

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx460f256l-80i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance, General Purpose and USB 32-bit Flash Microcontrollers

High-Performance 32-bit RISC CPU:

- MIPS32[®] M4K[®] 32-bit core with 5-stage pipeline
- 80 MHz maximum frequency
- 1.56 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state Flash access
- Single-cycle multiply and high-performance divide unit
- MIPS16e[®] mode for up to 40% smaller code size
- Two sets of 32 core register files (32-bit) to reduce interrupt latency
- Prefetch Cache module to speed execution from Flash

Microcontroller Features:

- Operating temperature range of -40°C to +105°C
- Operating voltage range of 2.3V to 3.6V
- 32K to 512K Flash memory (plus an additional 12 KB of boot Flash)
- 8K to 32K SRAM memory
- Pin-compatible with most PIC24/dsPIC[®] DSC devices
- Multiple power management modes
- Multiple interrupt vectors with individually programmable priority
- Fail-Safe Clock Monitor Mode
- Configurable Watchdog Timer with on-chip Low-Power RC Oscillator for reliable operation

Peripheral Features:

- Atomic SET, CLEAR and INVERT operation on select peripheral registers
- Up to 4-channel hardware DMA with automatic data size detection
- USB 2.0-compliant full-speed device and On-The-Go (OTG) controller
- USB has a dedicated DMA channel
- 3 MHz to 25 MHz crystal oscillator
- Internal 8 MHz and 32 kHz oscillators

- Separate PLLs for CPU and USB clocks
- Two I²C[™] modules
- Two UART modules with:
 - RS-232, RS-485 and LIN support
 - IrDA[®] with on-chip hardware encoder and decoder
- Up to two SPI modules
- Parallel Master and Slave Port (PMP/PSP) with 8-bit and 16-bit data and up to 16 address lines
- Hardware Real-Time Clock and Calendar (RTCC)
- Five 16-bit Timers/Counters (two 16-bit pairs combine to create two 32-bit timers)
- · Five capture inputs
- Five compare/PWM outputs
- Five external interrupt pins
- High-Speed I/O pins capable of toggling at up to 80 MHz
- High-current sink/source (18 mA/18 mA) on all I/O pins
- Configurable open-drain output on digital I/O pins

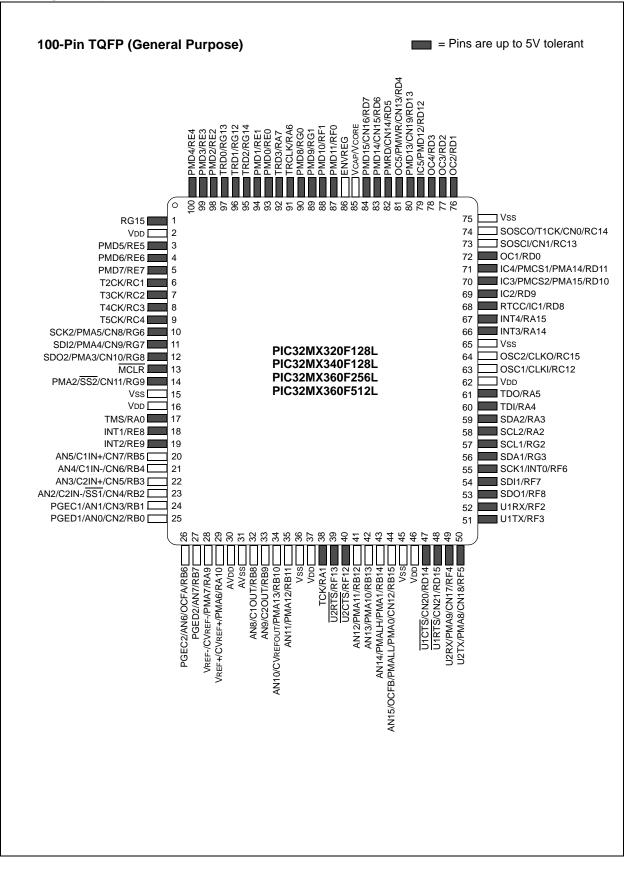
Debug Features:

- Two programming and debugging Interfaces:
 - 2-wire interface with unintrusive access and real-time data exchange with application
 - 4-wire $\mathsf{MIPS}^{\texttt{®}}$ standard enhanced JTAG interface
- Unintrusive hardware-based instruction trace
- IEEE Standard 1149.2-compatible (JTAG) boundary scan

Analog Features:

- Up to 16-channel 10-bit Analog-to-Digital Converter:
 - 1000 ksps conversion rate
 - Conversion available during Sleep, Idle
- Two Analog Comparators

TABLE 2: PIC32MX USB – FEATURES


	USB														
Device	Pins	Packages ⁽²⁾	MHz	Program Memory (KB)	Data Memory (KB)	Timers/Capture/Compare	Programmable DMA Channels	Dedicated USB DMA Channels	VREG	Trace	EUART/SPI/I ² C™	10-bit ADC (ch)	Comparators	dSd/dWd	JTAG
PIC32MX420F032H	64	PT, MR	40	32 + 12 ⁽¹⁾	8	5/5/5	0	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F256H	64	PT, MR	80	256 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F512H	64	PT, MR	80	512 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
	100	PT													
PIC32MX440F128L	121	BG	80	128 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT													
PIC32MX460F256L	121	BG	80	256 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	Yes	2/2/2	16	2	Yes	Yes
	100	PT		(1)				_					_		
PIC32MX460F512L	121	BG	80	512 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	Yes	2/2/2	16	2	Yes	Yes

Legend: PT = TQFP MR = QFN BG = XBGA

Note 1: This device features 12 KB Boot Flash memory.

2: See Legend for an explanation of the acronyms. See Section 30.0 "Packaging Information" for details.

Pin Diagrams (Continued)

	Pin	Number ⁽	1)	- Pin Type	Deff	
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description
RD0	46	72	D9	I/O	ST	PORTD is a bidirectional I/O port.
RD1	49	76	A11	I/O	ST	
RD2	50	77	A10	I/O	ST	
RD3	51	78	B9	I/O	ST	
RD4	52	81	C8	I/O	ST	
RD5	53	82	B8	I/O	ST	
RD6	54	83	D7	I/O	ST	
RD7	55	84	C7	I/O	ST	
RD8	42	68	E9	I/O	ST	1
RD9	43	69	E10	I/O	ST	1
RD10	44	70	D11	I/O	ST	1
RD11	45	71	C11	I/O	ST	1
RD12	_	79	A9	I/O	ST	1
RD13	_	80	D8	I/O	ST	1
RD14	_	47	L9	I/O	ST	
RD15	_	48	K9	I/O	ST	
RE0	60	93	A4	I/O	ST	PORTE is a bidirectional I/O port.
RE1	61	94	B4	I/O	ST	
RE2	62	98	B3	I/O	ST	
RE3	63	99	A2	I/O	ST	
RE4	64	100	A1	I/O	ST	
RE5	1	3	D3	I/O	ST	
RE6	2	4	C1	I/O	ST	
RE7	3	5	D2	I/O	ST	
RE8	_	18	G1	I/O	ST	1
RE9	_	19	G2	I/O	ST	1
RF0	58	87	B6	I/O	ST	PORTF is a bidirectional I/O port.
RF1	59	88	A6	I/O	ST	1
RF2	34	52	K11	I/O	ST]
RF3	33	51	K10	I/O	ST]
RF4	31	49	L10	I/O	ST	1
RF5	32	50	L11	I/O	ST	1
RF6	35	55	H9	I/O	ST]
RF7	—	54	H8	I/O	ST	1
RF8	—	53	J10	I/O	ST	1
RF12	—	40	K6	I/O	ST	1
RF13	—	39	L6	I/O	ST	1
-	CMOS = CM ST = Schmitt TTL = TTL in	Trigger in				nalog = Analog input P = Power) = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)
		•••••••••

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)									
	Pin	Number ⁽	1)	Pin	Buffer				
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Туре	Туре	Description			
PMD0	60	93	A4	I/O	TTL/ST	Parallel Master Port Data (De-multiplexed Master			
PMD1	61	94	B4	I/O	TTL/ST	mode) or Address/Data (Multiplexed Master modes			
PMD2	62	98	B3	I/O	TTL/ST				
PMD3	63	99	A2	I/O	TTL/ST	1			
PMD4	64	100	A1	I/O	TTL/ST	1			
PMD5	1	3	D3	I/O	TTL/ST	1			
PMD6	2	4	C1	I/O	TTL/ST				
PMD7	3	5	D2	I/O	TTL/ST	1			
PMD8	_	90	A5	I/O	TTL/ST				
PMD9		89	E6	I/O	TTL/ST				
PMD10	_	88	A6	I/O	TTL/ST	1			
PMD11		87	B6	I/O	TTL/ST				
PMD12		79	A9	I/O	TTL/ST				
PMD13	_	80	D8	I/O	TTL/ST				
PMD14		83	D7	I/O	TTL/ST				
PMD15		84	C7	I/O	TTL/ST				
PMRD	53	82	B8	0		Parallel Master Port Read Strobe.			
PMWR	52	81	C8	0	_	Parallel Master Port Write Strobe.			
PMALL	30	44	L8	0		Parallel Master Port Address Latch Enable low-byte (Multiplexed Master modes).			
PMALH	29	43	K7	0		Parallel Master Port Address Latch Enable high-byte (Multiplexed Master modes).			
Vbus	34	54	H8	I	Analog	USB Bus Power Monitor.			
Vusb	35	55	H9	Ρ	_	USB Internal Transceiver Supply. If the USB module is <i>not</i> used, this pin must be connected to VDD.			
VBUSON	11	20	H1	0	—	USB Host and OTG Bus Power Control Output.			
D+	37	57	H10	I/O	Analog	USB D+.			
D-	36	56	J11	I/O	Analog	USB D			
USBID	33	51	K10	I	ST	USB OTG ID Detect.			
ENVREG	57	86	A7	I	ST	Enable for On-Chip Voltage Regulator.			
TRCLK	—	91	C5	0	—	Trace Clock.			
TRD0	_	97	A3	0	_	Trace Data Bits 0-3.			
TRD1	_	96	C3	0	_				
TRD2	_	95	C4	0	—				
TRD3	—	92	B5	0	—				
PGED1	16	25	K2	I/O	ST	Data I/O pin for programming/debugging communication channel 1.			
PGEC1	15	24	K1	I	ST	Clock input pin for programming/debugging communication channel 1.			
	CMOS = CM ST = Schmitt TTL = TTL in	Trigger in				nalog = Analog input P = Power) = Output I = Input			

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC32MX3XX/4XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VCORE

(see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VCORE)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.8 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of ADC use and ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

SS										В	its								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	—	—	—	—	-	—	-	—	—	—	_	-	-	-	-	SS0	000
		15:0 31:16	_	_		MVEC		_	TPC<2:0>	_		_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	000
1010	INTSTAT ⁽²⁾	15:0	_	_	_		_		SRIPL<2:0>					_	VEC-	:5:0>	_	_	000
1020	IPTMR	31:16 15:0									R<31:0>								000
1030	IFS0	31:16 15:0	I2C1MIF INT3IF	I2C1SIF OC3IF	I2C1BIF IC3IF	U1TXIF T3IF	U1RXIF INT2IF	U1EIF OC2IF	– IC2IF	— T2IF	— INT1IF	OC5IF OC1IF	IC5IF IC1IF	T5IF T1IF	INT4IF	OC4IF CS1IF	IC4IF CS0IF	T4IF CTIF	000
1040	IFS1	31:16 15:0	- RTCCIF	- FSCMIF	– I2C2MIF	– I2C2SIF	– I2C2BIF	U2TXIF	USBIF U2RXIF	FCEIF U2EIF	— SPI2RXIF	— SPI2TXIF	— SPI2EIF	— CMP2IF	— CMP1IF	– PMPIF	AD1IF	— CNIF	000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	_	_	—	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	000
1070	IEC1	15:0 31:16	INT3IE —	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE USBIE	T2IE FCEIE	INT1IE	OC1IE	IC1IE	T1IE		CS1IE	CS0IE	CTIE	000
	0.	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	000
1090	IPC0	31:16 15:0	_				INT0IP<2:0> CS0IP<2:0>			S<1:0> S<1:0>			_		CS1IP<2:0> CTIP<2:0>		CS1IS CTIS	S<1:0>	000
		31:16	_		_		INT1IP<2:0>			S<1:0>					OC1IP<2:0>		OC1IS		000
10A0	IPC1	15:0	_	_	_		IC1IP<2:0>			<1:0>	_	_	_		T1IP<2:0>		T1IS		000
10B0	IPC2	31:16 15:0	_	_	-		INT2IP<2:0> IC2IP<2:0>	•		S<1:0> i<1:0>	_	_	-		OC2IP<2:0> T2IP<2:0>		OC2IS T2IS		000
		31:16	_		_		INT3IP<2:0>	,		S<1:0>					OC3IP<2:0>		OC315		000
10C0	IPC3	15:0	_	_	_		IC3IP<2:0>			<1:0>	_	_	_		T3IP<2:0>		T3IS-		000
10D0	IPC4	31:16	_	_	_		INT4IP<2:0>	•	INT4IS	S<1:0>	-	_	_		OC4IP<2:0>		OC4IS	S<1:0>	000
TODU	IPC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	i<1:0>	_	_	_		T4IP<2:0>		T4IS-		000
10E0	IPC5	31:16	-	—	—		—	—	-	—	-	—	-		OC5IP<2:0>		OC5IS		000
		15:0	_	—	—		IC5IP<2:0>			<1:0>	—	—	—		T5IP<2:0>		T5IS-		000
10F0	IPC6	31:16	-	_	_		AD1IP<2:0>			S<1:0>					CNIP<2:0>			<1:0>	000
		15:0 31:16	_				I2C1IP<2:0> SPI2IP<2:0>			S<1:0> S<1:0>			_		U1IP<2:0> CMP2IP<2:0:		U1IS	<1:0> S<1:0>	000
1100	IPC7	15:0	_				SPIZIP<2:0> CMP1IP<2:0:			S<1:0> S<1:0>		_			PMPIP<2:03	2	PMPIS		000
		31:16	_				RTCCIP<2:0:			S<1:0>	_	_			SCMIP<2:0	>		S<1:0>	000
1110	IPC8	15:0	_		_		12C2IP<2:0>			S<1:0>	_	_	_		U2IP<2:0>			<1:0>	000
1140	IPC11	31:16	_	—	—	—		—	—	—	—	—	—	—	—	_	—		000
Legen		15:0	—	—	— Inimplemente		USBIP<2:0>			S<1:0>	-	—	-		FCEIP<2:0>		FCEIS	6<1:0>	0000

INTERRUPT REGISTERS MAP FOR THE PIC32MY420E032H DEVICE ONI V(1) TADIE 1.6.

© 2011 Microchip Technology Inc.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

PIC32MX3XX/4XX

This register does not have associated CLR, SET, and INV registers. 2:

TABLE 4-16: DMA CHANNELS 0-3 REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES ONLY⁽¹⁾ (CONTINUED)

riy	H1DSA -	Bit Kange	31/15	30/14	29/13	28/12													ця,
3160 DCH	H1DSA -					20/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170 DCH		15:0				·				CHDSA	<31:0>								0000
3170 DCH		31:16	—	—	_	—	_	—	_	—	_	_	—	_	—	—	—	—	0000
	HISSIZ	15:0	—		—	—		—	—	—				CHSSI	Z<7:0>				0000
3180 DCH ²	H1DSIZ	31:16	_	_	—	—		—	—	—	—			—	—	—	—	_	0000
3160 DCH		15:0	-		_	_	—	—	_	—				CHDSI	Z<7:0>				0000
3190 DCH1	HISPTR	31:16	_		_	_	—	-	_	_	_			—		—		-	0000
ST30 DCITI		15:0	—		—	_	—	_	—	_				CHSPT	R<7:0>				0000
31A0 DCH1		31:16	—		—	—	—	—	—	—	—			—	-	—		_	0000
SIA0 DOM		15:0	—	-	—	—	—	—	—	—				CHDPT	R<7:0>				0000
31B0 DCH	H1CSIZ	31:16	—	_	—	—	_	—	—	—	—	_	—	—	—	—	—	—	0000
olbo Doll	1110012	15:0	—	—	—	—		—	—	—				CHCSI	Z<7:0>			-	0000
31C0 DCH1	H1CPTR	31:16	—	_	—	—	_	—	—	—	—	—	—	—	—	—	—		0000
0.00 20		15:0	—	-	—	—	—	—	—	—				CHCPT	R<7:0>				0000
31D0 DCH	H1DAT	31:16	—	_	—	—	_	—	—	—	—	—	—	—	—	—	—		0000
0.00 000		15:0	—		—	—	—	—	—	—				CHPDA	T<7:0>				0000
31E0 DCH	H2CON	31:16	—	-	—	—	—	—	—	—	—	-	_	—	—	—	—	—	0000
		15:0	—		—	—	—	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
31F0 DCH2	12ECON	31:16	—	—	—	—	—	—	—	—				CHAIR	r				00FF
		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FF00
3200 DCH	CH2INT	31:16	—	—	—	_	_	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	
		15:0						—			CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	
3210 DCH	H2SSA -	31:16								CHSSA	<31:0>								0000
		15:0																	0000
3220 DCH	H2DSA	31:16 15:0								CHDSA	<31:0>								0000
2220 DCH		31:16	—	—	—	—		—	—	—	—			—	—	—	—	_	0000
3230 DCH2	H2SSIZ	15:0	_	—	—	—		—	—	—				CHSSI	Z<7:0>				0000
3240 DCH2	H2DSIZ	31:16	—	—	—	—		—	—	—	—	—	—	—	—	—	—	—	0000
3240 DCH	nzuəiz	15:0	—		—	—		—	—	—				CHDSI	Z<7:0>				0000
2250 0042	H2SPTR-	31:16	_	—	—	—		—	—	—	—		—	—	—	—	—	—	0000
3250 DCH2	nzəfi k	15:0	—		—	—	_	—	—	—				CHSPT	R<7:0>				0000

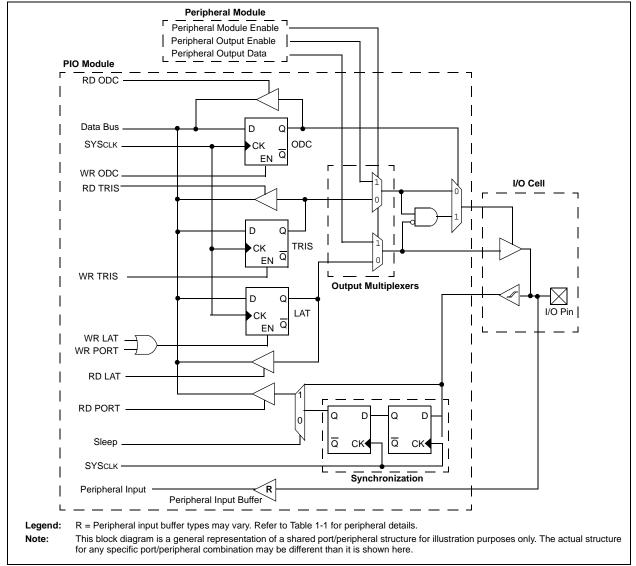
All registers except DCHxSPTR, DCHxDPTR and DCHxCPTR have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, Note 1: SET and INV Registers" for more information.

TABLE 4-42: DEVICE AND REVISION ID SUMMARY

ess		e								Bi	ts								ø
Virtual Addro (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5000	DEVID	31:16		VER	<3:0>							DEVID	<27:16>						xxxx
F220	DEVID	15:0		DEVID<15:0> xxxx															
Legend	l: x = u	nknown	value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																

12.0 I/O PORTS

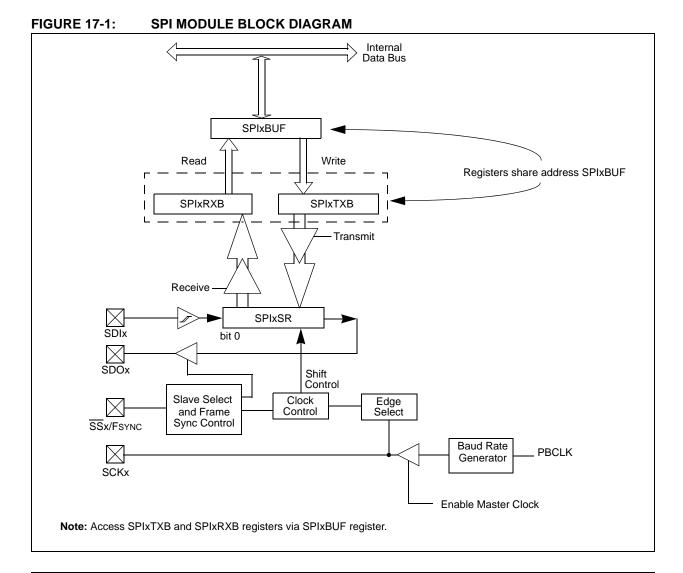
- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS61120) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Following are some of the key features of this module:

- Individual Output Pin Open-drain Enable/Disable
- Individual Input Pin Weak Pull-up Enable/Disable
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- Operation during CPU Sleep and Idle modes
- Fast Bit Manipulation using CLR, SET and INV Registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.


17.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS61106) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

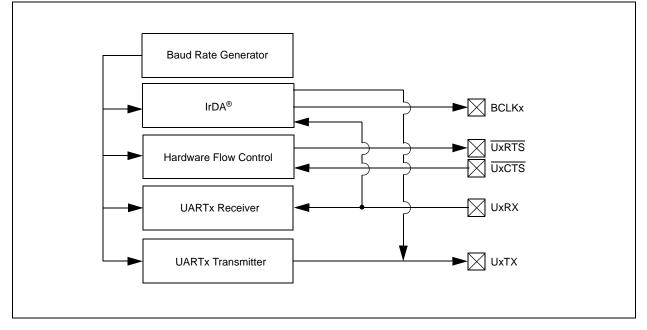
The SPI module is a synchronous serial interface useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The PIC32MX SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

Following are some of the key features of this module:

- Master and Slave Modes Support
- Four Different Clock Formats
- Framed SPI Protocol Support
- User Configurable 8-bit, 16-bit and 32-bit Data
 Width
- Separate SPI Data Registers for Receive and Transmit
- Programmable Interrupt Event on every 8-bit, 16-bit and 32-bit Data Transfer
- Operation during CPU Sleep and Idle Mode
- Fast Bit Manipulation using CLR, SET and INV Registers

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS61107) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The UART module is one of the serial I/O modules available in PIC32MX3XX/4XX family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols such as RS-232, RS-485, LIN 1.2 and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, odd or no parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 20 Mbps at 80 MHz
- 4-level-deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-level-deep FIFO Receive Data Buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt only on address detect (9th bit = 1)
- Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

26.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX3XX/4XX family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-up Timer" (DS61114), Section 32. "Configuration" (DS61124) and Section 33. "Programming and Diagnostics" (DS61129) of the "PIC32 Family Reference Manual", which is available from Microchip the web site (www.microchip.com/PIC32).

PIC32MX3XX/4XX devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible Device Configuration
- Watchdog Timer
- JTAG Interface
- In-Circuit Serial Programming[™] (ICSP[™])

26.1 Configuration Bits

The Configuration bits can be programmed to select various device configurations.

REGISTE	:R 26-1: D	EVCFG0: D	EVICE CON	FIGURATIO	N WORD 0			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P
31:24	—	—	—	CP	_	—	—	BWP
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
23:16	—	—	—	—		PWP	<7:4>	
15:8	R/P	R/P	R/P	R/P	r-1	r-1	r-1	r-1
10.0		PWP<	<3:0>				—	—
7.0	r-1	r-1	r-1	r-1	R/P	r-1	R/P	R/P
7:0		—	—	_	ICESEL		DEBU	G<1:0>
Legend:								
R = Read	able bit		W = Writable	e bit	P = Progran	nmable bit	r = Reserve	d bit
U = Unim	plemented bit		-n = Bit Valu	e at POR: ('0'	, '1', x = Unk	nown)		

REGISTER 26-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

- bit 31 **Reserved:** Write '0'
- bit 30-29 Reserved: Write '1'
- bit 28 CP: Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device.

- 1 = Protection disabled
- 0 = Protection enabled

bit 27-25 Reserved: Write '1'

bit 24 BWP: Boot Flash Write-Protect bit

Prevents boot Flash memory from being modified during code execution.

- 1 = Boot Flash is writable
- 0 = Boot Flash is not writable
- bit 23-20 Reserved: Write '1'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	_	_	_	_	—	_	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	_		—	_	—	_	—
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
15:8				USERID	<15:8>			
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
7:0				USERID	<7:0>			

REGISTER 26-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:

3			
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('0'	', '1', x = Unknown)	

bit 31-16 Reserved: Write '1'

bit 15-0 USERID<15:0>: This is a 16-bit value that is user defined and is readable via ICSP™ and JTAG

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R	R	R	R	R	R	R	R
31:24		VER<3	:0> ⁽¹⁾			DEVID<2	27:24> ⁽¹⁾	
00.40	R	R	R	R	R	R	R	R
23:16				DEVID<2	3:16> ⁽¹⁾			
45.0	R	R	R	R	R	R	R	R
15:8				DEVID<1	5:8> ⁽¹⁾			
7.0	R	R	R	R	R	R	R	R
7:0				DEVID<	7:0> ⁽¹⁾			

REGISTER 26-5: DEVID: DEVICE AND REVISION ID REGISTER

Legend:			
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('0'	, '1', x = Unknown)	

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 DEVID<27:0>: Device ID⁽¹⁾

Note 1: See the "PIC32MX Flash Programming Specification" (DS61145) for a list of Revision and Device ID values.

NOTES:

28.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

28.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

DC CHAR	ACTERISTIC	S	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Typical ⁽³⁾	Max.	Units	its Conditions						
Operating	Current (ID	o) ^(1,2)								
DC20	8.5	13	mA	A Code executing from Flash +8		_	4 MHz			
	9	15			+105⁰C					
DC20c	4.0		mA	Code executing from SRAM	—					
DC21	23.5	32	mA	Code executing from Flash			20 MHz (Note 4)			
DC21c	16.4	_	mA	Code executing from SRAM						
DC22	48	61	mA	Code executing from Flash			60 MHz			
DC22c	45	—	mA	Code executing from SRAM			(Note 4)			
DC23 55 75 60 100		75	mA	Code executing from Flash	-40°C, +25°C, +85°C	2.3V	80 MHz			
		100			+105⁰C					
DC23c	55		mA	Code executing from SRAM		_				
DC24	—	100	μA	—	-40°C					
DC24a	—	130	μA	—	+25°C	2.3V				
DC24b	—	670	μA	—	+85°C					
DC24c	—	850	μA	—	+105°C					
DC25	94	_	μA	—	-40°C					
DC25a	125	_	μA	—	+25°C	0.01/				
DC25b	302			_	+85°C	3.3V	LPRC (31 kHz) (Note 4)			
DC25d	400	_	μA]				
DC25c	71	_	μA	Code executing from SRAM	_]			
DC26	—	110	μA	· - /]			
DC26a	—	180	μA	μA — Αμ		3.6V				
DC26b	_	- 700 μΑ —		—	+85°C	3.00				
DC26c	26c — 900 μA —		+105⁰C							

TABLE 29-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type as well as temperature can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by external square wave from rail to rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD.
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.

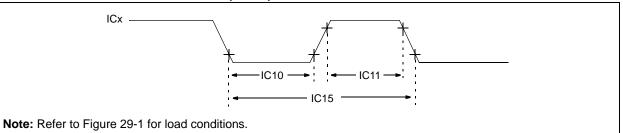

DC CHARA	CTERISTIC	S		Operating temperatu	re -40°0	ns: 2.3V to 3.6V (unless otherwise stated) C ≤TA ≤+85°C for Industrial C ≤TA ≤+105°C for V-Temp				
Parameter No.	Typical ⁽²⁾	Max.	Units		Conditions					
Power-Dow	n Current ([PD) ⁽¹⁾		•						
DC40	7	30	μA	-40°C						
DC40a	24	30	μA	+25°C	0.01/					
DC40b	205	300	μΑ	+85°C	2.3V	Base Power-Down Current (Note 6)				
DC40h	450	900	μA	+105⁰C						
DC40c	25		μΑ	+25°C	3.3V	Base Power-Down Current				
DC40d	9	70	μΑ	-40°C						
DC40e	25	70	μA	+25°C						
DC40g	115	200 ⁽⁵⁾	μΑ	+70°C	3.6V	Base Power-Down Current				
DC40f	200	400	μA	+85°C						
DC40i	470	1200	μA	+105⁰C						
Module Dif	ferential Cu	rrent								
DC41	—	10	μΑ	-40°C						
DC41a		10	μA	+25°C	0.01/	Wetch dog Timer Comments Alwart (Notes 2, C)				
DC41b	—	10	μA	+85°C	2.3V	Watchdog Timer Current: ∆IwDT (Notes 3, 6)				
DC41g	—	12	μA	+105⁰C						
DC41c	5	_	μA	+25°C	3.3V	Watchdog Timer Current: ∆IwDT (Note 3)				
DC41d	—	10	μA	-40°C						
DC41e	—	10	μA	+25°C	3.6V	Watchdog Timer Current: ∆Iwor (Note 3)				
DC41f	—	12	μA	+85°C	3.00	Watchdog Timer Current. Ziwbr (Note 3)				
DC41h	—	15	μA	+105⁰C						
DC42	—	10	μA	-40°C						
DC42a	—	17	μΑ	+25°C	2.3V	RTCC + Timer1 w/32 kHz Crystal: ∆IRTCC				
DC42b	—	37	μA	+85°C	2.3V	(Notes 3, 6)				
DC42h	—	45	μA	+105⁰C						
DC42c	23	_	μΑ	+25°C	3.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)				
DC42e	—	10	μΑ	-40°C						
DC42f	—	30	μΑ	+25°C	3.6V	RTCC + Timer1 w/32 kHz Crystal: ∆IRTCC (Note 3)				
DC42g	—	44	μΑ	+85°C	3.00					
DC42i	—	44	μA	+105⁰C						

TABLE 29-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Base IPD is measured with all digital peripheral modules disabled. All I/Os are configured as inputs and pulled low. WDT and FSCM are disabled.

- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

FIGURE 29-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

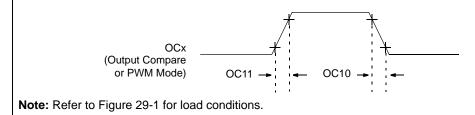
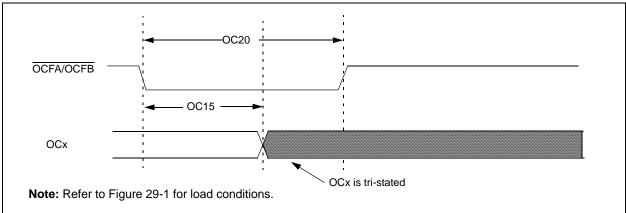


TABLE 29-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	-	perating Conditions: 2.3V f rwise stated) mperature -40°C ≤TA ≤+8 -40°C ≤TA ≤+10	5°C for I			
Param. No.	Symbol	Charac	teristics ⁽¹⁾	ditions				
IC10	TccL	ICx Input Low Time		[(12.5 ns or 1ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)
IC11	Тссн	ICx Input High Time		[(12.5 ns or 1TPB)/N] + 25 ns	_	ns	Must also meet parameter IC15.	
IC15	TCCP	ICx Input Period		[(25 ns or 2Трв)/N] + 50 ns	—	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 29-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 29-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾ Max.		Units	Conditions	
OC10	TccF	OCx Output Fall Time	_	—		ns	See parameter DO32.	
OC11	TCCR	OCx Output Rise Time	— — — ns See parameter				See parameter DO31.	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-9: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 29-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp				
Param No.	Symbol	Symbol Characteristics ⁽¹⁾		Typical ⁽²⁾	Max	Units	Conditions
OC15	TFD	Fault Input to PWM I/O Change	—	—	25	ns	_
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.