

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx440f512ht-80i-mr

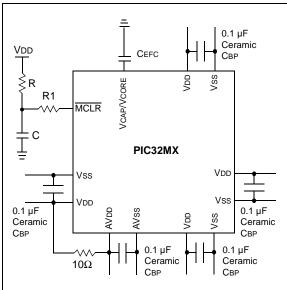
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PIC32MX USB – FEATURES

	USB														
Device	Pins	Packages ⁽²⁾	MHz	Program Memory (KB)	Data Memory (KB)	Timers/Capture/Compare	Programmable DMA Channels	Dedicated USB DMA Channels	VREG	Trace	EUART/SPI/I ² C™	10-bit ADC (ch)	Comparators	dSd/dWd	JTAG
PIC32MX420F032H	64	PT, MR	40	32 + 12 ⁽¹⁾	8	5/5/5	0	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F256H	64	PT, MR	80	256 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F512H	64	PT, MR	80	512 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
	100	PT													
PIC32MX440F128L	121	BG	80	128 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT													
PIC32MX460F256L	121	BG	80	256 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	Yes	2/2/2	16	2	Yes	Yes
	100	PT		(1)				_					_		
PIC32MX460F512L	121	BG	80	512 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	Yes	2/2/2	16	2	Yes	Yes

Legend: PT = TQFP MR = QFN BG = XBGA


Note 1: This device features 12 KB Boot Flash memory.

2: See Legend for an explanation of the acronyms. See Section 30.0 "Packaging Information" for details.

1 RE4 NC	2	3	4	5								
				.	6	7	8	9	10	11		
	RE3	RG13	RE0	RG0	RF1		⊖ Vss	R D12	RD2	RD1		
NC	RG15	RE2	RE1	RA7	RF0	VCORE/ VCAP	RD5	RD3) Vss	O RC14		
RE6	O VDD	RG12	RG14	RA6	NC	RD7	RD4	O Vdd	O RC13	RD11		
RC1	RE7	RE5	⊖ Vss	⊖ Vss	NC	RD6	RD13	RD0	NC	R D10		
RC4	RC3	RG6	RC2	O Vdd	RG1	⊖ Vss	RA15	RD8	RD9	RA14		
MCLR	RG8	RG9	RG7	⊖ Vss	NC	NC	O Vdd	O RC12	⊖ Vss	O RC15		
RE8	RE9	RA0	NC	O Vdd	⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4		
O RB5	O RB4	⊖ Vss	O Vdd	NC	O Vdd	NC	RF7	RF6	RG2	RA2		
O RB3	O RB2	O RB7	O AVDD	O RB11	O RA1	O RB12	NC	NC	RF8	O RG3		
O RB1	O RB0	O RA10	O RB8	NC	RF12	O RB14	O Vdd	RD15	RF3	RF2		
O RB6	O RA9	O AVss	O RB9	O RB10	R F13	O RB13	O RB15	RD14	RF4	RF5		
	RC1 RC4 ACLR RE8 RB5 RB5 RB3 RB1 C	RC1 RE7 RC4 RC3 ACLR RG8 RE8 RE9 RB5 RB4 RB3 RB2 RB1 RB0 RB3 RB0	RC1RE7RE5RC4RC3RG6ACLRRG8RG9ACLRRG8RG9RE8RE9RA0RB5RB4VSSRB3RB2RB7RB1RB0RA10OOOOORB1RB0RA10	RC1 RE7 RE5 VSS RC4 RC3 RG6 RC2 ACLR RG8 RG9 RG7 RE8 RE9 RA0 NC RB5 RB4 VSS VDD RB3 RB2 RB7 AVDD RB1 RB0 RA10 RB8	RC1 RE7 RE5 VSS VSS RC4 RC3 RG6 RC2 VDD ACLR RG8 RG9 RG7 VSS RE8 RE9 RA0 NC VDD RB5 RB4 VSS VDD NC RB3 RB2 RB7 AVDD RB11 RB0 RA10 RB8 NC O O O O RB1 RB0 RA10 RB8 NC	RC1 RE7 RE5 VSS NC RC4 RC3 RG6 RC2 VDD RG1 ACLR RG8 RG9 RG7 VSS NC RE8 RE9 RA0 NC VDD VSS RB5 RB4 VSS VDD NC VDD RB3 RB2 RB7 AVDD RB11 RA1 RB1 RB0 RA10 RB8 NC RF12 O O O O O P	RC1 RE7 RE5 VSS VSS NC RD6 RC4 RC3 RG6 RC2 VDD RG1 VSS ACLR RG8 RG9 RG7 VSS NC NC RE8 RE9 RA0 NC VDD VSS VSS RB5 RB4 VSS VDD NC VDD NC RB3 RB2 RB7 AVDD RB11 RA1 RB12 RB1 RB0 RA10 RB8 NC RF12 RB14	RC1 RE7 RE5 VSS VSS NC RD6 RD13 RC4 RC3 RG6 RC2 VDD RG1 VSS RA15 ACLR RG8 RG9 RG7 VSS NC NC VDD RE8 RE9 RA0 NC VDD VSS VSS NC NC RB5 RB4 VSS VDD NC VDD NC RF7 RB3 RB2 RB7 AVDD RB11 RA1 RB12 NC RB1 RB0 RA10 RB8 NC RF12 RB14 VDD NC O O O O O O O O RB1 RB0 RA10 RB8 NC RF12 RB14 VDD	RC1RE7RE5VSSVSSNCRD6RD13RD0RC4RC3RG6RC2VDDRG1VSSRA15RD8ACLRRG8RG9RG7VSSNCNCVD0RC12RE8RE9RA0NCVDDVSSVSSNCRA0RB5RB4VSSVDDNCVDDNCRF7RF6RB3RB2RB7AVDDRB11RA1RB12NCMCRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOPRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOPPRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOOPRB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOOOORB1RB0RA10RB8NCRF12RB14VDDRD15OOOOOOOOOORB1RB0RA10RB8NCRF12RB14VDDRD15	RC1RE7RE5VSSVSSNCRD6RD13RD0NCRC4RC3RG6RC2VDDRG1VSSRA15RD8RD9ACLRRG8RG9RG7VSSNCNCVDDRC12VSSRE8RE9RA0NCVDDVSSVSSNCRA5RA3RB5RB4VSSVDDNCVDDNCRF7RF6RG2RB3RB2RB7AVDDRB11RA1RB12NCNCRF8RB1RB0RA10RB8NCRF12RB14VDDRD15RF3RB1RB0RA10RB8NCRF12RB14VDDRD15RF3		

Pin Diagrams (Continued)

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP/VCORE)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (< 1 Ohm) capacitor is required on the VCAP/VCORE pin, which is used to stabilize the internal voltage regulator output. The VCAP/VCORE pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 29.0** "**Electrical Characteristics**" for additional information on CEFC specifications. This mode is enabled by connecting the ENVREG pin to VDD.

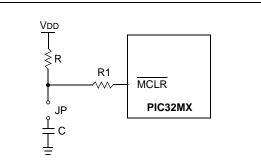
2.3.2 EXTERNAL REGULATOR MODE

In this mode the core voltage is supplied externally through the VCORE/VCAP pin. A low-ESR capacitor of 10 μF is recommended on the VCAP/VCORE pin. This mode is enabled by grounding the ENVREG pin.

The placement of this capacitor should be close to the VCAP/VCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 26.3** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:


- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2:	EXAMPLE OF MCLR PIN
	CONNECTIONS

- Note 1: R ≤10 kΩ is recommended. A suggested starting value is 10 kΩ Ensure that the MCLR pin VIH and VIL specifications are met.
 - 2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.
 - **3:** The capacitor can be sized to prevent unintentional resets from brief glitches or to extend the device reset period during POR.

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	1	1
MSUB/MSUBU	32 bits	2	2
MUL	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

TABLE 3-1:MIPS[®] M4K[®] PROCESSOR CORE HIGH-PERFORMANCE INTEGER
MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the general purpose register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, multiply-add (MADD) and multiplysubtract (MSUB), are used to perform the multiplyaccumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (kernel, user and debug), and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception
9	Count ⁽¹⁾	Processor cycle count
10	Reserved	Reserved
11	Compare ⁽¹⁾	Timer interrupt control
12	Status ⁽¹⁾	Processor status and control
12	IntCtl ⁽¹⁾	Interrupt system status and control
12	SRSCtl ⁽¹⁾	Shadow register set status and control
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set
13	Cause ⁽¹⁾	Cause of last general exception
14	EPC ⁽¹⁾	Program counter at last exception
15	PRId	Processor identification and revision
15	EBASE	Exception vector base register
16	Config	Configuration register
16	Config1	Configuration register 1
16	Config2	Configuration register 2
16	Config3	Configuration register 3

TABLE 3-2: COPROCESSOR 0 REGISTERS

4.0 MEMORY ORGANIZATION

Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Memory Organization" (DS61115) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MX3XX/4XX microcontrollers provide 4 GB of unified virtual memory address space. All memory regions including program, data memory, SFRs and Configuration registers reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX3XX/4XX to execute from data memory.

4.1 Key Features

- 32-bit native data width
- Separate User and Kernel mode address space
- Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable and non-cacheable address regions

4.2 PIC32MX3XX/4XX Memory Layout

PIC32MX3XX/4XX microcontrollers implement two address spaces: Virtual and Physical. All hardware resources such as program memory, data memory and peripherals are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by peripherals such as DMA and Flash controller that access memory independently of CPU.

TABLE 4-1: BUS MATRIX REGISTERS MAP

ess		6									Bits								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16				_		BMXCHEDMA	_	_	_	_		BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	001F
2000	CON ⁽¹⁾	15:0	—	_	—	_	_	_	_	—	_	BMXWSDRM		—	_	BI	MXARB<2:0>		0042
2010		31:16	_		_			_	_	_	_	_		_		_	_	_	0000
2010	DKPBA ⁽¹⁾	15:0		BMXDKPBA<15:0> 0000											0000				
		31:16	_		_			_	-	_	_	_		_		_	_	_	0000
2020	DUDBA ⁽¹⁾	15:0								BN	IXDUDBA	<15:0>							0000
		31:16			_	-		—	-	_	_	-		_	_	_	_	_	0000
2030	DUPBA ⁽¹⁾	15:0								BN	IXDUPBA	<15:0>							0000
	BMX	31:16																	xxxx
2040	DRMSZ	15:0								BN	IXDRMSZ	<31:0>							xxxx
		31:16		_	_	_	_	_	-	_	_	_	_	_		BMXPUPBA	\<19:16>		0000
2050	PUPBA ⁽¹⁾	15:0								BN	IXPUPBA	<15:0>							0000
	BMX	31:16																	xxxx
2060	PFMSZ	15:0		BMXPFMSZ<31:0>															
0070	BMX	31:16							_	-									0000
2070	BOOTSZ	15:0	BMXBOOTSZ<31:0>																

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	—	—			—	-		_	—	_	-	—		—	SS0	00
1000	INTCOM	15:0		—	—	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	00
1010	INTSTAT ⁽²⁾	31:16	_	_	_		_		_			_			_	_	_	_	00
1010	INIGIAI	15:0	—	_	_				SRIPL<2:0>			_			VEC	<5:0>			00
1020	IPTMR	31:16 15:0								IPTMR	<31:0>								00
		31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1RXIF	SPI1TXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	00
1030	IFS0	15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	00
	1504	31:16	_	_	_	_	_	_	USBIF	FCEIF	_	_	_	_	DMA3IF	DMA2IF	DMA1IF	DMA0IF	00
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2RXIF	SPI2TXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	00
4000	15.00	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1RXIE	SPI1TXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	00
1060	IEC0	15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	00
4070	IEC1	31:16	—	—	_			-	USBIE	FCEIE		—			DMA3IE	DMA2IE	DMA1IE	DMA0IE	00
1070	IECT	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	00
1090	IPC0	31:16	—	—	—		NT0IP<2:0>		INTOIS	S<1:0>	_	—	_		CS1IP<2:0>		CS1IS	S<1:0>	00
1090	IFCU	15:0	_	-	-		CS0IP<2:0>		CSOIS	i<1:0>	_	-	_		CTIP<2:0>		CTIS	<1:0>	00
10A0	IPC1	31:16	—	-	-		NT1IP<2:0>		INT1IS	S<1:0>		-	-		OC1IP<2:0>		OC1IS	S<1:0>	00
IUAU	1101	15:0	—	_	_		IC1IP<2:0>		IC1IS	<1:0>		-			T1IP<2:0>		T1IS	<1:0>	00
10B0	IPC2	31:16	—	—	—		NT2IP<2:0>		INT2IS	S<1:0>	—	—	—		OC2IP<2:0>		OC2IS	S<1:0>	00
TODO	11 02	15:0	_	—	—		IC2IP<2:0>		IC2IS	<1:0>	_	—	_		T2IP<2:0>		T2IS	<1:0>	00
10C0	IPC3	31:16	_	—	—		NT3IP<2:0>			S<1:0>	_	—	_		OC3IP<2:0>			S<1:0>	00
1000		15:0	_		—		IC3IP<2:0>		IC3IS		_	—	_		T3IP<2:0>		T3IS	<1:0>	00
10D0	IPC4	31:16	_		—		NT4IP<2:0>	•	INT4IS	S<1:0>	_	—	_		OC4IP<2:0>		OC4IS	S<1:0>	00
		15:0	_		—		IC4IP<2:0>		IC4IS		_	—	_		T4IP<2:0>			<1:0>	00
10E0	IPC5	31:16	-	—	_		SPI1IP<2:0>			6<1:0>	_	—	_		OC5IP<2:0>			S<1:0>	00
		15:0	_	—	—		IC5IP<2:0>		IC5IS		—	—	_		T5IP<2:0>			<1:0>	00
10F0	IPC6	31:16	_	—	—		AD1IP<2:0>		AD1IS		—	—	_		CNIP<2:0>			<1:0>	00
		15:0	—	—	—		I2C1IP<2:0>		12C115		—	—	—		U1IP<2:0>			<1:0>	00
1100	IPC7	31:16	—	_	—		SPI2IP<2:0>		SPI2IS		_	—	_		CMP2IP<2:0			S<1:0>	00
		15:0	_	—	—		CMP1IP<2:0		CMP1I		_	—	_		PMPIP<2:0>			S<1:0>	00
1110	IPC8	31:16	_	—	—		RTCCIP<2:0		RTCCI		—	—	—	F	SCMIP<2:0	>		S<1:0>	00
		15:0	—	—	—		I2C2IP<2:0>			S<1:0>	_	—	—		U2IP<2:0>			<1:0>	00
1120	IPC9	31:16	_	—	—		MA3IP<2:0		DMA3I		—	—	—		DMA2IP<2:0			S<1:0>	00
		15:0	_	_	-		0MA1IP<2:0	>	DMA1	S<1:0>	_	-	_	[DMA0IP<2:0	>	DMA0	S<1:0>	00
1140	IPC11	31:16	_	_	—	_	-	—	—	—	_	_	_	—	-	—	-		000
Legen	L	15:0		—	L —		USBIP<2:0> 0'. Reset val			5<1:0>	—	—	—		FCEIP<2:0>		FCEIS	S<1:0>	000

TABLE 4-2: INTERRUPT REGISTERS MAP FOR PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

Note 1: Except where noted, all registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX3XX/4XX

2: This register does not have associated CLR, SET, and INV registers.

TABLE 4-33: PORTG REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess										Bi	its								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	_	_		—						—	—		—	—	—	—	0000
0100	11100	15:0	TRISG15	TRISG14	TRISG13	TRISG12			TRISG9	TRISG8	TRISG7	TRISG6	-	-	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6190	PORTG	31:16	-	_	-	-	-	_	_	-	-	-	-	-	-	-	-	_	0000
0190	FURIG	15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	—	—	RG3	RG2	RG1	RG0	xxxx
61A0	LATG	31:16		_	_	—	—	—	—	—	—	—	—	—	_	—	—	—	0000
6TAU	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	LATG1	LATG0	xxxx
61B0	ODCG	31:16	_	—	—	—	_		_	—	_	—	—	_	—	—	—	—	0000
UIDU	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	—	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-34: PORTG REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY⁽¹⁾

ess										Bi	its								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	-	_		_		—				—			—	—		—	0000
0100	IRISG	15:0	—	—	—	—	—	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	_	—	03cc
6190	PORTG	31:16		-	_	_	—	—	_	_	—	—	_	_	—	—	—	_	0000
0190	FORIG	15:0	-	-	-	_	-	-	RG9	RG8	RG7	RG6	_	-	RG3	RG2	-	-	xxxx
61A0	LATG	31:16	-	_		_		_		_	-	_	_	-	—	_		_	0000
0170	LAIG	15:0	-			-	-	-	LATG9	LATG8	LATG7	LATG6		-	LATG3	LATG2		—	xxxx
61B0	ODCG	31:16	-	_		_		—		_		—	_		—	—		_	0000
0100	0000	15:0	_	_		—		-	ODCG9	ODCG8	ODCG7	ODCG6	_	-	ODCG3	ODCG2		_	0000

Legend: x = unknown value on Reset, --- unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

11.0 USB ON-THE-GO (OTG)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS61126) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1.

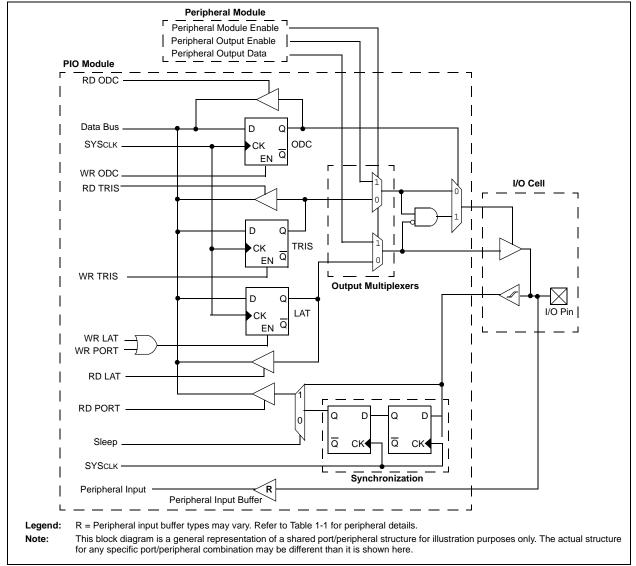
The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers, and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB OTG Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Transaction Handshaking Performed by Hardware
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA to Access System RAM and Flash

Note: The implementation and use of the USB specifications, as well as other third-party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

12.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS61120) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Following are some of the key features of this module:

- Individual Output Pin Open-drain Enable/Disable
- Individual Input Pin Weak Pull-up Enable/Disable
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- Operation during CPU Sleep and Idle modes
- Fast Bit Manipulation using CLR, SET and INV Registers

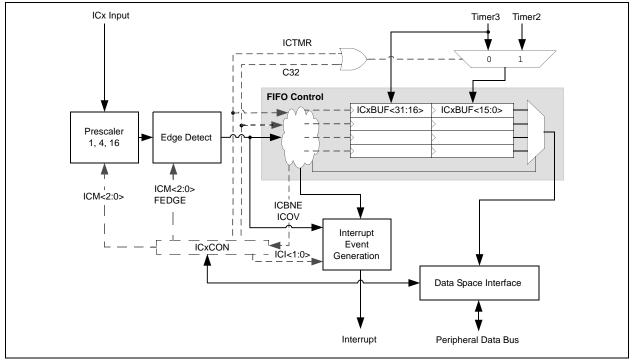
Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

15.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS61122) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC32MX3XX/4XX devices support up to five input capture channels.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:


- 1. Simple Capture Event modes
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- 3. Capture timer value on every edge (rising and falling), specified edge first.
- 4. Prescaler Capture Event modes
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 15-1: INPUT CAPTURE BLOCK DIAGRAM

NOTES:

NOTES:

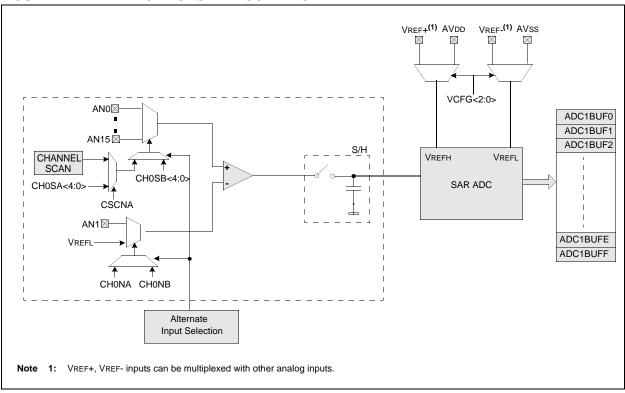
NOTES:

22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS61104) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The PIC32MX3XX/4XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1000 kilo samples per second (ksps) conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample-and-Hold Amplifier (SHA)


- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 22-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight, 32-bit output formats when it is read from the result buffer.

FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC32MX3XX/4XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX3XX/4XX are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings (Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on VCORE with respect to VSS	0.3V to 2.0V
Voltage on VBUS with respect to VSS	
Maximum current out of Vss pin(s)	300 mA
Maximum current into Vod pin(s) (Note 2)	300 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

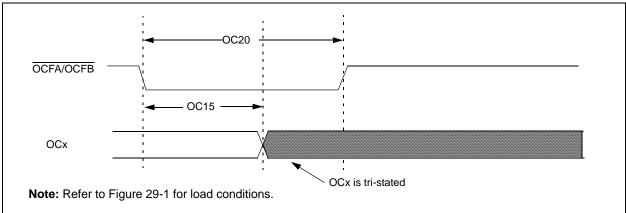

- **Note 1:** Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 29-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

TABLE 29-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА		TICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Symbol	Chara	cteristic	s ⁽¹⁾	Min.	Max.	Units	Cond	itions		
TB10	ТтхН	TxCK High Time	Synchr with pre	onous, escaler	[(12.5 ns or 1ТРВ)/N] + 25 ns		ns	Must also meet parameter TB15.	N = prescale value (1, 2, 4, 8, 16,		
TB11	TTXL	TxCK Low Time	Synchr with pre	onous, escaler	[(12.5 ns or 1ТРВ)/N] + 25 ns	—	ns	Must also meet parameter TB15.	32, 64, 256)		
TB15	ΤτχΡ	TxCK Input	Synchr with pre	onous, escaler	[(Greater of 25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V			
		Period			[(Greater of 25 ns or 2 Трв)/N] + 50 ns	_	ns	VDD < 2.7V	_		
TB20	TCKEXTMRL	Delay fror TxCK Clo Timer Inci	ck Edge			1	Трв	_	-		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 29-9: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 29-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions	
OC15	TFD	Fault Input to PWM I/O Change	—	—	25	ns	_	
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param. No.	Symbol Characteristics		Min.	Max.	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	PBCLK must operate at a minimum of 800 KHz.	
			400 kHz mode	1.3	—	μs	PBCLK must operate at a minimum of 3.2 MHz.	
			1 MHz mode ⁽¹⁾	0.5	_	μs		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	PBCLK must operate at a minimum of 800 KHz.	
			400 kHz mode	0.6	_	μs	PBCLK must operate at a minimum of 3.2 MHz.	
			1 MHz mode ⁽¹⁾	0.5	_	μs		
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF.	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF.	
			1 MHz mode ⁽¹⁾		300	ns		
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns		
			400 kHz mode	100		ns	_	
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns		
			400 kHz mode	0	0.9	μs	_	
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4700	—	ns	Only relevant for Repeated	
			400 kHz mode	600		ns	Start condition.	
			1 MHz mode ⁽¹⁾	250		ns		
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4000		ns	After this period, the first	
			400 kHz mode	600		ns	clock pulse is generated.	
			1 MHz mode ⁽¹⁾	250		ns		
IS33	Τευ:ετο	Stop Condition Setup Time	100 kHz mode	4000		ns		
			400 kHz mode	600	_	ns	_	
			1 MHz mode ⁽¹⁾	600		ns		
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000		ns		
			400 kHz mode	600		ns	_	
			1 MHz mode ⁽¹⁾	250		ns	1	
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns		
			400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3	—	μs	must be free before a new	
			1 MHz mode ⁽¹⁾	0.5	—	μs	transmission can start.	
	1	1		l		•		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

Revision H (May 2011)

The revision includes the following global update:

- All references to VDDCORE/VCAP have been changed to: VCORE/VCAP
- Added references to the new V-Temp temperature range: -40°C to +105°C

This revision also includes minor typographical and formatting changes throughout the data sheet text. Major updates are referenced by their respective section in the following table.

Section Name	Update Description
Section 1.0 "Device Overview"	Updated the VBUS description in Table 1-1: "Pinout I/O Descriptions".
Section 4.0 "Memory Organization"	Added Note 2 and changed the RIPL<2:0> bits to SRIPL<2:0> in the Interrupt Register Map tables (see Table 4-2 through Table 4-6.
	Added Note 2 to the Timer1-5 Register Map (see Table 4-7).
	Updated the All Resets value for I2C1CON<15:0> and I2C2CON<15:0> in the I2C1 and I2C2 Register Map (see Table 4-10).
	Updated the All Resets value for SPI1STAT<15:0> and SPI2STAT<15:0> in the SPI1 and SPI2 Register Map (see Table 4-12).
	Updated the All Resets value for CM1CON<15:0> and CM2CON<15:0> in the Comparator Register Map (see Table 4-17).
	Renamed the RCDIV<2:0> bits to FRCDIV<2:0> and the LOCK bit to SLOCK in the OSCCON register, and added Note 3 and the SYSKEYregister to the System Control Registers Map (see Table 4-20).
	Updated the All Resets value for the PMSTAT register in the Parallel Master Port Register Map (see Table 4-37).
	Updated the All Resets value for CHECON<15:0> and CHETAG<15:0> in the Prefetch Register Map (see Table 4-39).
	Renamed FUPLLEN, FUPLLIDIV, and FPLLMULT in the DEVCFG2 register to: UPLLEN, UPLLIDIV, and FPLLMUL, respectively in the Device Configuration Word Summary (see Table 4-41).
	Added Notes 1 through 4 to the USB Register Map (see Table 4-43).
Section 5.0 "Flash Program Memory"	Added a note on Flash LVD Delay and Example 5-1.
Section 8.0 "Oscillator Configuration"	Updated the PIC32MX3XX/4XX Family Clock Diagram (see Figure 8-1).
Section 11.0 "USB On-The-Go (OTG)"	Updated the PIC32MX3XX/4XX Family USB Interface Diagram (see Figure 11-1).
Section 16.0 "Output Compare"	Updated the Output Compare Module Block Diagram (see Figure 16-1).
Section 22.0 "10-bit Analog-to-Digital Converter (ADC)"	Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2).
Section 26.0 "Special Features"	Renamed FUPLLEN, FUPLLIDIV, and FPLLMULT in the DEVCFG2 register to: UPLLEN, UPLLIDIV, and FPLLMUL, respectively (see Register 26-3).

TABLE A-3: MAJOR SECTION UPDATES