

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

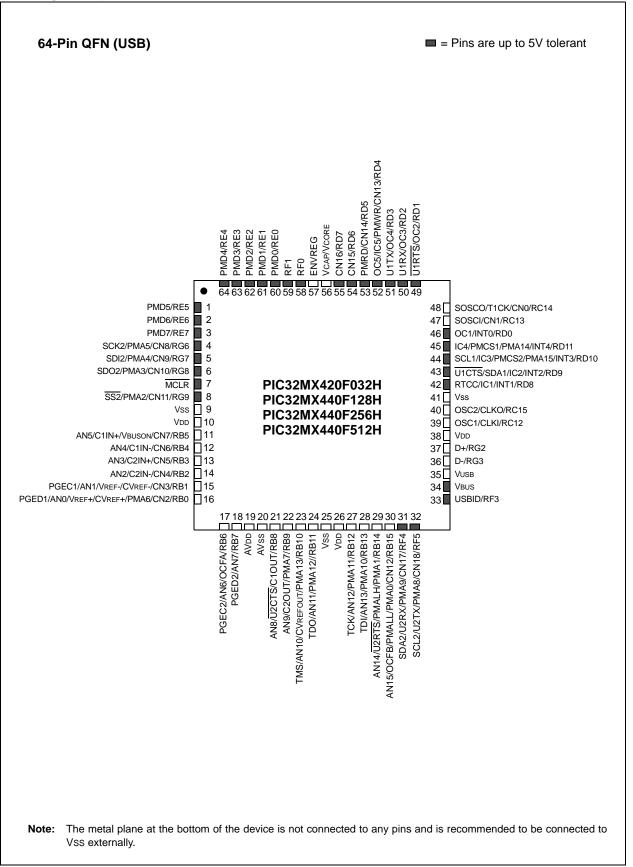
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detuns	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx440f128lt-80v-bg


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 RE4 NC	2	3	4	5						
				.	6	7	8	9	10	11
	RE3	RG13	RE0	RG0	RF1		⊖ Vss	R D12	RD2	RD1
NC	RG15	RE2	RE1	RA7	RF0	VCORE/ VCAP	RD5	RD3) Vss	O RC14
RE6	O VDD	RG12	RG14	RA6	NC	RD7	RD4	O Vdd	O RC13	RD11
RC1	RE7	RE5	⊖ Vss	⊖ Vss	NC	RD6	RD13	RD0	NC	R D10
RC4	RC3	RG6	RC2	O Vdd	RG1	⊖ Vss	RA15	RD8	RD9	RA14
MCLR	RG8	RG9	RG7	⊖ Vss	NC	NC	O Vdd	O RC12	⊖ Vss	O RC15
RE8	RE9	RA0	NC	O Vdd	⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4
O RB5	O RB4	⊖ Vss	O Vdd	NC	O Vdd	NC	RF7	RF6	RG2	RA2
O RB3	O RB2	O RB7	O AVDD	O RB11	O RA1	O RB12	NC	NC	RF8	O RG3
O RB1	O RB0	O RA10	O RB8	NC	RF12	O RB14	O Vdd	RD15	RF3	RF2
O RB6	O RA9	O AVss	O RB9	O RB10	R F13	O RB13	O RB15	RD14	RF4	RF5
	RC1 RC4 ACLR RE8 RB5 RB5 RB3 RB1 C	RC1 RE7 RC4 RC3 ACLR RG8 RE8 RE9 RB5 RB4 RB3 RB2 RB1 RB0 RB3 RB0	RC1RE7RE5RC4RC3RG6ACLRRG8RG9ACLRRG8RG9RE8RE9RA0RB5RB4VSSRB3RB2RB7RB1RB0RA10OOOOORB1RB0RA10	RC1 RE7 RE5 VSS RC4 RC3 RG6 RC2 ACLR RG8 RG9 RG7 RE8 RE9 RA0 NC RB5 RB4 VSS VDD RB3 RB2 RB7 AVDD RB1 RB0 RA10 RB8 O O O O O O O O O O O O RB1 RB0 RA10 RB8	RC1 RE7 RE5 VSS VSS RC4 RC3 RG6 RC2 VDD ACLR RG8 RG9 RG7 VSS RE8 RE9 RA0 NC VDD RB5 RB4 VSS VDD NC RB3 RB2 RB7 AVDD RB11 RB0 RA10 RB8 NC O O O O RB1 RB0 RA10 RB8 NC	RC1 RE7 RE5 VSS NC RC4 RC3 RG6 RC2 VDD RG1 ACLR RG8 RG9 RG7 VSS NC RE8 RE9 RA0 NC VDD VSS RB5 RB4 VSS VDD NC VDD RB3 RB2 RB7 AVDD RB11 RA1 RB1 RB0 RA10 RB8 NC RF12 O O O O O P	RC1 RE7 RE5 VSS VSS NC RD6 RC4 RC3 RG6 RC2 VDD RG1 VSS ACLR RG8 RG9 RG7 VSS NC NC RE8 RE9 RA0 NC VDD VSS VSS RB5 RB4 VSS VDD NC VDD NC RB3 RB2 RB7 AVDD RB11 RA1 RB12 RB1 RB0 RA10 RB8 NC RF12 RB14	RC1 RE7 RE5 VSS VSS NC RD6 RD13 RC4 RC3 RG6 RC2 VDD RG1 VSS RA15 ACLR RG8 RG9 RG7 VSS NC NC VDD RE8 RE9 RA0 NC VDD VSS VSS NC NC RB5 RB4 VSS VDD NC VDD NC RF7 RB3 RB2 RB7 AVDD RB11 RA1 RB12 NC RB1 RB0 RA10 RB8 NC RF12 RB14 VDD NC O O O O O O O O RB1 RB0 RA10 RB8 NC RF12 RB14 VDD	RC1RE7RE5VSSVSSNCRD6RD13RD0RC4RC3RG6RC2VDDRG1VSSRA15RD8ACLRRG8RG9RG7VSSNCNCVD0RC12RE8RE9RA0NCVDDVSSVSSNCRA0RB5RB4VSSVDDNCVDDNCRF7RF6RB3RB2RB7AVDDRB11RA1RB12NCMCRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOPRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOPPRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOOPRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOOOORB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOOOORB1RB0RA10RB8NCRF12RB14VDDRD15	RC1RE7RE5VSSVSSNCRD6RD13RD0NCRC4RC3RG6RC2VDDRG1VSSRA15RD8RD9ACLRRG8RG9RG7VSSNCNCVDDRC12VSSRE8RE9RA0NCVDDVSSVSSNCRA5RA3RB5RB4VSSVDDNCVDDNCRF7RF6RG2RB3RB2RB7AVDDRB11RA1RB12NCNCRF8RB1RB0RA10RB8NCRF12RB14VDDRD15RF3RB1RB0RA10RB8NCRF12RB14VDDRD15RF3

Pin Diagrams (Continued)

Pin Diagrams (Continued)

					F128L F256L F512L						
	1	2	3	4	5	6	7	8	9	10	11
x (RE4	RE3	R G13	RE0	RG0	RF1		O Vss	RD12	RD2	RD1
3	NC	RG15	RE2	RE1	RA7	RF0	O Vcore/ Vcap	RD5	RD3	O Vss	O RC14
;	RE6	O VDD	RG12	RG14	RA6	NC	RD7	RD4	O Vdd	O RC13	RD11
	RC1	RE7	RE5	O Vss	⊖ Vss	NC	RD6	RD13	RD0	NC	R D10
	RC4	RC3	RG6	RC2	O Vdd	RG1	⊖ Vss	RA15	RD8	RD9	RA14
-	MCLR	RG8	RG9	RG7	O Vss	NC	NC		C RC12	O Vss	O RC15
•	RE8	RE9	RA0	NC	VDD	O Vss	O Vss	NC	RA5	RA3	RA4
1	C RB5	C RB4	O Vss	O Vdd		O VDD	NC	VBUS	UUSB	RG2	RA2
J	C RB3	C RB2	C RB7		C RB11	O RA1	O RB12	NC	NC	RF8	C RG3
¢	C) RB1	O RB0	○ RA10	C) RB8	NC	RF12	O RB14		RD15	RF3	RF2
-	C) RB6	RA9	AVss	RB9	RB10	RF13	RB13	C RB15	RD14	RF4	RF5
L	lote 1: Re	efer to Ta	ble 4 for	full pin r	names.						

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

	Pin	Number ⁽	1)		Deff					
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description				
CN0	48	74	B11	I	ST	Change notification inputs.				
CN1	47	73	C10	-	ST	Can be software programmed for internal weak				
CN2	16	25	K2	I	ST	pull-ups on all inputs.				
CN3	15	24	K1	I	ST					
CN4	14	23	J2	I	ST					
CN5	13	22	J1	I	ST					
CN6	12	21	H2	I	ST					
CN7	11	20	H1	I	ST					
CN8	4	10	E3	I	ST					
CN9	5	11	F4	I	ST					
CN10	6	12	F2	I	ST					
CN11	8	14	F3	I	ST					
CN12	30	44	L8	Ι	ST					
CN13	52	81	C8	-	ST					
CN14	53	82	B8	Ι	ST					
CN15	54	83	D7	Ι	ST					
CN16	55	84	C7	Ι	ST					
CN17	31	49	L10	-	ST					
CN18	32	50	L11	-	ST					
CN19	_	80	D8	-	ST					
CN20	_	47	L9	-	ST					
CN21	_	48	K9	-	ST					
IC1	42	68	E9	I	ST	Capture inputs 1-5.				
IC2	43	69	E10	I	ST					
IC3	44	70	D11	I	ST					
IC4	45	71	C11	-	ST					
IC5	52	79	A9	-	ST					
OCFA	17	26	L1	-	ST	Output Compare Fault A Input.				
OC1	46	72	D9	0		Output Compare output 1.				
OC2	49	76	A11	0	—	Output Compare output 2				
OC3	50	77	A10	0		Output Compare output 3.				
OC4	51	78	B9	0	—	Output Compare output 4.				
OC5	52	81	C8	0		Output Compare output 5.				
OCFB	30	44	L8		ST	Output Compare Fault B Input.				
INT0	35,46	55,72	H9,D9		ST	External interrupt 0.				
INT1	42	18	61	-	ST	External interrupt 1.				
INT2	43	19	62	I	ST	External interrupt 2.				
-	CMOS = CM ST = Schmitt TTL = TTL in	Trigger in				Analog = Analog input P = Power D = Output I = Input				

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)

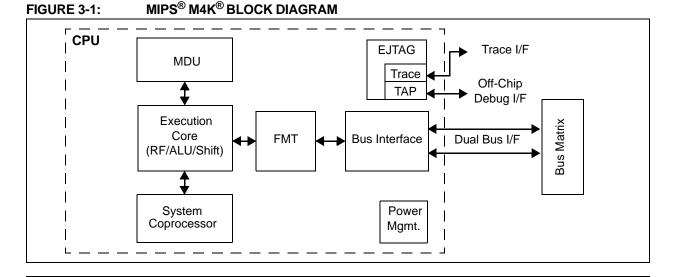
Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

	Pin	Number ⁽	1)	Pin	D	
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description
RD0	46	72	D9	I/O	ST	PORTD is a bidirectional I/O port.
RD1	49	76	A11	I/O	ST	
RD2	50	77	A10	I/O	ST	
RD3	51	78	B9	I/O	ST	
RD4	52	81	C8	I/O	ST	
RD5	53	82	B8	I/O	ST	
RD6	54	83	D7	I/O	ST	
RD7	55	84	C7	I/O	ST	
RD8	42	68	E9	I/O	ST	1
RD9	43	69	E10	I/O	ST	1
RD10	44	70	D11	I/O	ST	1
RD11	45	71	C11	I/O	ST	1
RD12	_	79	A9	I/O	ST	1
RD13	_	80	D8	I/O	ST	1
RD14	_	47	L9	I/O	ST	
RD15	_	48	K9	I/O	ST	
RE0	60	93	A4	I/O	ST	PORTE is a bidirectional I/O port.
RE1	61	94	B4	I/O	ST	
RE2	62	98	B3	I/O	ST	
RE3	63	99	A2	I/O	ST	
RE4	64	100	A1	I/O	ST	
RE5	1	3	D3	I/O	ST	
RE6	2	4	C1	I/O	ST	
RE7	3	5	D2	I/O	ST	
RE8	_	18	G1	I/O	ST	1
RE9	_	19	G2	I/O	ST	1
RF0	58	87	B6	I/O	ST	PORTF is a bidirectional I/O port.
RF1	59	88	A6	I/O	ST	1
RF2	34	52	K11	I/O	ST]
RF3	33	51	K10	I/O	ST]
RF4	31	49	L10	I/O	ST	1
RF5	32	50	L11	I/O	ST	1
RF6	35	55	H9	I/O	ST]
RF7	—	54	H8	I/O	ST	1
RF8	—	53	J10	I/O	ST	1
RF12	—	40	K6	I/O	ST	1
RF13	—	39	L6	I/O	ST	1
-	CMOS = CM ST = Schmitt TTL = TTL in	Trigger in				nalog = Analog input P = Power) = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)
		•••••••••

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

3.0 CPU


- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS61113) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). Resources for the MIPS32[®] M4K[®] Core are available Processor at: www.mips.com/products/cores/ 32-64-bit-cores/mips32-m4k/.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX3XX/4XX family processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

- 5-stage pipeline
- 32-bit Address and Data Paths
- MIPS32 Enhanced Architecture (Release 2)
 - Multiply-Accumulate and Multiply-Subtract Instructions
 - Targeted Multiply Instruction
 - Zero/One Detect Instructions
 - WAIT Instruction
 - Conditional Move Instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base

- Atomic interrupt enable/disable
- GPR shadow registers to minimize latency for interrupt handlers
- Bit field manipulation instructions
- MIPS16e[®] Code Compression
 - 16-bit encoding of 32-bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE & RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) mechanism
- Simple Dual Bus Interface
- Independent 32-bit address and data busses
- Transactions can be aborted to improve interrupt latency
- Autonomous Multiply/Divide Unit
 - Maximum issue rate of one 32x16 multiply per clock
 - Maximum issue rate of one 32x32 multiply every other clock
 - Early-in iterative divide. Minimum 11 and maximum 34 clock latency (dividend (*rs*) sign extension-dependent)
- Power Control
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace
 - Support for single stepping
 - Virtual instruction and data address/value
 - breakpoints
 - PC tracing with trace compression

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS61121) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

PIC32MX3XX/4XX devices contain an internal program Flash memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self Programming (RTSP)
- In-Circuit Serial Programming[™] (ICSP[™])
- EJTAG Programming

EXAMPLE 5-1:

 NVMCON = 0x4004;
 // Enable and configure for erase operation

 Wait(delay);
 // Delay for 6 µs for LVDstartup

 NVMKEY = 0xAA996655;
 NVMKEY = 0x556699AA;

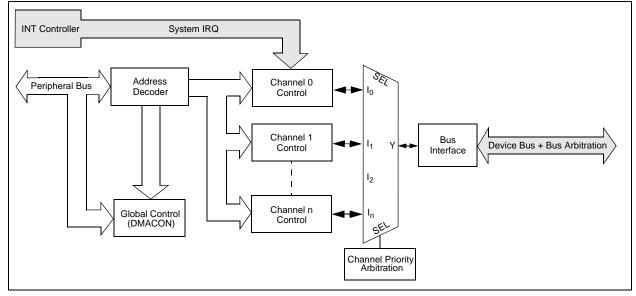
 NVMCONSET = 0x8000;
 // Initiate operation

 while(NVMCONbits.WR==1);
 // Wait for current operation to complete

RTSP is performed by software executing from either Flash or RAM memory. EJTAG is performed using the EJTAG port of the device and a EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. RTSP techniques are described in this chapter. The ICSP and EJTAG methods are described in the "*PIC32MX Flash Programming Specification*" (DS61145), which can be downloaded from the Microchip web site.

Note: Flash LVD Delay (LVDstartup) must be taken into account between setting up and executing any Flash command operation. See Example 5-1 for a code example to set up and execute a Flash command operation.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS61117) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32MX (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, and so on) or memory itself.

Following are some of the key features of the DMA controller module:

- · Four Identical Channels, each featuring:
 - Auto-Increment Source and Destination Address Registers
 - Source and Destination Pointers
 - Memory to Memory and Memory to Peripheral Transfers

- Automatic Word-Size Detection:
 - Transfer Granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- Fixed Priority Channel Arbitration
- Flexible DMA Channel Operating Modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA Requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 Pattern (data) match transfer termination
- Multiple DMA Channel Status Interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Source empty of hair empty
 - Destination full or half-full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA Debug Support Features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation Module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

11.0 USB ON-THE-GO (OTG)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS61126) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers, and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB OTG Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Transaction Handshaking Performed by Hardware
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA to Access System RAM and Flash

Note: The implementation and use of the USB specifications, as well as other third-party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

12.1 Parallel I/O (PIO) Ports

All port pins have three registers (TRIS, LAT and PORT) that are directly associated with their operation.

TRIS is a data direction or tri-state control register that determines whether a digital pin is an input or an output. Setting a TRISx register bit = 1 configures the corresponding I/O pin as an input; setting a TRISx register bit = 0 configures the corresponding I/O pin as an output. All port I/O pins are defined as inputs after a device Reset. Certain I/O pins are shared with analog peripherals and default to analog inputs after a device Reset.

PORT is a register used to read the current state of the signal applied to the port I/O pins. Writing to a PORTx register performs a write to the port's latch, LATx register, latching the data to the port's I/O pins.

LAT is a register used to write data to the port I/O pins. The LATx latch register holds the data written to either the LATx or PORTx registers. Reading the LATx latch register reads the last value written to the corresponding port or latch register.

Not all port I/O pins are implemented on some devices, therefore, the corresponding PORTx, LATx and TRISx register bits will read as zeros.

12.1.1 CLR, SET AND INV REGISTERS

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

Note:	Using a PORTxINV register to toggle a bit is recommended because the operation is
	performed in hardware atomically, using
	fewer instructions as compared to the tra-
	ditional read-modify-write method shown
	below:

PORTC ^= 0x0001;

12.1.2 DIGITAL INPUTS

Pins are configured as digital inputs by setting the corresponding TRIS register bits = 1. When configured as inputs, they are either TTL buffers or Schmitt Triggers. Several digital pins share functionality with analog inputs and default to the analog inputs at POR. Setting the corresponding bit in the AD1PCFG register = 1 enables the pin as a digital pin.

The maximum input voltage allowed on the input pins is the same as the maximum VIH specification. Refer to **Section 29.0 "Electrical Characteristics"** for VIH specification details.

Note:	Analog levels on any pin that is defined as
	a digital input (including the ANx pins)
	may cause the input buffer to consume
	current that exceeds the device specifica-
	tions.

12.1.3 ANALOG INPUTS

Certain pins can be configured as analog inputs used by the ADC and Comparator modules. Setting the corresponding bits in the AD1PCFG register = 0 enables the pin as an analog input pin and must have the corresponding TRIS bit set = 1 (input). If the TRIS bit is cleared = 0 (output), the digital output level (VOH or VOL) will be converted. Any time a port I/O pin is configured as analog, its digital input is disabled and the corresponding PORTx register bit will read '0'. The AD1PCFG Register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

12.1.4 DIGITAL OUTPUTS

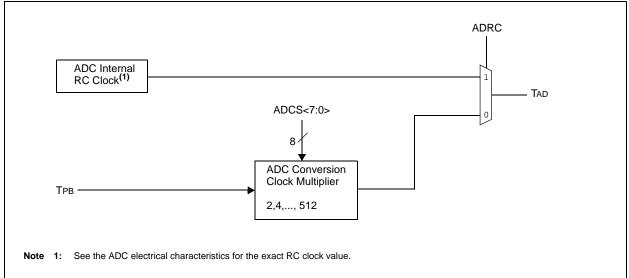
Pins are configured as digital outputs by setting the corresponding TRIS register bits = 0. When configured as digital outputs, these pins are CMOS drivers or can be configured as open drain outputs by setting the corresponding bits in the ODCx Open-Drain Configuration register.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Pin Diagrams"** section for the available pins and their functionality.

12.1.5 ANALOG OUTPUTS

Certain pins can be configured as analog outputs, such as the CVREF output voltage used by the comparator module. Configuring the Comparator Reference module to provide this output will present the analog output voltage on the pin, independent of the TRIS register setting for the corresponding pin.


12.1.6 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports (CNx) allows devices to generate interrupt requests in response to change of state on selected pin.

Each CNx pin also has a weak pull-up, which acts as a current source connected to the pin. The pull-ups are enabled by setting corresponding bit in CNPUE register.

PIC32MX3XX/4XX

FIGURE 22-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC32MX3XX/4XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX3XX/4XX are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings (Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on VCORE with respect to VSS	0.3V to 2.0V
Voltage on VBUS with respect to VSS	
Maximum current out of Vss pin(s)	300 mA
Maximum current into Vod pin(s) (Note 2)	300 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

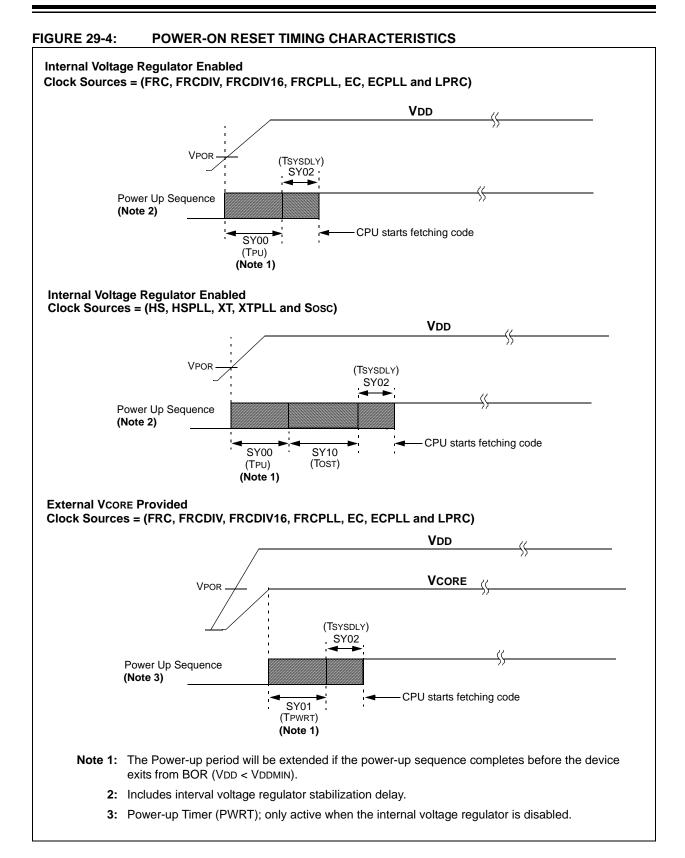

- **Note 1:** Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 29-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

TABLE 29-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHA	RACTER	ISTICS	Standard O stated) Operating te	nditions: 2.3V to 3.6V (unless otherwise -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp			
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
-	Vol	Output Low Voltage					
DO10		I/O Ports	—	—	0.4	V	IOL = 7 mA, VDD = 3.6V
			—	—	0.4	V	IOL = 6 mA, VDD = 2.3 V
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 3.5 mA, VDD = 3.6V
			—	—	0.4	V	IOL = 2.5 mA, VDD = 2.3 V
	Voн	Output High Voltage					
DO20		I/O Ports	2.4	—	_	V	ЮН = -12 mA, VDD = 3.6V
			1.4	—	_	V	Юн = -12 mA, VDD = 2.3V
DO26		OSC2/CLKO	2.4	—	—	V	ЮН = -12 mA, VDD = 3.6V
			1.4	—	—	V	Юн = -12 mA, VDD = 2.3V

TABLE 29-10: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

DC CHARACTERISTICS			stated)	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
BO10	VBOR	BOR Event on VDD transition high-to-low	2.0	—	2.3	V	_			

PIC32MX3XX/4XX

TABLE 29-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Characte	eristics	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	PBCLK must operate at a minimum of 800 KHz.	
			400 kHz mode	1.3	—	μs	PBCLK must operate at a minimum of 3.2 MHz.	
			1 MHz mode ⁽¹⁾	0.5	_	μs		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	PBCLK must operate at a minimum of 800 KHz.	
			400 kHz mode	0.6	_	μs	PBCLK must operate at a minimum of 3.2 MHz.	
			1 MHz mode ⁽¹⁾	0.5	_	μs		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF.	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF.	
			1 MHz mode ⁽¹⁾		300	ns		
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns		
			400 kHz mode	100		ns	_	
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns		
			400 kHz mode	0	0.9	μs	_	
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	A Start Condition Setup Time	100 kHz mode	4700	—	ns	Only relevant for Repeated	
			400 kHz mode	600		ns	Start condition.	
			1 MHz mode ⁽¹⁾	250		ns		
IS31	THD:STA	D:STA Start Condition Hold Time	100 kHz mode	4000		ns	After this period, the first	
			400 kHz mode	600		ns	clock pulse is generated.	
			1 MHz mode ⁽¹⁾	250		ns		
IS33	Τςυ:ςτο	:STO Stop Condition Setup Time	100 kHz mode	4000		ns		
			400 kHz mode	600	_	ns	_	
			1 MHz mode ⁽¹⁾	600		ns		
IS34	THD:STO	 Stop Condition Hold Time 	100 kHz mode	4000		ns		
			400 kHz mode	600		ns	1 —	
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns		
			400 kHz mode	0	1000	ns	1 –	
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3	—	μs	must be free before a new	
			1 MHz mode ⁽¹⁾	0.5	—	μs	transmission can start.	
	1	1		l		•		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 29-34: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +105^{\circ}C$ for V-Temp					
Param. No.	Symbol Characteristics		Min.	Typical	-40°C ≤1/ Max.	Units	C for V-Temp Conditions	
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-			•	
AD20d	Nr	Resolution	10 data bits			bits	(Note 3)	
AD21d	INL	Integral Nonlinearity		_	<±1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD22d	DNL	Differential Nonlinearity	—	_	<±1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)	
AD23d	Gerr	Gain Error	—	_	<±4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD24d	EOFF	Offset Error		_	<±2	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD25d	_	Monotonicity	_	_		_	Guaranteed	
Dynami	c Performa	ance						
AD31b	SINAD	Signal to Noise and Distortion	55	58.5	—	dB	(Notes 3, 4)	
AD34b	ENOB	Effective Number of Bits	9.0	9.5		bits	(Notes 3, 4)	

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with 1 kHz sinewave.

PIC32MX3XX/4XX

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
Clock P	arameter	S					·	
AD50	Tad	Analog-to-Digital Clock Period	65	_	—	ns	See Table 29-35 and Note 2	
AD51	TRC	Analog-to-Digital Internal RC Oscillator Period	—	250	—	ns	See Note 3	
Conver	sion Rate						·	
AD55	TCONV	Conversion Time	—	12 Tad	—		—	
AD56	FCNV	Throughput Rate (Sampling Speed)	—	—	1000	KSPS	AVDD = 3.0V to 3.6V	
				_	400	KSPS	AVDD = 2.5V to 3.6V	
AD57	TSAMP	Sample Time	1 Tad		—	—	TSAMP must be \geq 132 ns.	
Timing	Paramete	rs	1		II			
AD60	TPCS	Conversion Start from Sample Trigger	_	1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected. See Note 3	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 TAD	—	_	
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1)	—	0.5 Tad	—	_	See Note 3	
AD63	TDPU	Time to Stabilize Analog Stage from Analog-to-Digital OFF to Analog-to-Digital ON	—	—	2	μs	See Note 3	

TABLE 29-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

Revision H (May 2011)

The revision includes the following global update:

- All references to VDDCORE/VCAP have been changed to: VCORE/VCAP
- Added references to the new V-Temp temperature range: -40°C to +105°C

This revision also includes minor typographical and formatting changes throughout the data sheet text. Major updates are referenced by their respective section in the following table.

Section Name	Update Description			
Section 1.0 "Device Overview"	Updated the VBUS description in Table 1-1: "Pinout I/O Descriptions".			
Section 4.0 "Memory Organization"	Added Note 2 and changed the RIPL<2:0> bits to SRIPL<2:0> in the Interrupt Register Map tables (see Table 4-2 through Table 4-6.			
	Added Note 2 to the Timer1-5 Register Map (see Table 4-7).			
	Updated the All Resets value for I2C1CON<15:0> and I2C2CON<15:0> in the I2C1 and I2C2 Register Map (see Table 4-10).			
	Updated the All Resets value for SPI1STAT<15:0> and SPI2STAT<15:0> in the SPI1 and SPI2 Register Map (see Table 4-12).			
	Updated the All Resets value for CM1CON<15:0> and CM2CON<15:0> in the Comparator Register Map (see Table 4-17).			
	Renamed the RCDIV<2:0> bits to FRCDIV<2:0> and the LOCK bit to SLOCK in the OSCCON register, and added Note 3 and the SYSKEYregister to the System Control Registers Map (see Table 4-20).			
	Updated the All Resets value for the PMSTAT register in the Parallel Master Port Register Map (see Table 4-37).			
	Updated the All Resets value for CHECON<15:0> and CHETAG<15:0> in the Prefetch Register Map (see Table 4-39).			
	Renamed FUPLLEN, FUPLLIDIV, and FPLLMULT in the DEVCFG2 register to: UPLLEN, UPLLIDIV, and FPLLMUL, respectively in the Device Configuration Word Summary (see Table 4-41).			
	Added Notes 1 through 4 to the USB Register Map (see Table 4-43).			
Section 5.0 "Flash Program Memory"	Added a note on Flash LVD Delay and Example 5-1.			
Section 8.0 "Oscillator Configuration"	Updated the PIC32MX3XX/4XX Family Clock Diagram (see Figure 8-1).			
Section 11.0 "USB On-The-Go (OTG)"	Updated the PIC32MX3XX/4XX Family USB Interface Diagram (see Figure 11-1).			
Section 16.0 "Output Compare"	Updated the Output Compare Module Block Diagram (see Figure 16-1).			
Section 22.0 "10-bit Analog-to-Digital Converter (ADC)"	Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2).			
Section 26.0 "Special Features"	Renamed FUPLLEN, FUPLLIDIV, and FPLLMULT in the DEVCFG2 register to: UPLLEN, UPLLIDIV, and FPLLMUL, respectively (see Register 26-3).			

TABLE A-3: MAJOR SECTION UPDATES

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
From	n: Name						
1101	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Арр	lication (optional):						
Wou	uld you like a reply?YN						
Dev	ice: PIC32MX3XX/4XX	Literature Number: DS61143H					
Que	estions:						
1.	What are the best features of this document?						
•							
2.	How does this document meet your hardware and soft	ware development needs?					
3.	. Do you find the organization of this document easy to follow? If not, why?						
4.	What additions to the document do you think would er	hance the structure and subject?					
5.	What deletions from the document could be made without affecting the overall usefulness?						
6.	Is there any incorrect or misleading information (what	and where)?					
7.	How would you improve this document?						