

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx360f512lt-80v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the PIC32MX3XX/4XX devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX3XX/4XX family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

	Pin	Number ⁽	1)			
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description
CN0	48	74	B11	I	ST	Change notification inputs.
CN1	47	73	C10	I	ST	Can be software programmed for internal weak
CN2	16	25	K2	I	ST	pull-ups on all inputs.
CN3	15	24	K1	I	ST	
CN4	14	23	J2	I	ST	
CN5	13	22	J1	I	ST	7
CN6	12	21	H2	I	ST	1
CN7	11	20	H1	I	ST	1
CN8	4	10	E3	I	ST	1
CN9	5	11	F4	I	ST	1
CN10	6	12	F2	I	ST	
CN11	8	14	F3	I	ST	
CN12	30	44	L8	I	ST	1
CN13	52	81	C8	I	ST	
CN14	53	82	B8	I	ST	1
CN15	54	83	D7	I	ST	1
CN16	55	84	C7	I	ST	1
CN17	31	49	L10	I	ST	1
CN18	32	50	L11	I	ST	7
CN19	_	80	D8	I	ST	1
CN20	_	47	L9	I	ST	1
CN21	_	48	K9	I	ST	1
IC1	42	68	E9	I	ST	Capture inputs 1-5.
IC2	43	69	E10	I	ST	7
IC3	44	70	D11	I	ST	7
IC4	45	71	C11	I	ST	
IC5	52	79	A9	I	ST	
OCFA	17	26	L1	I	ST	Output Compare Fault A Input.
OC1	46	72	D9	0	—	Output Compare output 1.
OC2	49	76	A11	0	—	Output Compare output 2
OC3	50	77	A10	0	—	Output Compare output 3.
OC4	51	78	B9	0	—	Output Compare output 4.
OC5	52	81	C8	0	—	Output Compare output 5.
OCFB	30	44	L8	I	ST	Output Compare Fault B Input.
INT0	35,46	55,72	H9,D9	Ι	ST	External interrupt 0.
INT1	42	18	61	Ι	ST	External interrupt 1.
INT2	43	19	62	I	ST	External interrupt 2.
Legend:	CMOS = CM	OS compa	tible input	or output	t /	Analog = Analog input P = Power
	SI = Schmitt TTL = TTL in	put buffer	put with Cl	VIUS leve	eis (D = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)	

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

•	Pin	Number ⁽	1)			,
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description
INT3	44	66	E11	I	ST	External interrupt 3.
INT4	45	67	E8	I	ST	External interrupt 4.
RA0	—	17	G3	I/O	ST	PORTA is a bidirectional I/O port.
RA1	—	38	J6	I/O	ST	
RA2	—	58	H11	I/O	ST	
RA3	—	59	G10	I/O	ST	
RA4	_	60	G11	I/O	ST	
RA5	—	61	G9	I/O	ST	
RA6	—	91	C5	I/O	ST	
RA7	_	92	B5	I/O	ST	
RA9	—	28	L2	I/O	ST	
RA10	_	29	K3	I/O	ST	
RA14	_	66	E11	I/O	ST	
RA15	_	67	E8	I/O	ST	
RB0	16	25	K2	I/O	ST	PORTB is a bidirectional I/O port.
RB1	15	24	K1	I/O	ST	
RB2	14	23	J2	I/O	ST	
RB3	13	22	J1	I/O	ST	
RB4	12	21	H2	I/O	ST	
RB5	11	20	H1	I/O	ST	
RB6	17	26	L1	I/O	ST	
RB7	18	27	J3	I/O	ST	
RB8	21	32	K4	I/O	ST	
RB9	22	33	L4	I/O	ST	
RB10	23	34	L5	I/O	ST	
RB11	24	35	J5	I/O	ST	
RB12	27	41	J7	I/O	ST	
RB13	28	42	L7	I/O	ST	
RB14	29	43	K7	I/O	ST	
RB15	30	44	L8	I/O	ST	
RC1	_	6	D1	I/O	ST	PORTC is a bidirectional I/O port.
RC2	_	7	E4	I/O	ST	
RC3	_	8	E2	I/O	ST	
RC4	_	9	E1	I/O	ST	
RC12	39	63	F9	I/O	ST]
RC13	47	73	C10	I/O	ST]
RC14	48	74	B11	I/O	ST]
RC15	40	64	F11	I/O	ST	
Legend:	CMOS = CM ST = Schmitt TTL = TTL in	OS compa Trigger in put buffer	tible input put with Cl	or outpu MOS leve	t A els C	Analog = Analog inputP = Power) = OutputI = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC32MX3XX/4XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VCORE

(see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VCORE)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.8 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of ADC use and ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

TABLE 4-19: FLASH CONTROLLER REGISTERS MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400		31:16	—		—	_				_	_	—					—		0000
1 400		15:0	WR	WREN	WRERR	LVDERR	LVDSTAT				_	_	_			NVMO	P<3:0>		0000
E410		31:16		0000															
1410		15:0									1<01.02								0000
E420		31:16									P-31.0>								0000
1 420		15:0								NVINADL	1(<31.02								0000
E420		31:16									A -21·0>								0000
1430		15:0		NVMIDATA <s1.0></s1.0>															
E440	NVMSRC	31:16																	0000
F440	ADDR	15:0								INVIVISICAL	001<31.0>								0000

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-20: SYSTEM CONTROL REGISTERS MAP^(1,2)

SSS										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	OSCOON	31:16	_		Р	LLODIV<2:0)>	I	-RCDIV<2:0	>	—	SOSCRDY		PBDI	/<1:0>	Р	LLMULT<2:)>	0000
F000	USCCON	15:0	_		COSC<2:0>		—		NOSC<2:0>	>	CLKLOCK	ULOCK	SLOCK	SLPEN	CF	UFRCEN	SOSCEN	OSWEN	0000
E040	OCOTUN	31:16	_	-	—	_	_	—	—	_	_	-	_	_	—	_	_	_	0000
F010	USCIUN	15:0	_		—	—	_	—	-	-	-	-			TUN	<5:0>			0000
0000		31:16	_	-	—	—	—	—	_	-	_	_	-	—	—	—	—	—	0000
0000	WDICON	15:0	ON		—	—	—	—	_	—	_		S	WDTPS<4:0)>	•	_	WDTCLR	0000
F000	DCON	31:16	_		—	—	—	—	—	—	_	—	—	—	—	—	—	_	0000
F600	RCON	15:0	_		_	_	_	_	CMR	VREGS	EXTR	SWR	-	WDTO	SLEEP	IDLE	BOR	POR	0000
5040	DOWDOT	31:16	_		—	—	—	—	_	—	_	—		—	—	—	_	—	0000
F610	RSWRSI	15:0	_		—	—	_	—	-	-	-	-	-	—	—	_	_	SWRST	0000
E220		31:16			•	•			•	ever	V -21:0	•				•	•		0000
F230	SISKEI	15:0								SISKE	1<31.0>								0000
Legen	d: x =	unknow	n value on F	Reset, — = ı	unimplement	ed, read as	'0'. Reset va	lues are sho	wn in hexad	lecimal.									

Note 1: Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

3: This register does not have associated CLR, SET, and INV registers.

TABLE 4-40: RTCC REGISTERS MAP⁽¹⁾

SSS										I	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	PTCCON	31:16	—	—	—	-	_	CAL<11:0>								0000			
0200	RICCON	15:0	ON	_	SIDL	-	_	_	_	_	RTSECSEL	RTCCLKON	—	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210		31:16	_	_	—	—	_	_	_		—	_	_	_	—	_	—	_	0000
0210	RICALKI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMAS	K<3:0>					ARP	۲<7:0>				0000
0000	DTOTIME	31:16		HR10)<3:0>			HR01	<3:0>			MIN10	<3:0>			MIN01	<3:0>		xxxx
0220	RICTIME	15:0		SEC1	0<3:0>			SEC0	1<3:0>		—	—	—	—	—	—	—	—	xx00
0220	PTODATE	31:16		YEAR	10<3:0>			YEARC	1<3:0>			MONTH1	0<3:0>			MONTH	01<3:0>		xxxx
0230	RICDAIE	15:0		DAY1	0<3:0>			DAY0 ⁻	1<3:0>		—	—	—	—		WDAY0	1<3:0>		xx0x
0240		31:16		MIN1	0<3:0>			MIN0 ²	<3:0>			MIN10-	<3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC1	0<3:0>			SEC0	1<3:0>		—	—	—	—	—	_	—	—	xx00
0250		31:16	_	—	_	—	—	—	—	_		MONTH1	0<3:0>			MONTH	01<3:0>		00xx
0250	ALKIVIDATE	15:0		DAY1	0<3:0>			DAY0 ⁻	1<3:0>	•	—	—	—	_		WDAY0	1<3:0>		xx0x

as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 4-41: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess										Bi	ts								
Virtual Addr (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2550		31:16	—			—		—		—	—	—	—		—	_	—		xxxx
2110		15:0	USERID15	USERID14	USERID13	USERID12	USERID11	USERID10	USERID9	USERID8	USERID7	USERID6	USERID5	USERID4	USERID3	USERID2	USERID1	USERID0	xxxx
2554		31:16	_	-	-	-	—	-	-	-	-	-	-	-	-	FF	PLLODIV<2:	0>	xxxx
2664	DEVCFG2	15:0	UPLLEN ⁽¹⁾	—	—	—	—	UP	LLIDIV<2:0;	_ (1)	—	F	PLLMUL<2:()>	—	F	PLLIDIV<2:()>	xxxx
2550		31:16	_	—	—	—	—	—	—	—	FWDTEN	_	—		١	NDTPS<4:0:	>		xxxx
2660	DEVCEGI	15:0	FCKS	N<1:0>	FPBDI	V<1:0>	—	OSCIOFNC	POSCM	OD<1:0>	IESO	-	FSOSCEN	-	-	F	NOSC<2:0	>	xxxx
2EEC		31:16	_			CP	_	_	-	BWP	—	_	_	-	PWP19	PWP18	PWP17	PWP16	xxxx
2170	DEVERGO	15:0	PWP15	PWP14	PWP13	PWP12		_	_	_	_	_	_	_	ICESEL	_	DEBU	G<1:0>	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

These bits are only available on PIC32MX4XX devices. Note 1:

8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"* Section 6. *"Oscillator Configuration"* (DS61112), which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX oscillator system has the following modules and features:

- A total of four external and internal oscillator options as clock sources
- On-chip PLL (phase-locked loop) with userselectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shut down
- Dedicated on-chip PLL for USB peripheral

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS61117) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32MX (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, and so on) or memory itself.

Following are some of the key features of the DMA controller module:

- · Four Identical Channels, each featuring:
 - Auto-Increment Source and Destination Address Registers
 - Source and Destination Pointers
 - Memory to Memory and Memory to Peripheral Transfers

- Automatic Word-Size Detection:
 - Transfer Granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- Fixed Priority Channel Arbitration
- Flexible DMA Channel Operating Modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA Requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 Pattern (data) match transfer termination
- Multiple DMA Channel Status Interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Source empty of hair empty
 - Destination full or half-full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA Debug Support Features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation Module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

14.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS61105) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This family of PIC32MX devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-bit Timer
- Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous Internal 32-bit Timer
- Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer
- Note: Throughout this chapter, references to registers TxCON, TMRx and PRx use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.

14.1 Additional Supported Features

- · Selectable clock prescaler
- Timers operational during CPU Idle
- Time base for input capture and output compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 only)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

FIGURE 18-1: I^2C^{TM} BLOCK DIAGRAM (x = 1 OR 2)

NOTES:

NOTES:

DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED) REGISTER 26-1:

bit 19-12 PWP<7:0>: Program Flash Write-Protect bits

Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages. 11111111 = Disabled 11111110 = 0xBD00 0FFF 11111101 = 0xBD00_1FFF 11111100 = 0xBD00_2FFF 11111011 = 0xBD00_3FFF 11111010 = 0xBD00_4FFF 11111001 = 0xBD00 5FFF 11111000 = 0xBD00_6FFF 11110111 = 0xBD00_7FFF 11110110 = 0xBD00_8FFF 11110101 = 0xBD00_9FFF 11110100 = 0xBD00_AFFF 11110011 = 0xBD00 BFFF 11110010 = 0xBD00_CFFF 11110001 = 0xBD00_DFFF 11110000 = 0xBD00_EFFF 11101111 = 0xBD00_FFFF 01111111 = 0xBD07_FFFF bit 11-4 Reserved: Write '1' ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit 1 = PGEC2/PGED2 pair is used 0 = PGEC1/PGED1 pair is used Reserved: Write '1' DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled) bit 1-0

11 = Debugger disabled

bit 3

bit 2

- 10 =Debugger enabled
- 01 = Reserved (same as '11' setting) 00 = Reserved (same as '11' setting)

28.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

28.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

28.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

28.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

29.1 DC Characteristics

TABLE 29-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temp. Range	Max. Frequency
Characteristic	(in Volts)	(in °C)	PIC32MX3XX/4XX
DC5	2.3V-3.6V	-40°C to +85°C	80 MHz (Note 1)
DC5b	2.3V-3.6V	-40°C to +105°C	80 MHz (Note 1)

Note 1: 40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.

TABLE 29-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-Temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH)	PD		PINT + PI/c)	W
I/O Pin Power Dissipation: I/O = S ({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJ	A	W

TABLE 29-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 121-Pin XBGA (10x10x1.1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θја	43	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θја	47	_	°C/W	1
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θја	28	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 29-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp									
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions					
Operati	ng Voltag	e										
DC10	Vdd	Supply Voltage	2.3	—	3.6	V	—					
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75	_	—	V	_					
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	—	1.95	V	_					
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—		V/ms						

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

NOTES:

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Contacts	N	121		
Contact Pitch	е	0.80 BSC		
Overall Height	A	1.00	1.10	1.20
Standoff	A1	0.25	0.30	0.35
Molded Package Thickness	A2	0.55	0.60	0.65
Overall Width	E	10.00 BSC		
Array Width	E1	8.00 BSC		
Overall Length	D	10.00 BSC		
Array Length	D1	8.00 BSC		
Contact Diameter	b	0.40 TYP		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

3. The outer rows and colums of balls are located with respect to datums A and B.

Microchip Technology Drawing C04-148 Rev B Sheet 2 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E1		0.80 BSC		
Contact Pitch	E2	0.80 BSC			
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Diameter (X121)	X			0.32	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148B

Revision G (April 2010)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits.

This revision also includes minor typographical and formatting changes throughout the data sheet text. Major updates are referenced by their respective section in the following table.

Section Name	Update Description	
"High-Performance, General Purpose and USB 32-bit Flash	Updated the crystal oscillator range to 3 MHz to 25 MHz (see Peripheral Features:)	
Microcontrollers"	Added the 121-pin Ball Grid Array (XBGA) pin diagram.	
	Updated Table 1: "PIC32MX General Purpose – Features" and Table 2: "PIC32MX USB – Features"	
	Added the following tables:	
	 Table 3: "Pin Names: PIC32MX320F128L, PIC32MX340F128L, and PIC32MX360F128L, and PIC32MX360F512L Devices", Table 4: "Pin Names: PIC32MX440F128L, PIC32MX460F256L and PIC32MX460F512L Devices" 	
	Updated the following pins as 5V tolerant:	
	 64-pin QFN (USB): Pin 34 (VBUS), Pin 36 (D-/RG3) and Pin 37 (D+/RG2) 	
	 64-pin TQFP (USB): Pin 34 (Vbus), Pin 36 (D-/RG3), Pin 37 (D+/RG2) and Pin 42 (IC1/RTCC/INT1/RD8) 	
	 100-pin TQFP (USB): Pin 54 (VBUS), Pin 56 (D-/RG3) and Pin 57 (D+/RG2) 	
Section 1.0 "Device Overview"	Updated the Pinout I/O Descriptions table to include the device pin numbers (see Table 1-1)	
Section 2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Updated the Ohm value for the low-ESR capacitor from less than 5 to less than 1 (see Section 2.3.1 "Internal Regulator Mode").	
	Labeled the capacitor on the VCAP/VDDCORE pin as CEFC in Figure 2-1.	
	Changed 10 µF capacitor to CEFC capacitor in Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VCORE)".	
Section 4.0 "Memory Organization"	Updated all register map tables to include the "All Resets" column.	
	Separated the PORT register maps into individual tables (see Table 4-21 through Table 4-34).	
	In addition, formatting changes were made to improve readability.	
Section 12.0 "I/O Ports"	Updated the second paragraph of Section 12.1.2 "Digital Inputs" and removed Table 12-1.	
Section 22.0 "10-bit Analog-to-Digital Converter (ADC)"	Updated the ADC Conversion Clock Period Block Diagram (see Figure 22- 2).	
Section 26.0 "Special Features"	Extensive updates were made to Section 26.2 "Watchdog Timer (WDT)" and Section 26.3 "On-Chip Voltage Regulator".	

TABLE A-2: MAJOR SECTION UPDATES