

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx440f128ht-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

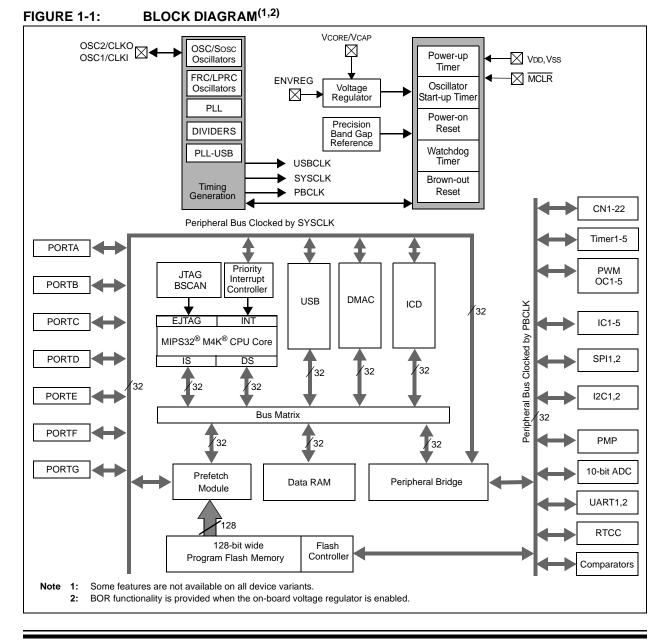
TABLE 1:PIC32MX GENERAL PURPOSE – FEATURES

	GENERAL PURPOSE													
Device	Pins	Packages ⁽²⁾	ZHW	Program Memory (KB)	Data Memory (KB)	Timers/Capture/Compare	Programmable DMA Channels	VREG	Trace	EUART/SPI/I ² C™	10-bit ADC (ch)	Comparators	dSd/dWd	JTAG
PIC32MX320F032H	64	PT, MR	40	32 + 12 ⁽¹⁾	8	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F064H	64	PT, MR	80	64 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F256H	64	PT, MR	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX340F512H	64	PT, MR	80	512 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
PIC32MX320F128L	100 121	PT BG	80	128 + 12 ⁽¹⁾	16	5/5/5	0	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT	00	400 + 40(1)	20	_ /_ /_	4	Vee	Nia	0/0/0	40	0	Vee	Vee
PIC32MX340F128L	121	BG	80	128 + 12 ⁽¹⁾	32	5/5/5	4	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT		0.50 (0(1)						0/0/5				
PIC32MX360F256L	121	BG	80	256 + 12 ⁽¹⁾	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes
	100	PT		540 40(1)		- (- (-				0/0/5				
PIC32MX360F512L	121	BG	80	$512 + 12^{(1)}$	32	5/5/5	4	Yes	Yes	2/2/2	16	2	Yes	Yes

Legend: PT = TQFP MR = QFN BG = XBGA

Note 1: This device features 12 KB Boot Flash memory.

2: See Legend for an explanation of the acronyms. See Section 30.0 "Packaging Information" for details.


1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the PIC32MX3XX/4XX devices.

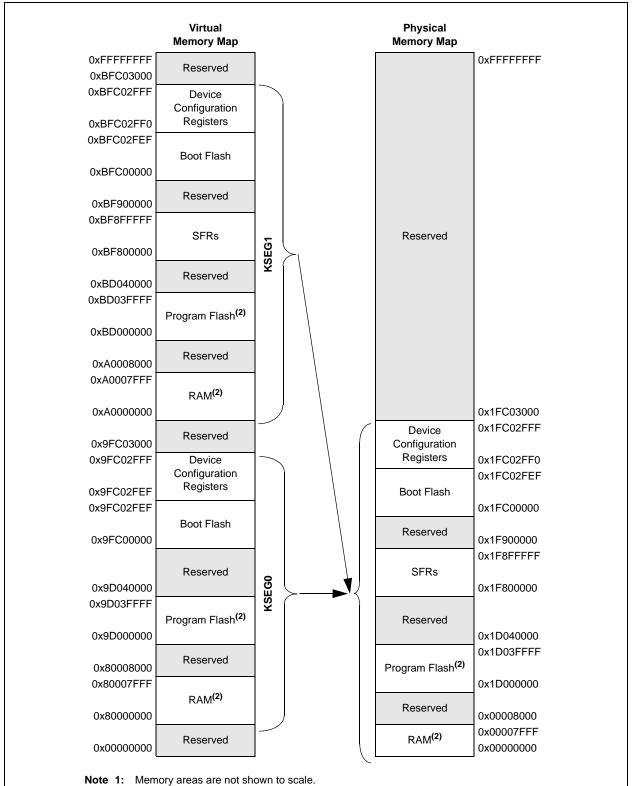
Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX3XX/4XX family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

Register Number	-	Function
17-22	Reserved	Reserved
23	Debug ⁽²⁾	Debug control and exception status
24	DEPC ⁽²⁾	Program counter at last debug exception
25-29	Reserved	Reserved
30	ErrorEPC ⁽¹⁾	Program counter at last error
31	DESAVE ⁽²⁾	Debug handler scratchpad register

TABLE 3-2:COPROCESSOR 0 REGISTERS (CONTINUED)

Note 1: Registers used in exception processing.


2: Registers used during debug.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 shows the exception types in order of priority.

TABLE 3-3: PIC32MX3XX/4XX FAMILY CORE EXCEPTION TYPES

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR)
DSS	EJTAG Debug Single Step
DINT	EJTAG Debug Interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input, or by setting the EjtagBrk bit in the ECR register
NMI	Assertion of NMI signal
Interrupt	Assertion of unmasked hardware or software interrupt signal
DIB	EJTAG debug hardware instruction break matched
AdEL	Fetch address alignment error Fetch reference to protected address
IBE	Instruction fetch bus error
DBp	EJTAG Breakpoint (execution of SDBBP instruction)
Sys	Execution of SYSCALL instruction
Вр	Execution of BREAK instruction
RI	Execution of a Reserved Instruction
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled
CEU	Execution of a CorExtend instruction when CorExtend is not enabled
Ov	Execution of an arithmetic instruction that overflowed
Tr	Execution of a trap (when trap condition is true)
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG Data Value Break on Store (address + value)
AdEL	Load address alignment error Load reference to protected address
AdES	Store address alignment error Store to protected address
DBE	Load or store bus error
DDBL	EJTAG data hardware breakpoint matched in load data compare

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX340F256H, PIC32MX360F256L, PIC32MX440F256H AND PIC32MX460F256L DEVICES⁽¹⁾

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

SS										В	its								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	—	—	—	—	-	—	-	—	—	—	_	-	-	-	-	SS0	000
		15:0 31:16	_	_		MVEC		_	TPC<2:0>	_		_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	000
1010	INTSTAT ⁽²⁾	15:0	_	_	_								_	_	000				
1020	IPTMR	31:16 15:0									R<31:0>								000
1030	IFS0	31:16 15:0	I2C1MIF INT3IF	I2C1SIF OC3IF	I2C1BIF IC3IF	U1TXIF T3IF	U1RXIF INT2IF	U1EIF OC2IF	– IC2IF	— T2IF	— INT1IF	OC5IF OC1IF	IC5IF IC1IF	T5IF T1IF	INT4IF	OC4IF CS1IF	IC4IF CS0IF	T4IF CTIF	000
1040	IFS1	31:16 15:0	- RTCCIF	- FSCMIF	– I2C2MIF	– I2C2SIF	– I2C2BIF	U2TXIF	USBIF U2RXIF	FCEIF U2EIF	— SPI2RXIF	— SPI2TXIF	— SPI2EIF	— CMP2IF	— CMP1IF	– PMPIF	AD1IF	— CNIF	000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	_	_	—	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	000
1070	IEC1	15:0 31:16	INT3IE —	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE USBIE	T2IE FCEIE	INT1IE	OC1IE	IC1IE	T1IE		CS1IE	CS0IE	CTIE	000
	0.	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	000
1090	IPC0	31:16 15:0	_				INT0IP<2:0> CS0IP<2:0>			S<1:0> S<1:0>			_	CS1IP<2:0> CTIP<2:0>		CS1IS<1:0> CTIS<1:0>		000	
		31:16	_		_		INT1IP<2:0>			S<1:0>		_		OC1IP<2:0>		OC1IS<1:0>		000	
10A0	IPC1	15:0	_	_	_		IC1IP<2:0>			<1:0>	_	_	_	T1IP<2:0>		T1IS<1:0>		000	
10B0	IPC2	31:16 15:0	_	_	-		INT2IP<2:0> IC2IP<2:0>	•		S<1:0> i<1:0>	_	_	-	OC2IP<2:0> T2IP<2:0>			OC2IS T2IS		000
		31:16	_		_		INT3IP<2:0>	,		S<1:0>					OC3IP<2:0>		OC315		000
10C0	IPC3	15:0	_	_	_		IC3IP<2:0>			<1:0>	_	_	_	T3IP<2:0>			T3IS-		000
10D0	IPC4	31:16	_	_	_		INT4IP<2:0>	•	INT4IS	S<1:0>	-	_	_		OC4IP<2:0>		OC4IS	S<1:0>	000
TODO	IPC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	i<1:0>	_	_	_		T4IP<2:0>		T4IS-		000
10E0	IPC5	31:16	-	—	—		—	—	-	—	-	—	-	OC5IP<2:0>			OC5IS		000
		15:0	_	—	—		IC5IP<2:0>			<1:0>	—	—	—		T5IP<2:0>		T5IS-		000
10F0	IPC6	31:16	-	_	_		AD1IP<2:0>			S<1:0>					CNIP<2:0>			<1:0>	000
		15:0 31:16	_				I2C1IP<2:0> SPI2IP<2:0>			S<1:0> S<1:0>			_		U1IP<2:0> CMP2IP<2:0:		U1IS	<1:0> S<1:0>	000
1100	IPC7	15:0	_				SPIZIP<2:0> CMP1IP<2:0:			S<1:0> S<1:0>		_			PMPIP<2:03	2	PMPIS		000
		31:16	_				RTCCIP<2:0:			S<1:0>	_	_		FSCMIP<2:0>			S<1:0>	000	
1110	IPC8	15:0	_		_		12C2IP<2:0>			S<1:0>	_	_	_		U2IP<2:0>			<1:0>	000
1140	IPC11	31:16	_	—	—	—		—	-	—	—	—	—	—	—	_	—		000
Legen		15:0	—	—	— Inimplemente		USBIP<2:0>			S<1:0>	-	—	-		FCEIP<2:0>		FCEIS	6<1:0>	0000

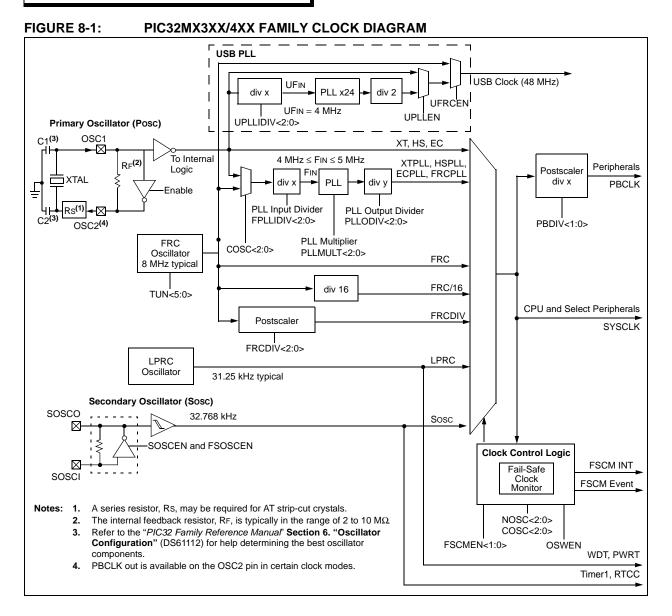
INTERRUPT REGISTERS MAP FOR THE PIC32MY420E032H DEVICE ONI V(1) TADIE 1.6.

© 2011 Microchip Technology Inc.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

PIC32MX3XX/4XX

This register does not have associated CLR, SET, and INV registers. 2:


NOTES:

8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"* Section 6. *"Oscillator Configuration"* (DS61112), which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX oscillator system has the following modules and features:

- A total of four external and internal oscillator options as clock sources
- On-chip PLL (phase-locked loop) with userselectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shut down
- Dedicated on-chip PLL for USB peripheral

NOTES:

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset.
- On a WDT time-out. See Section 26.2 "Watchdog Timer (WDT)".

If the interrupt priority is lower than or equal to current priority, the CPU will remain halted, but the PBCLK will start running and the device will enter into Idle mode.

Note: There is no FRZ mode for this module.

25.3.2 IDLE MODE

In the Idle mode, the CPU is halted but the System clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is halted. Peripherals can be individually configured to halt when entering Idle by setting their respective SIDL bit. Latency when exiting Idle mode is very low due to the CPU oscillator source remaining active.

PBCLK divider Note: Changing the ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in PB divisor ratio. Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to

> LPRC just prior to entering Sleep in order to save power. No oscillator start-up delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator startup/lock delays would be applied.

The device enters Idle mode when the SLPEN (OSCCON<4>) bit is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of CPU. If the priority of the interrupt event is lower than or equal to current priority of CPU, the CPU will remain halted and the device will remain in Idle mode.
- On any source of device Reset.
- On a WDT time-out interrupt. See Section 26.2 "Watchdog Timer (WDT)".

25.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK-to-PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as USB, Interrupt Controller, DMA, Bus Matrix and Prefetch Cache are clocked directly from SYSCLK, as a result, they are not affected by PBCLK divisor changes

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements such as baud rate accuracy should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

REGISTER 26-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1			
31:24	_	_	—	—	—	—	_	—			
00.40	R/P	r-1	r-1	R/P	R/P	R/P	R/P	R/P			
23:16	FWDTEN	_	_	WDTPS<4:0>							
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P			
15:8	FCKSM	1<1:0>	FPBDIV<1:0>		—	OSCIOFNC	POSCMOD<1:0>				
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P			
7:0	IESO	_	FSOSCEN				FNOSC<2:0>				

Legend:

R = Readable bit

W = Writable bit P = Programmable bit

r = Reserved bit

U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-24 Reserved: Write '1'

bit 23 **FWDTEN:** Watchdog Timer Enable bit

1 = The WDT is enabled and cannot be disabled by software

0 = The WDT is not enabled; it can be enabled in software

- bit 22-21 Reserved: Write '1'
- bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100	=	1:1048576
10011	=	1:524288
10010	=	1:262144
10001	=	1:131072
10000	=	1:65536
01111	=	1:32768
01110	=	1:16384
01101	=	1:8192
01100	=	1:4096
01011	=	1:2048
01010	=	1:1024
01001	=	1:512
01000	=	1:256
00111	=	1:128
00110	=	1:64
00101	=	1:32
00100	=	1:16
00011	=	1:8
00010	=	1:4
00001	=	1:2
00000	_	1.1

00000 = 1:1

All other combinations not shown result in operation = '10100'

bit 15-14 **FCKSM<1:0>:** Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled

- 00 =Clock switching is enabled, Fail-Safe Clock Monitor is enabled

Note 1: Do not disable Posc (POSCMOD = 00) when using this oscillator source.

REGISTER 26-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits

- 11 = PBCLK is SYSCLK divided by 8
- 10 = PBCLK is SYSCLK divided by 4
- 01 = PBCLK is SYSCLK divided by 2

00 = PBCLK is SYSCLK divided by 1

- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 OR 00)
 - 0 = CLKO output disabled
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary oscillator disabled
 - 10 = HS oscillator mode selected
 - 01 = XT oscillator mode selected
 - 00 = External clock mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode enabled (Two-Speed Start-up enabled)
 - 0 = Internal External Switchover mode disabled (Two-Speed Start-up disabled)
- bit 6 Reserved: Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable Posc (POSCMOD = 00) when using this oscillator source.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1		
31:24	_	—	_		—	—	—	—		
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P		
23:16	_	—	—	—	—	FF)>			
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P		
15:8	UPLLEN	—	—	—	—	U	UPLLIDIV<2:0>			
7.0	r-1	R/P	R/P	R/P	r-1	R/P	R/P	R/P		
7:0	_	F	PLLMUL<2:0	>	_	FPLLIDIV<2:0>				

REGISTER 26-3: DEVCFG2: DEVICE CONFIGURATION WORD 2

Legend:

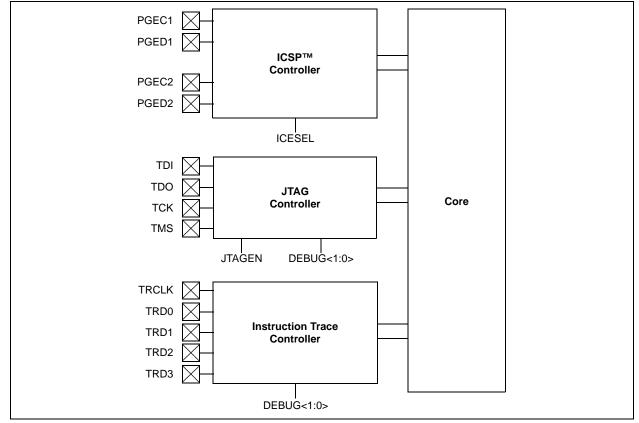
R = Readable bitW = Writable bitP = Programmable bitr = Reserved bitU = Unimplemented bit-n = Bit Value at POR: ('0', '1', x = Unknown)

bit 18-16 FPLLODIV<2:0>: Default Postscaler for PLL bits

- 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1
- bit 15 UPLLEN: USB PLL Enable bit 1 = Disable and bypass USB PLL 0 = Enable USB PLL
- bit 14-11 **Reserved:** Write '1'
- bit 10-8 UPLLIDIV<2:0>: PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- bit 7 Reserved: Write '1'

bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits

- 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier
- 011 = 18x multiplier
- 010 = 17x multiplier
- 001 = 16x multiplier
- 000 = 15x multiplier
- bit 3 Reserved: Write '1'
- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider011 = 4x divider
 - 011 = 4x divider 010 = 3x divider
 - 010 = 3x divider001 = 2x divider
 - 001 = 2x divider 000 = 1x divider


bit 31-19 Reserved: Write '1'

26.4 Programming and Diagnostics

PIC32MX3XX/4XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32MX devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 26-3: BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

TABLE 27-1:	MIPS32 [®] INSTRUCTION SET (CONTINUE	ED)					
Instruction	Description	Function					
RDPGPR	Read GPR from Previous Shadow Set	Rt = SGPR[SRSCtl _{PSS} , Rd]					
ROTR	Rotate Word Right	$Rd = Rt_{sa-10} Rt_{31sa}$					
ROTRV	Rotate Word Right Variable	$Rd = Rt_{Rs-10} Rt_{31Rs}$					
SB	Store Byte	(byte)Mem[Rs+offset] = Rt					
SC	Store Conditional Word	<pre>if LL_{bit} = 1 mem[Rs+offset> = Rt Rt = LL_{bit}</pre>					
SDBBP	Software Debug Break Point	Trap to SW Debug Handler					
SEB	Sign-Extend Byte	Rd = SignExtend (Rs-70)					
SEH	Sign-Extend Half	Rd = SignExtend (Rs-150)					
SH	Store Half	(half)Mem[Rs+offset> = Rt					
SLL	Shift Left Logical	Rd = Rt << sa					
SLLV	Shift Left Logical Variable	Rd = Rt << Rs[4:0]					
SLT	Set on Less Than	<pre>if (int)Rs < (int)Rt Rd = 1 else Rd = 0</pre>					
SLTI	Set on Less Than Immediate	<pre>if (int)Rs < (int)Immed Rt = 1 else Rt = 0</pre>					
SLTIU	Set on Less Than Immediate Unsigned	<pre>if (uns)Rs < (uns)Immed Rt = 1 else Rt = 0</pre>					
SLTU	Set on Less Than Unsigned	<pre>if (uns)Rs < (uns)Immed Rd = 1 else Rd = 0</pre>					
SRA	Shift Right Arithmetic	Rd = (int)Rt >> sa					
SRAV	Shift Right Arithmetic Variable	Rd = (int)Rt >> Rs[4:0]					
SRL	Shift Right Logical	Rd = (uns)Rt >> sa					
SRLV	Shift Right Logical Variable	Rd = (uns)Rt >> Rs[4:0]					
SSNOP	Superscalar Inhibit No Operation	NOP					
SUB	Integer Subtract	Rt = (int)Rs - (int)Rd					
SUBU	Unsigned Subtract	Rt = (uns)Rs - (uns)Rd					
SW	Store Word	Mem[Rs+offset] = Rt					
	Store Word Left	Mem[Rs+offset] = Rt					
SWL	Store Word Right	Mem[Rs+ofIset] = Rt Mem[Rs+offset] = Rt					
SWR	-						
SYNC	Synchronize	Orders the cached coherent and uncached loads and stores for access to the shared memory					
SYSCALL	System Call	SystemCallException					
TEQ	Trap if Equal	if Rs == Rt TrapException					
TEQI	Trap if Equal Immediate	if Rs == (int)Immed TrapException					

TABLE 27-1: MIPS32[®] INSTRUCTION SET (CONTINUED)

Note 1: This instruction is deprecated and should not be used.

28.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

28.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC32MX3XX/4XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX3XX/4XX are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings (Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on VCORE with respect to VSS	0.3V to 2.0V
Voltage on VBUS with respect to VSS	
Maximum current out of Vss pin(s)	300 mA
Maximum current into Vod pin(s) (Note 2)	300 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

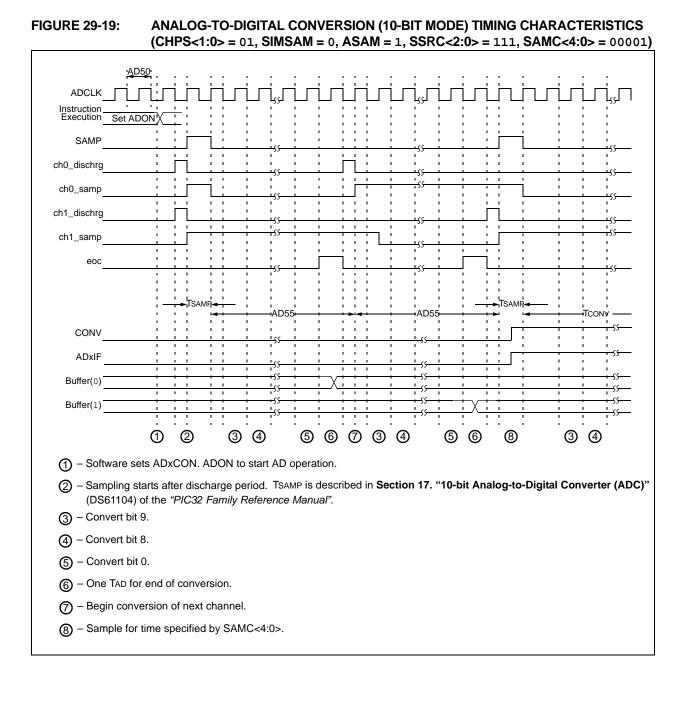
- **Note 1:** Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 29-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

TABLE 29-13: COMPARATOR SPECIFICATIONS

DC CHA	ARACTERI	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D300	VIOFF	Input Offset Voltage	-	±7.5	±25	mV	AVdd = Vdd, AVss = Vss		
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVDD = VDD, AVSS = VSS (Note 2)		
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)		
D303	TRESP	Response Time	—	150	400	ns	AVDD = VDD, AVss = Vss (Notes 1,2)		
D304	ON2ov	Comparator Enabled to Output Valid	_	-	10	μs	Comparator module is configured before setting the comparator ON bit. (Note 2)		
D305	IVREF	Internal Voltage Reference	0.57	0.6	0.63	V	—		

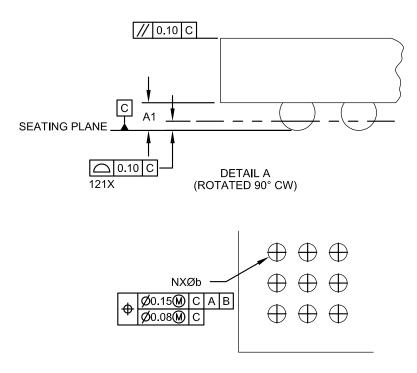
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.


TABLE 29-14: VOLTAGE REFERENCE SPECIFICATIONS

DC CHA	RACTERIS	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments			
D310	VRES	Resolution	Vdd/24	_	VDD/32	LSb	—			
D311	VRAA	Absolute Accuracy	—	_	1/2	LSb	—			
D312	TSET	Settling Time ⁽¹⁾	_		10	μs	_			

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.


TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments	
D320	VCORE	Regulator Output Voltage	1.62	1.80	1.98	V	_	
D321	CEFC	External Filter Capacitor Value	8	10	_	μF	Capacitor must be low series resistance (< 1 Ohm)	
D322	TPWRT	Power-up Timer Period		64		ms	ENVREG = 0	

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Number of Contacts	N	121			
Contact Pitch	e	0.80 BSC			
Overall Height	A	1.00	1.10	1.20	
Standoff	A1	0.25	0.30	0.35	
Molded Package Thickness	A2	0.55	0.60	0.65	
Overall Width	E	10.00 BSC			
Array Width	E1	8.00 BSC			
Overall Length	D	10.00 BSC			
Array Length	D1	8.00 BSC			
Contact Diameter	b	0.40 TYP			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

3. The outer rows and colums of balls are located with respect to datums A and B.

Microchip Technology Drawing C04-148 Rev B Sheet 2 of 2

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Special Features"	Modified bit names and locations in Register 26-5 " DEVID: Device and Revision ID Register ".
	Replaced "TSTARTUP" with "TPU", and "64-ms nominal delay" with "TPWRT", in Section 26.3.1 "On-Chip Regulator and POR".
	The information that appeared in the Watchdog Timer and the Programming and Diagnostics sections of 61143E version of this data sheet has been incorporated into the Special Features section:
	 Section 26.2 "Watchdog Timer (WDT)"
	Section 26.4 "Programming and Diagnostics"
Section 29.0 "Electrical	Added the 64-Lead QFN package to Table 29-3.
Characteristics"	Updated data in Table 29-5.
	Updated data in Table 29-7.
	Updated data in Table 29-4, Table 29-5, Table 29-7 and Table 29-8.
	Updated data in Table 29-11.
	Added OS42 parameter to Table 29-17.
	Replaced Table 29-23.
	Replaced Table 29-24.
	Replaced Table 29-25.
	Updated Table 29-36.
Section 30.0 "Packaging Information"	Added 64-Lead QFN package marking information to Section 30.1 "Package Marking Information" .
	Added the 64-Lead QFN (MR) package drawing and land pattern to Section 30.2 "Package Details" .
"Product Identification System"	Added the MR package designator for the 64-Lead (9x9x0.9) QFN.