD14, and AD15) to the ADC Module Specifications (see Table 29-34).
	Updated the 10-bit ADC Conversion Rate Parameters (see Table 29-35).
	Updated parameter AD57 (TSAMP) in the Analog-to-Digital Conversion Timing Requirements (see Table 29-36).
	Updated the Conditions for parameters USB313, USB318, and USB319 in the OTG Electrical Specifications (see Table 29-40).
Section 30.0 "Packaging Information"	Updated the 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] packing diagram.
Product Identification System	Added the new V-Temp (V) temperature information.