

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XEI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx440f512h-80i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				PIC32 PIC32 PIC32	2MX340 2MX360 2MX360	F128L F256L F512L								
 1	2	3	4	5	6	7	8	9	10	11				
RE4	RE3	R G13	RE0	RG0	RF1		O Vss	RD12	RD2	RD1				
NC	RG15	RE2	RE1	RA7	RF0	Vcore/ Vcap	RD5	RD3	O Vss	O RC14				
RE6	O Vdd	RG12	RG14	RA6	NC	RD7	RD4	O Vdd	O RC13	R D11				
RC1	RE7	RE5	⊖ Vss	⊖ Vss	NC	RD6	RD13	RD0	NC	R D10				
RC4	RC3	RG6	RC2	O Vdd	RG1	⊖ Vss	RA15	RD8	RD9	R A14				
MCLR	RG8	RG9	RG7	⊖ Vss	NC	NC	O Vdd	O RC12	⊖ Vss	C RC15				
RE8	RE9	RA0	NC	O Vdd	⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4				
O RB5	O RB4	⊖ Vss	O Vdd	NC	O Vdd	NC	RF7	RF6	RG2	RA2				
O RB3	O RB2	O RB7	O AVdd	O RB11	O RA1	O RB12	NC	NC	RF8	O RG3				
O RB1	O RB0	O RA10	O RB8	NC	R F12	O RB14	O Vdd	RD15	RF3	RF2				
O RB6	O RA9) AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5				

Pin Diagrams (Continued)

TABLE 4:PIN NAMES: PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L
DEVICES (CONTINUED)

Pin Number	Full Pin Name
K4	AN8/C1OUT/RB8
K5	No Connect (NC)
K6	U2CTS/RF12
K7	AN14/PMALH/PMA1/RB14
K8	VDD
K9	U1RTS/CN21/RD15
K10	USBID/RF3
K11	U1RX/RF2
L1	PGEC2/AN6/OCFA/RB6
L2	VREF-/CVREF-/PMA7/RA9

Pin Number	Full Pin Name
L3	AVss
L4	AN9/C2OUT/RB9
L5	AN10/CVREFOUT/PMA13/RB10
L6	U2RTS/RF13
L7	AN13/PMA10/RB13
L8	AN15/OCFB/PMALL/PMA0/CN12/RB15
L9	U1CTS/CN20/RD14
L10	U2RX/PMA9/CN17/RF4
L11	U2TX/PMA8/CN18/RF5

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the PIC32MX3XX/4XX devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX3XX/4XX family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC32MX3XX/4XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VCORE

(see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VCORE)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.8 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of ADC use and ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

2.11 Referenced Sources

This device data sheet is based on the following individual chapters of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the PIC32MX460F512L product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS61127)
- Section 2. "CPU" (DS61113)
- Section 3. "Memory Organization" (DS61115)
- Section 4. "Prefetch Cache" (DS61119)
- Section 5. "Flash Program Memory" (DS61121)
- Section 6. "Oscillator Configuration" (DS61112)
- Section 7. "Resets" (DS61118)
- Section 8. "Interrupt Controller" (DS61108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS61114)
- Section 10. "Power-Saving Features" (DS61130)
- Section 12. "I/O Ports" (DS61120)
- Section 13. "Parallel Master Port (PMP)" (DS61128)
- Section 14. "Timers" (DS61105)
- Section 15. "Input Capture" (DS61122)
- Section 16. "Output Compare" (DS61111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS61104)
- Section 19. "Comparator" (DS61110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS61109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS61107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS61106)
- Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS61116)
- Section 27. "USB On-The-Go (OTG)" (DS61126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS61125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS61117)
- Section 32. "Configuration" (DS61124)
- Section 33. "Programming and Diagnostics" (DS61129)

PIC32MX3XX/4XX

NOTES:

TABLE 4-27: PORTE REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess	L	ge								Bi	ts								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	TDICE	31:16	—	—	—	—	—	—	—	-	-	—	—	—	—	—	—		0000
0100	TRISE	15:0	—	_	—	—	_	—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
6110	DODTE	31:16	_	-	-	—	_	-	-	-	-	-	-	-	-	_	_	_	0000
0110	FORTE	15:0	—	_	—	—	_	—	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6100		31:16	—	_	—	—	_	—	_	—	_	—	—	—	—	_	_		0000
6120	LATE	15:0	_	—	—	—	—	—	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6120	ODCE	31:16	—	_	—	—	_	—	_	—	_	—	—	—	—	_	_		0000
0130	ODCE	15:0	_	_	_	_	_	_	ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PORTE REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, **TABLE 4-28:** PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H **DEVICES ONLY⁽¹⁾**

ess										В	its								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	TDICE	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0100	TRISE	15:0	—	_	_	—	_	_	—	—	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
6110	DODTE	31:16	—	_	_	—	_	_	—	—	—	—	_	—	_	—	_	_	0000
0110	PURIE	15:0	_	—	—	_	_	—	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6120		31:16	—	_	_	—	_	_	—	—	—	—	_	—	_	—	_	_	0000
0120	LATE	15:0	—	_	_	—	_	_	—	—	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6120	ODCE	31:16	—	-	-	-	_	-	-	-	-	-	_	-	-	-	_	-	0000
0130	ODCE	15:0	_	_		—		_	_	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000

Legend

unimplemented, read as '0'. Reset values are shown in hexadecimal

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 4-29: PORTF REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L AND PIC32MX360F512L DEVICES ONLY⁽¹⁾

ess										В	its								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TDICE	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0140	TRISE	15:0	—	_	TRISF13	TRISF12	—	—	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
6150	DODTE	31:16	_	_	—	—	—	—	_	_	—	—	—	—	—	_	—	_	0000
0150	FURIF	15:0	—	_	RF13	RF12	—	—	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160		31:16	—	_	—	—	—	—	_	_	_	—	—	—	—	_	_	_	0000
0100	LAIF	15:0	—	—	LATF13	LATF12	—	—	—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCE	31:16	—		—	—	—	—	—		—	—	—	—	—	—	—		0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	—	—	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-30: PORTF REGISTERS MAP FOR PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess										Bi	its								
Virtual Addr (BF88_#)	(BF88_#	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TDICE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0140	TRISE	15:0	—	—	TRISF13	TRISF12	—	—	_	TRISF8	—	—	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6150	DODTE	31:16	—	—	_	—	—	_	_	_	—	—	—	—	—	—	—	—	0000
0150	FURIF	15:0	—	-	RF13	RF12	-	-	_	RF8	-	-	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160		31:16	—	—	_	—	—	—	_	_	—	—	—	—	—	—	—	_	0000
0100	LAIF	15:0	—	—	LATF13	LATF12	—	_	_	LATF8	—	—	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCE	31:16	_	_	—	—	—	_	_	—	—	—	—	—	—	_	_	—	0000
0170	ODCF	15:0	_	_	ODCF13	ODCF12	—	_		ODCF8	—	—	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS61121) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

PIC32MX3XX/4XX devices contain an internal program Flash memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self Programming (RTSP)
- In-Circuit Serial Programming[™] (ICSP[™])
- EJTAG Programming

EXAMPLE 5-1:

 NVMCON = 0x4004;
 // Enable and configure for erase operation

 Wait(delay);
 // Delay for 6 µs for LVDstartup

 NVMKEY = 0xAA996655;
 NVMKEY = 0x556699AA;

 NVMCONSET = 0x8000;
 // Initiate operation

 while(NVMCONbits.WR==1);
 // Wait for current operation to complete

RTSP is performed by software executing from either Flash or RAM memory. EJTAG is performed using the EJTAG port of the device and a EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. RTSP techniques are described in this chapter. The ICSP and EJTAG methods are described in the "*PIC32MX Flash Programming Specification*" (DS61145), which can be downloaded from the Microchip web site.

Note: Flash LVD Delay (LVDstartup) must be taken into account between setting up and executing any Flash command operation. See Example 5-1 for a code example to set up and execute a Flash command operation.

PIC32MX3XX/4XX

NOTES:

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS61117) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32MX (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, and so on) or memory itself.

Following are some of the key features of the DMA controller module:

- · Four Identical Channels, each featuring:
 - Auto-Increment Source and Destination Address Registers
 - Source and Destination Pointers
 - Memory to Memory and Memory to Peripheral Transfers

- Automatic Word-Size Detection:
 - Transfer Granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- Fixed Priority Channel Arbitration
- Flexible DMA Channel Operating Modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA Requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 Pattern (data) match transfer termination
- Multiple DMA Channel Status Interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Source empty of hair empty
 - Destination full or half-full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA Debug Support Features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation Module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

16.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS61111) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module (OCMP) is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the OCMP module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the OCMP module generates an event based on the selected mode of operation.

The following are some of the key features:

- Multiple output compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases.
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 16-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

PIC32MX3XX/4XX

FIGURE 18-1: I^2C^{TM} BLOCK DIAGRAM (x = 1 OR 2)

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS61125) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. The following are some of the key features of this module:

- Time: Hours, Minutes and Seconds
- 24-Hour Format (Military Time)
- Visibility of One-Half-Second Period
- Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are configurable for Half of a Second, One Second, 10 Seconds, One Minute, 10 Minutes, One Hour, One Day, One Week, One Month and One Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- Leap Year Correction
- BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Calibration Range: ±0.66 Seconds Error per Month
- · Calibrates up to 260 ppm of Crystal Error
- Requirements: External 32.768 kHz Clock Crystal
- Alarm Pulse or Seconds Clock Output on RTCC pin

FIGURE 21-1: RTCC BLOCK DIAGRAM

29.1 DC Characteristics

TABLE 29-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temp. Range	Max. Frequency
Characteristic	(in Volts)	(in °C)	PIC32MX3XX/4XX
DC5	2.3V-3.6V	-40°C to +85°C	80 MHz (Note 1)
DC5b	2.3V-3.6V	-40°C to +105°C	80 MHz (Note 1)

Note 1: 40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.

TABLE 29-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-Temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH)	PD		PINT + PI/c)	W
I/O Pin Power Dissipation: I/O = S ({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJ	A	W

TABLE 29-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 121-Pin XBGA (10x10x1.1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θја	43	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θја	47	_	°C/W	1
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θја	28	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 29-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp									
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions					
Operati	ng Voltag	e										
DC10	Vdd	Supply Voltage	2.3	—	3.6	V	—					
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75		—	V	_					
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	—	1.95	V	_					
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—		V/ms						

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
	VIL Input Low Voltage							
DI10		I/O pins:						
		with TTL Buffer	Vss	—	0.15 Vdd	V	(Note 4)	
		with Schmitt Trigger Buffer	Vss	—	0.2 Vdd	V	(Note 4)	
DI15		MCLR	Vss	_	0.2 Vdd	V	(Note 4)	
DI16		OSC1 (XT mode)	Vss	—	0.2 Vdd	V	(Note 4)	
DI17		OSC1 (HS mode)	Vss	—	0.2 Vdd	V	(Note 4)	
DI18		SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled (Note 4)	
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)	
	Vін	Input High Voltage						
DI20		I/O pins: with Analog Functions	0.8 Vdd	_	Vdd	V	(Note 4)	
		Digital Only	0.8 Vdd	_		V	(Note 4)	
		with TTL Buffer	0.25Vdd + 0.8v	_	5.5	V	(Note 4)	
		with Schmitt Trigger Buffer	0.8 Vdd	_	5.5	V	(Note 4)	
DI25		MCLR	0.8 Vdd	_	Vdd	V	(Note 4)	
DI26		OSC1 (XT mode)	0.7 Vdd	_	Vdd	V	(Note 4)	
DI27		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	(Note 4)	
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMBus disabled (Note 4)	
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ⊴VPIN <i>≤</i> 5.5 (Note 4)	
DI30	ICNPU	CNxx Pull up Current	50	250	400	μA	VDD = 3.3V, VPIN = VSS	
	lı∟	Input Leakage Current					(Note 3)	
DI50		I/O Ports	—	—	<u>+</u> 1	μA	Vss ⊴VPiN ⊴VDD, Pin at high-impedance	
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	Vss ⊴VPiN ⊴VDD, Pin at high-impedance	
DI55		MCLR	—	—	<u>+</u> 1	μA	Vss ⊴Vpin ⊴Vdd	
DI56		OSC1	_	—	<u>+</u> 1	μA	Vss ≤VPIN ≤VDD, XT and HS modes	

TABLE 29-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: This parameter is characterized, but not tested in manufacturing.

FIGURE 29-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 29-29: SPIx MODULE MASTER MODE (CKE = 1)	TIMING REQUIREMENTS
--	----------	---------------------

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽³⁾	Тѕск/2	_		ns	_
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2	—	_	ns	—
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾		—	_	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾		_	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	_	_		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	_		ns	See parameter DO31
SP35	TSCH2DOV, TSCL2DOV	SDOx Data Output Valid after SCKx Edge	_	—	15	ns	VDD > 2.7V
			_	—	20	ns	VDD < 2.7V
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	15	_	_	ns	_
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	15	—	_	ns	VDD > 2.7V
			20	_		ns	Vdd < 2.7V
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	15	_	_	ns	VDD > 2.7V
			20	_	_	ns	VDD < 2.7V

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 29-23: **EJTAG TIMING CHARACTERISTICS**

TABLE 29-41: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions		
EJ1	Ттсксус	TCK Cycle Time	25	_	ns	—		
EJ2	Ттскнідн	TCK High Time	10		ns	—		
EJ3	TTCKLOW	TCK Low Time	10	_	ns	—		
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5		ns	_		
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	_	ns	—		
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	_	5	ns	_		
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_		
EJ8	TTRSTLOW	TRST Low Time	25	_	ns	_		
EJ9	TRF	TAP Signals Rise/Fall Time, All Input and Output	_	_	ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Microchip Technology Drawing C04-149C Sheet 1 of 2

DS61143H-page 194