

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx420f032h-40i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1:PIC32MX GENERAL PURPOSE – FEATURES

GENERAL PURPOSE														
Device	Pins	Packages ⁽²⁾	ZHW	Program Memory (KB)	Data Memory (KB)	Timers/Capture/Compare	Programmable DMA Channels	VREG	Trace	EUART/SPI/I ² C™	10-bit ADC (ch)	Comparators	dSd/dWd	JTAG
PIC32MX320F032H	64	PT, MR	40	32 + 12 ⁽¹⁾	8	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F064H	64	PT, MR	80	64 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F256H	64	PT, MR	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F512H	64	PT, MR	80	512 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT		(00 (0))	10	- /- /-			No	2/2/2	16			
PIC32MX320F128L	121	BG	80	128 + 120	16	5/5/5	0	Yes				2	Yes	Yes
	100	PT		(00 (0)		- /- /-				0/0/0	4.0	~		
PIC32MX340F128L	121	BG	80	128 + 120	32	5/5/5	4	Yes	NO	2/2/2	16	2	Yes	Yes
	100	PT		(1)										
PIC32MX360F256L	121	BG	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes
	100	PT		= (= (= (()		- /- /-				a /a /a				
PIC32MX360F512L	121	BG	80	512 + 12 ⁽¹⁾	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes

Legend: PT = TQFP MR = QFN BG = XBGA

Note 1: This device features 12 KB Boot Flash memory.

2: See Legend for an explanation of the acronyms. See Section 30.0 "Packaging Information" for details.

	PIC32MX440F128L PIC32MX460F256L PIC32MX460F512L										
	1	2	3	4	5	6	7	8	9	10	11
	RE4	RE3	RG13	RE0	RG0	RF1		O Vss	RD12	RD2	RD1
;	NC	RG15	RE2	RE1	RA7	RF0	O Vcore/ Vcap	RD5	RD3	O Vss	O RC14
;	RE6	O VDD	RG12	RG14	RA6	NC	RD7	RD4	O Vdd	O RC13	RD11
)	RC1	RE7	RE5	⊖ Vss	⊖ Vss	NC	RD6	RD13	RD0	NC	RD10
	RC4	RC3	RG6	RC2	O Vdd	RG1	⊖ Vss	RA15	RD8	RD9	RA14
-	MCLR	RG8	RG9	RG7	⊖ Vss	NC	NC	O Vdd	O RC12	⊖ Vss	O RC15
6	RE8	RE9	RA0	NC	O Vdd	⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4
•	O RB5	O RB4	⊖ Vss	O Vdd	NC	O Vdd	NC	V BUS	О Vusb	RG2	RA2
,	O RB3	O RB2	O RB7	O AVdd	O RB11	O RA1	O RB12	NC	NC	RF8	O RG3
c	O RB1	O RB0	O RA10	O RB8	NC	R F12	O RB14	O Vdd	RD15	RF3	RF2
-	O RB6	O RA9) AVss	O RB9	O RB10	R F13	O RB13	O RB15	RD14	RF4	RF5

Pin Diagrams (Continued)

TABLE 4:PIN NAMES: PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L
DEVICES (CONTINUED)

Pin Number	Full Pin Name						
K4	AN8/C1OUT/RB8						
K5	No Connect (NC)						
K6	U2CTS/RF12						
K7	AN14/PMALH/PMA1/RB14						
K8	VDD						
K9	U1RTS/CN21/RD15						
K10	USBID/RF3						
K11	U1RX/RF2						
L1	PGEC2/AN6/OCFA/RB6						
L2	VREF-/CVREF-/PMA7/RA9						

Pin Number	Full Pin Name
L3	AVss
L4	AN9/C2OUT/RB9
L5	AN10/CVREFOUT/PMA13/RB10
L6	U2RTS/RF13
L7	AN13/PMA10/RB13
L8	AN15/OCFB/PMALL/PMA0/CN12/RB15
L9	U1CTS/CN20/RD14
L10	U2RX/PMA9/CN17/RF4
L11	U2TX/PMA8/CN18/RF5

Table of Contents

1.0	Device Overview	21
2.0	Guidelines for Getting Started with 32-bit Microcontrollers	31
3.0	CPU	37
4.0	Memory Organization	43
5.0	Flash Program Memory	85
6.0	Resets	87
7.0	Interrupt Controller	89
8.0	Oscillator Configuration	93
9.0	Prefetch Cache	95
10.0	Direct Memory Access (DMA) Controller	97
11.0	USB On-The-Go (OTG)	99
12.0	I/O Ports	101
13.0	Timer1	103
14.0	Timer2/3 and Timer4/5	105
15.0	Input Capture	107
16.0	Output Compare	109
17.0	Serial Peripheral Interface (SPI)	111
18.0	Inter-Integrated Circuit [™] (I ² C [™])	113
19.0	Universal Asynchronous Receiver Transmitter (UART)	115
20.0	Parallel Master Port (PMP)	119
21.0	Real-Time Clock and Calendar (RTCC)	121
22.0	10-bit Analog-to-Digital Converter (ADC)	123
23.0	Comparator	125
24.0	Comparator Voltage Reference (CVREF)	127
25.0	Power-Saving Features	129
26.0	Special Features	131
27.0	Instruction Set	141
28.0	Development Support	147
29.0	Electrical Characteristics	151
30.0	Packaging Information	191
Index	C	209

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

3.3 Power Management

The MIPS32[®] M4K[®] Processor Core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking power-down mode is through execution of the WAIT instruction. For more information on power management, see Section 25.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX3XX/4XX family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS32[®] M4K[®] Processor Core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard user mode and kernel modes of operation, the core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a debug exception return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define what registers are selected and how they are used.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS61121) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

PIC32MX3XX/4XX devices contain an internal program Flash memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self Programming (RTSP)
- In-Circuit Serial Programming[™] (ICSP[™])
- EJTAG Programming

EXAMPLE 5-1:

 NVMCON = 0x4004;
 // Enable and configure for erase operation

 Wait(delay);
 // Delay for 6 µs for LVDstartup

 NVMKEY = 0xAA996655;
 NVMKEY = 0x556699AA;

 NVMCONSET = 0x8000;
 // Initiate operation

 while(NVMCONbits.WR==1);
 // Wait for current operation to complete

RTSP is performed by software executing from either Flash or RAM memory. EJTAG is performed using the EJTAG port of the device and a EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. RTSP techniques are described in this chapter. The ICSP and EJTAG methods are described in the "*PIC32MX Flash Programming Specification*" (DS61145), which can be downloaded from the Microchip web site.

Note: Flash LVD Delay (LVDstartup) must be taken into account between setting up and executing any Flash command operation. See Example 5-1 for a code example to set up and execute a Flash command operation.

NOTES:

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS61117) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32MX (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, and so on) or memory itself.

Following are some of the key features of the DMA controller module:

- · Four Identical Channels, each featuring:
 - Auto-Increment Source and Destination Address Registers
 - Source and Destination Pointers
 - Memory to Memory and Memory to Peripheral Transfers

- Automatic Word-Size Detection:
 - Transfer Granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- Fixed Priority Channel Arbitration
- Flexible DMA Channel Operating Modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA Requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 Pattern (data) match transfer termination
- Multiple DMA Channel Status Interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Source empty of hair empty
 - Destination full or half-full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA Debug Support Features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation Module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

NOTES:

22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS61104) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1000 kilo samples per second (ksps) conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample-and-Hold Amplifier (SHA)

- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 22-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight, 32-bit output formats when it is read from the result buffer.

FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM

DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED) REGISTER 26-1:

bit 19-12 PWP<7:0>: Program Flash Write-Protect bits

Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages. 11111111 = Disabled 11111110 = 0xBD00 0FFF 11111101 = 0xBD00_1FFF 11111100 = 0xBD00_2FFF 11111011 = 0xBD00_3FFF 11111010 = 0xBD00_4FFF 11111001 = 0xBD00 5FFF 11111000 = 0xBD00_6FFF 11110111 = 0xBD00_7FFF 11110110 = 0xBD00_8FFF 11110101 = 0xBD00_9FFF 11110100 = 0xBD00_AFFF 11110011 = 0xBD00 BFFF 11110010 = 0xBD00_CFFF 11110001 = 0xBD00_DFFF 11110000 = 0xBD00_EFFF 11101111 = 0xBD00_FFFF 01111111 = 0xBD07_FFFF bit 11-4 Reserved: Write '1' ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit 1 = PGEC2/PGED2 pair is used 0 = PGEC1/PGED1 pair is used Reserved: Write '1' DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled) bit 1-0

11 = Debugger disabled

bit 3

bit 2

- 10 =Debugger enabled
- 01 = Reserved (same as '11' setting) 00 = Reserved (same as '11' setting)

REGISTER 26-2: DEVCEG1: DEVICE CONFIGURATION WORD 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	
31.24		—	—	-	—		_		
23:16	R/P	r-1	r-1	R/P	R/P	R/P	R/P	R/P	
	FWDTEN	—	—		WDTPS<4:0>				
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM<1:0>		FPBDIV<1:0>		—	OSCIOFNC	POSCM	POSCMOD<1:0>	
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
7:0	IESO	_	FSOSCEN		_	— FNOSC<2:0>			

Legend:

R = Readable bit

W = Writable bitP = Programmable bit r = Reserved bit U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-24 Reserved: Write '1'

bit 23 FWDTEN: Watchdog Timer Enable bit

1 = The WDT is enabled and cannot be disabled by software

0 = The WDT is not enabled; it can be enabled in software

- bit 22-21 Reserved: Write '1'
- bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100	=	1:1048576
10011	=	1:524288
10010	=	1:262144
10001	=	1:131072
10000	=	1:65536
01111	=	1:32768
01110	=	1:16384
01101	=	1:8192
01100	=	1:4096
01011	=	1:2048
01010	=	1:1024
01001	=	1:512
01000	=	1:256
00111	=	1:128
00110	=	1:64
00101	=	1:32
00100	=	1:16
00011	=	1:8
00010	=	1:4
00001	=	1:2
		4.4

00000 = 1:1

All other combinations not shown result in operation = '10100'

bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled

Note 1: Do not disable POSC (POSCMOD = 00) when using this oscillator source.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1		
	—	—	—	—	—	_	—	—		
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P		
23:16	—	—	—	—	—	FPLLODIV<2:0>				
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P		
15:8	UPLLEN	—	—	—	—	U	UPLLIDIV<2:0>			
7:0	r-1	R/P	R/P	R/P	r-1	R/P	R/P	R/P		
		F	PLLMUL<2:0	>	_	FPLLIDIV<2:0>				

REGISTER 26-3: DEVCFG2: DEVICE CONFIGURATION WORD 2

Legend:

R = Readable bitW = Writable bitP = Programmable bitr = Reserved bitU = Unimplemented bit-n = Bit Value at POR: ('0', '1', x = Unknown)

bit 18-16 FPLLODIV<2:0>: Default Postscaler for PLL bits

- 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1
- bit 15 UPLLEN: USB PLL Enable bit 1 = Disable and bypass USB PLL 0 = Enable USB PLL
- bit 14-11 **Reserved:** Write '1'
- bit 10-8 UPLLIDIV<2:0>: PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- bit 7 Reserved: Write '1'

bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits

- 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier
- 011 = 18x multiplier
- 010 = 17x multiplier
- 001 = 16x multiplier
- 000 = 15x multiplier
- bit 3 Reserved: Write '1'
- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider011 = 4x divider
 - 011 = 4x divider 010 = 3x divider
 - 010 = 3x divider001 = 2x divider
 - 001 = 2x divider 000 = 1x divider

bit 31-19 Reserved: Write '1'

TABLE 29-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

АС СНА	ARACTERIS	TICS		Star (unle Ope	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Typical	Max.	Units	Conditions			
TA10	Т⊤хН	TxCK High Time	Synchrono with presc	ous, aler	[(12.5 ns or 1ТРВ)/N] + 25 ns	_		ns	Must also meet parameter TA15.			
			Asynchror with presc	nous, aler	10	—		ns	_			
TA11	ΤτxL	TxCK Low Time	Synchrono with presc	ous, aler	[(12.5 ns or 1ТРВ)/N] + 25 ns	—		ns	Must also meet parameter TA15.			
			Asynchronous, with prescaler		10	—		ns	—			
TA15	ΤτχΡ	rxP TxCK Synchronous Input Period with prescale		ous, aler	[(Greater of 25 ns or 2TPB)/N] + 30 ns	—		ns	VDD > 2.7V			
					[(Greater of 25 ns or 2TPB)/N] + 50 ns	—	_	ns	VDD < 2.7V			
			Asynchror with presc	nous, aler	20	—	_	ns	VDD > 2.7V (Note 3)			
				50	—	—	ns	VDD < 2.7V (Note 3)				
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>))		r	32	_	100	kHz				
TA20	TCKEXTMRL	Delay from External TxCk Clock Edge to Timer Increment		CK			1	Трв	_			

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = prescale value (1, 8, 64, 256)

TABLE 29-34: ADC MODULE SPECIFICATIONS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
Device	Supply								
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	—	Lesser of VDD + 0.3 or 3.6	V	—		
AD02	AVss	Module Vss Supply	Vss	—	Vss + 0.3	V	_		
Referen	nce Inputs								
AD05	05 VREFH Reference Voltage High		AVss + 2.0	—	AVdd	V	(Note 1)		
AD05a			2.5	—	3.6	V	VREFH = AVDD (Note 3)		
AD06	Vrefl	Reference Voltage Low	AVss		Vrefh – 2.0	V	(Note 1)		
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	—	AVDD	V	(Note 3)		
AD08	IREF	Current Drain	_	250 —	400 3	μΑ μΑ	ADC operating ADC off		
Analog	Input				-				
AD12	VINH-VINL	Full-Scale Input Span	Vrefl		Vrefh	V	—		
AD13	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	—	AVDD/2	V	—		
AD14	VIN	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	\vee	_		
AD15	_	Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ \mathbf{Source} \ Impedance = 10\mathrm{K}\Omega \end{array}$		
AD17	RIN	Recommended Impedance of Analog Voltage Source	_	—	5K	Ω	(Note 1)		
ADC Ac	curacy – N	leasurements with Exter	rnal VREF+/VR	EF-					
AD20c	Nr	Resolution	10	0 data bits		bits	—		
AD21c	INL	Integral Nonlinearity	—	_	<±1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.3V		
AD22c	DNL	Differential Nonlinearity	_	—	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)		
AD23c	Gerr	Gain Error	_		<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V		
AD24n	EOFF	Offset Error	—	_	<±1	LSb	VINL = AVSS = 0V, AVDD = 3.3V		
AD25c		Monotonicity					Guaranteed		

Note 1: These parameters are not characterized or tested in manufacturing.

- **2:** With no missing codes.
- 3: These parameters are characterized, but not tested in manufacturing.
- **4:** Characterized with 1 kHz sinewave.

АС СН	AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
Clock Parameters										
AD50	TAD	Analog-to-Digital Clock Period	65	—	—	ns	See Table 29-35 and Note 2			
AD51	TRC	Analog-to-Digital Internal RC Oscillator Period	—	250	_	ns	See Note 3			
Conversion Rate										
AD55	TCONV	Conversion Time	—	12 Tad	—	_	—			
AD56	FCNV	Throughput Rate (Sampling Speed)	—	—	1000	KSPS	AVDD = 3.0V to 3.6V			
			—	—	400	KSPS	AVDD = 2.5V to 3.6V			
AD57	TSAMP	Sample Time	1 Tad			—	TSAMP must be \geq 132 ns.			
Timing	Paramete	rs								
AD60	TPCS	Conversion Start from Sample Trigger	—	1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected. See Note 3			
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 TAD	—	—			
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1)		0.5 TAD	_	_	See Note 3			
AD63	TDPU	Time to Stabilize Analog Stage from Analog-to-Digital OFF to Analog-to-Digital ON	_	_	2	μs	See Note 3			

TABLE 29-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
PS1	TdtV2wrH	Data In Valid before WR or CS Inactive (setup time)	20			ns	_
PS2	TwrH2dtl	WR or CS Inactive to Data – In Invalid (hold time)	40		_	ns	_
PS3	TrdL2dtV	RD and CS Active to Data – Out Valid	—	_	60	ns	_
PS4	TrdH2dtl	RD Active or CS Inactive to Data – Out Invalid	0	_	10	ns	_
PS5	Tcs	CS Active Time	Трв + 40			ns	
PS6	Twr	WR Active Time	Трв + 25	—		ns	
PS7	Trd	RD Active Time	Трв + 25	_		ns	

TABLE 29-37: PARALLEL SLAVE PORT REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.							
Microchip Brand Architecture Product Groups Flash Memory Family_ Program Memory Size Pin Count Tape and Reel Flag (if Speed Temperature Range Package Pattern	PIC32 MX 3XX F 512 H T - 80 I / PT - XXX (KB) applicable)	Examples: PIC32MX320F032H-40I/PT: General purpose PIC32MX, 32 KB program memory, 64-pin, Industrial temperature, TQFP package. PIC32MX360F256L-80I/PT: General purpose PIC32MX, 256 KB program memory, 100-pin, Industrial temperature, TQFP package.					
Flash Memory Family							
Architecture	MX = 32-bit RISC MCU core						
Product Groups	3XX = General purpose microcontroller family 4XX = USB						
Flash Memory Family	F = Flash program memory						
Program Memory Size	32 = 32K 64 = 64K 128 = 128K 256 = 256K 512 = 512K						
Speed	40 = 40 MHz 80 = 80 MHz						
Pin Count	H = 64-pin L = 100-pin						
Temperature Range I = -40° C to $+85^{\circ}$ C (Industrial) V = -40° C to $+105^{\circ}$ C (V-Temp)							
Package	PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) BG = 121-Lead (10x10x1.1 mm) XBGA (Plastic Thin Profile Ball Grid Array)						
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (ES = Engineering Sample	(blank otherwise)					