

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx460f256l-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: PIN NAMES: PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F128L, AND PIC32MX360F512L DEVICES (CONTINUED)

Pin Number	Full Pin Name
K4	AN8/C1OUT/RB8
K5	No Connect (NC)
K6	U2CTS/RF12
K7	AN14/PMALH/PMA1/RB14
K8	VDD
K9	U1RTS/CN21/RD15
K10	U1TX/RF3
K11	U1RX/RF2
L1	PGEC2/AN6/OCFA/RB6
L2	VREF-/CVREF-/PMA7/RA9

Pin Number	Full Pin Name
L3	AVss
L4	AN9/C2OUT/RB9
L5	AN10/CVREFOUT/PMA13/RB10
L6	U2RTS/RF13
L7	AN13/PMA10/RB13
L8	AN15/OCFB/PMALL/PMA0/CN12/RB15
L9	CN20/U1CTS/RD14
L10	U2RX/PMA9/CN17/RF4
L11	U2TX/PMA8/CN18/RF5

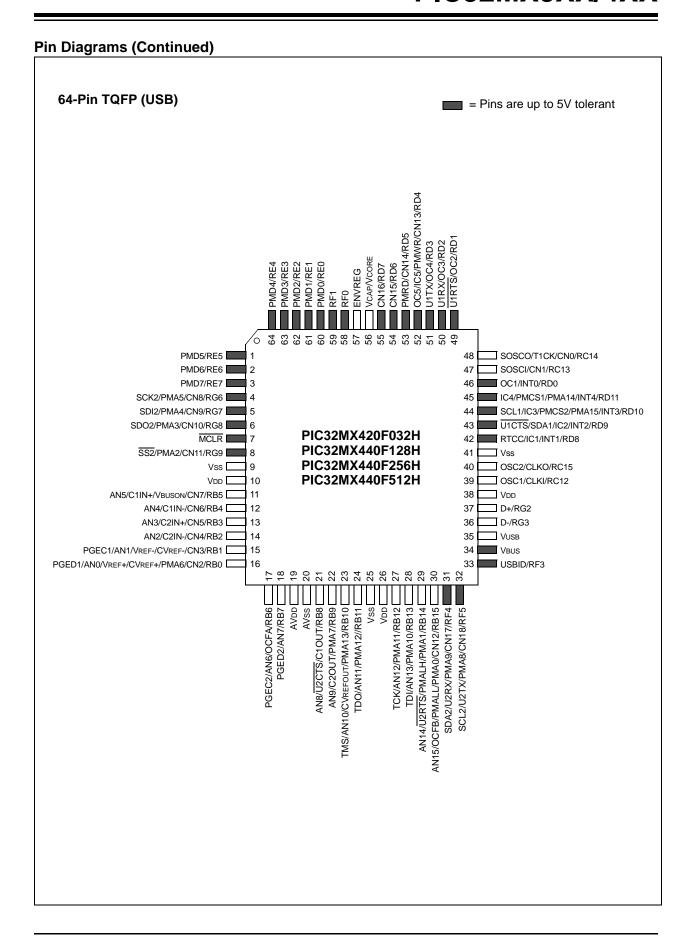


FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX320F032H AND PIC32MX420F032H DEVICES⁽¹⁾

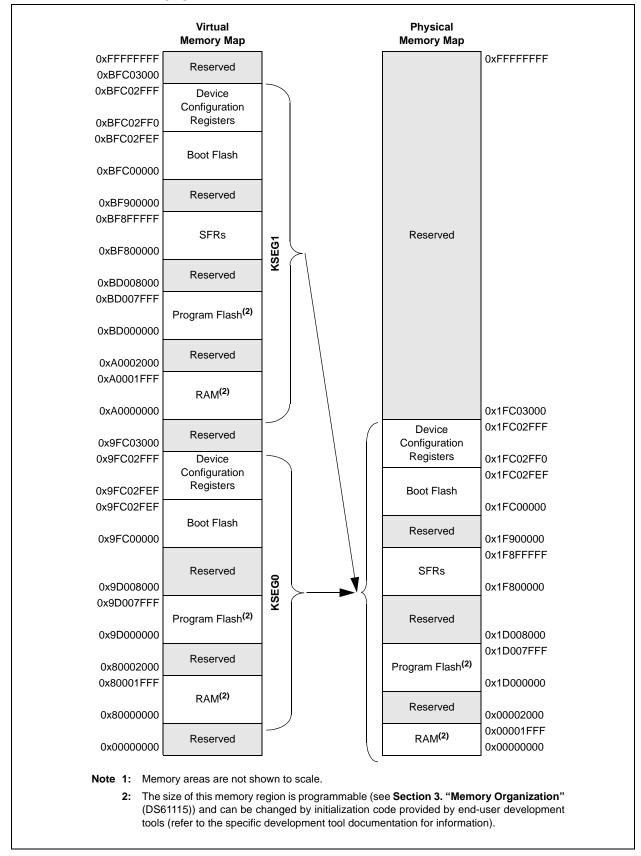


FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX340F128H, PIC32MX340F128L, PIC32MX440F128H AND PIC32MX440F128L DEVICES⁽¹⁾

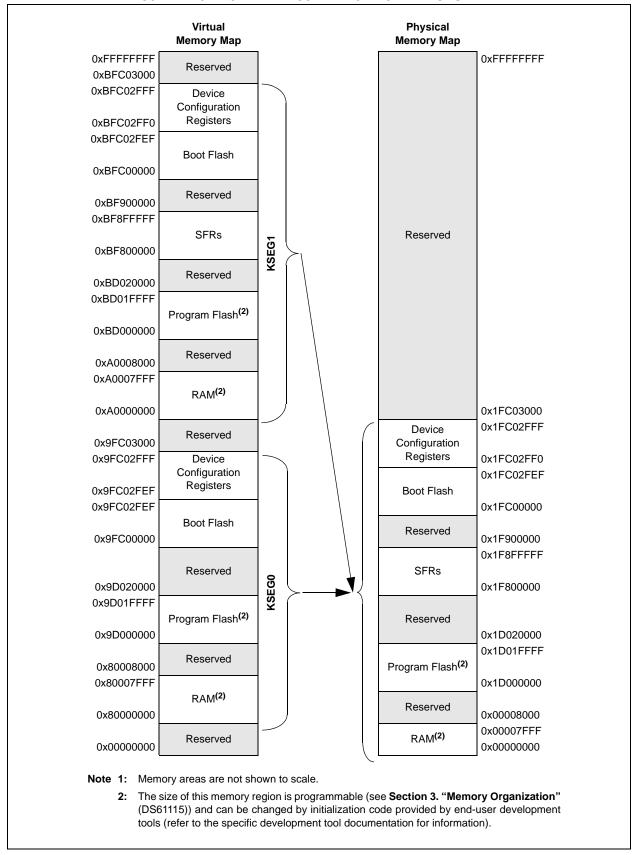


TABLE 4-1: BUS MATRIX REGISTERS MAP

ess	_	ø.									Bits								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16	_	_	_	_	_	BMXCHEDMA	_	_	_	_	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	001F
2000	CON ⁽¹⁾	15:0	_	_	_	_	_	_	-	_	_	BMXWSDRM	_	_	-	ВІ	MXARB<2:0>		0042
0040	DIVIA	31:16	_	_	_	_	_	_	1	_	_	1	_	_	1	_	_	_	0000
2010	DKPBA ⁽¹⁾	15:0								BM	IXDKPBA	<15:0>							0000
	DIVIA	31:16		_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	0000
2020	DUDBA ⁽¹⁾	15:0								BM	IXDUDBA	<15:0>							0000
		31:16	_	_	_	_	_	_	1	_	_	_	_	_	-	_	_	_	0000
2030	DUPBA ⁽¹⁾	15:0								BM	IXDUPBA	<15:0>							0000
00.40	BMX	31:16										0.4.0							xxxx
2040	DRMSZ	15:0								BIV	IXDRMSZ	<31:0>							xxxx
2252	DIVIA	31:16		_	_	_	_	_	1	_	_	_	_	_		BMXPUPB/	<19:16>		0000
2050	PUPBA ⁽¹⁾	15:0								BM	IXPUPBA	<15:0>							0000
	BMX	31:16								5.		04.0							xxxx
2060	PFMSZ	15:0								BIV	IXPFMSZ	<31:0>							xxxx
0070	BMX	31:16								5	VDOOTO	7 04 0							0000
2070	BOOTSZ	15:0								BM.	XBOOTSZ	Z<31:0>							3000

PIC32MX3XX/4XX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

IABL	_E 4-7:	TIMER1-5 REGISTERS MAP
SS		

sse										В	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	T1CON	31:16	_		_	_	1	1	_	_	_	_	_	_	_	_	_	_	0000
0000	110011	15:0	ON	_	SIDL	TWDIS	TWIP		_	_	TGATE	_	TCKPS	S<1:0>	_	TSYNC	TCS	_	0000
0610	TMR1	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
0010	11411111	15:0								TMR1	<15:0>								0000
0620	PR1	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
0020		15:0								PR1<	15:0>								FFFF
0800	T2CON	31:16	_	_	_	_	ı	-	_	_	_	_	_	_	_	_	_	_	0000
	.200	15:0	ON	_	SIDL	_	_	_	_	_	TGATE		TCKPS<2:0>	•	T32	_	TCS ⁽²⁾	_	0000
0810	TMR2	31:16	_		_	_	-		_	_	_	_	_	_	_	_	_	_	0000
		15:0								TMR2	<15:0>							1	0000
0820	PR2	31:16	_		_	_	-		_	_	_	_	_	_	_	_	_	_	0000
		15:0				I				PR2<	15:0>		1		I	1			FFFF
0A00	T3CON	31:16	_		_	_				_	_	_	_	_	_	_	-		0000
		15:0	ON	_	SIDL	_				_	TGATE	,	TCKPS<2:0>	•	_	_	TCS ⁽²⁾		0000
0A10	TMR3	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
	_	15:0				1				TMR3	<15:0>				1		1		0000
0A20	PR3	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	0000
		15:0								PR3<	15:0>								FFFF
0C00	T4CON	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	— (2)		0000
		15:0	ON	_	SIDL	_			_	_	TGATE		TCKPS<2:0>	•	T32	_	TCS ⁽²⁾		0000
0C10	TMR4	31:16	_		_	_			_		_	_	_	_	_	_	_	_	0000
		15:0								TMR4	<15:0>								0000
0C20	PR4	31:16	_		_	_			_			_	_	_	_	_	_	_	0000
		15:0								PR4<									FFFF
0E00	T5CON	31:16	-	_	— —	_		_		_		_		_	_	_	— Too(2)		0000
		15:0	ON		SIDL	_				_	TGATE		TCKPS<2:0>	•	_	_	TCS ⁽²⁾	_	0000
0E10	TMR5	31:16	_		_	_			_			_	_	_	_	_	_		0000
		15:0								TMR5									0000
0E20	PR5	31:16	_		_	_			_		<u> </u>	_	_	_	_	_	_		0000
Legend		15:0	n value on			ted read as	(-1 D		wn in hevad	PR5<	15:0>								FFFF

PIC32MX3XX/4XX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

^{2:} This bit is not available on 64-pin devices.

TABLE 4-23: PORTC REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess										Ві	ts								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	TRISC	31:16	1	_	_	_		_	_		_	_	_	_	_	_	_	_	0000
6080	IKISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
6090	PORTC	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0090	FORTC	15:0	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
60A0	LATC	31:16	-	-	1	-	1	1	_	1	-	_	_	_	_	_	_	_	0000
OUAU	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	-	_	_	_	_	_	LATC4	LATC3	LATC2	LATC1	_	xxxx
60B0	ODCC	31:16	_	_	1	_	-	_	_	1	_	_	_	_	_	_	_	_	0000
OODO	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	I		_	ı	-	_	_	ODCC4	ODCC3	ODCC2	ODCC1	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-24: PORTC REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY⁽¹⁾

			DEVICE	0 0111															
ess										Ві	ts								_
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6080	TRISC	31:16	_	_	_	_	_	_	_	_		_	_		_	_	_	_	0000
0000	INISC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	-	_	_	ı	_	_	_	_	F000
6090	PORTC	31:16	-	_	_	_	_	-	-	_	1	_	_	1	-	_	_	_	0000
0090	FORTC	15:0	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
60A0	LATC	31:16	ı	_	_	_	_	1	ı	ı	I	ı	_	I	1	_	ı	_	0000
OUAU	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	1	I	1	l	1	_	I	1	_	1	_	xxxx
60B0	ODCC	31:16	ı	_	_	_	_	1	ı	1	l	1	_	l	1	_	1	_	0000
0000	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	_	_	_	_	_	_	_	_	_	_	_	0000

PIC32MX3XX/4XX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

DS61143H-page 81

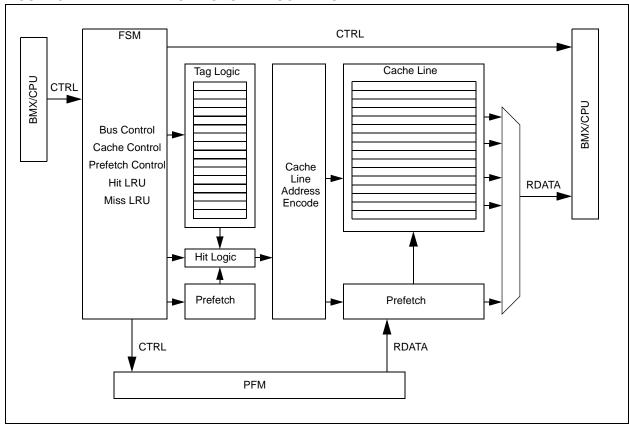
TARIF 1-12.	DEVICE A	ND BEVISION	ID SUMMARY
IADLE 4-42.	DEVICEA	ND VEAISION	ID SUIVIIVIAN I

ess		9								Bi	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F220	DEVID	31:16		VER-	<3:0>							DEVID-	<27:16>						xxxx
F220	DEVID	15:0		DEVID<15:0> xxxx															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.0 PREFETCH CACHE

Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Prefetch Cache" (DS61119) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching.

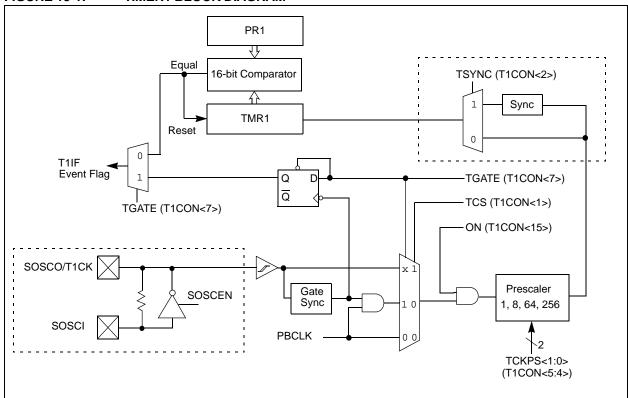
9.1 Features

- 16 Fully Associative Lockable Cache Lines
- 16-byte Cache Lines
- Up to four Cache Lines Allocated to Data
- Two Cache Lines with Address Mask to hold repeated instructions
- Pseudo LRU replacement policy
- · All Cache Lines are software writable
- 16-byte parallel memory fetch
- · Predictive Instruction Prefetch

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

13.0 TIMER1

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS61105) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


This family of PIC32MX devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Secondary Oscillator (Sosc) for real-time clock applications. The following modes are supported:

- · Synchronous Internal Timer
- · Synchronous Internal Gated Timer
- · Synchronous External Timer
- · Asynchronous External Timer

13.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

FIGURE 13-1: TIMER1 BLOCK DIAGRAM⁽¹⁾

Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit in Configuration Word DEVCFG1.

14.0 TIMER2/3 AND TIMER4/5

Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS61105) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

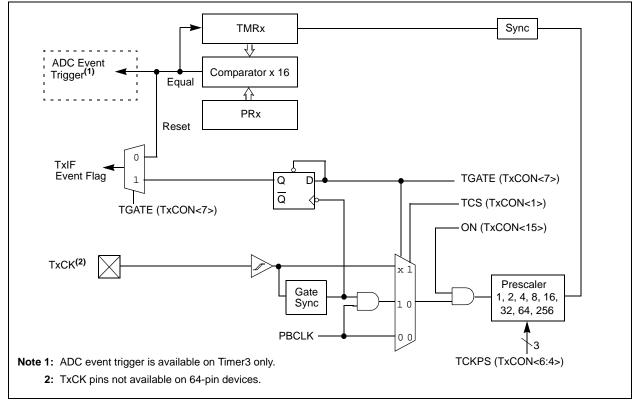
This family of PIC32MX devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- · Synchronous Internal 16-bit Timer
- · Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous Internal 32-bit Timer
- Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer

Throughout this chapter, references to registers TxCON, TMRx and PRx use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.


14.1 Additional Supported Features

· Selectable clock prescaler

Note:

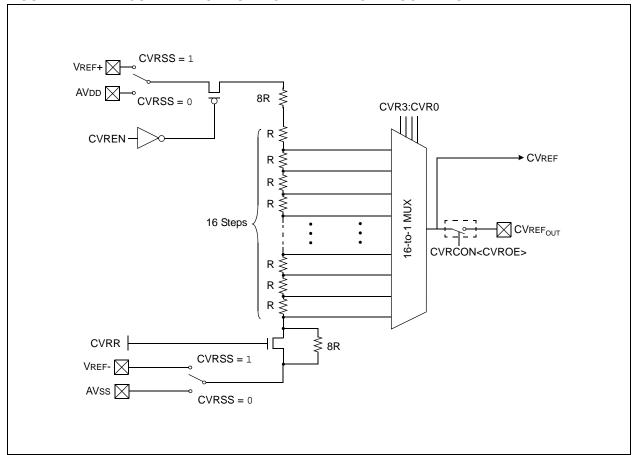
- · Timers operational during CPU Idle
- Time base for input capture and output compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 only)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

24.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. Refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS61109) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

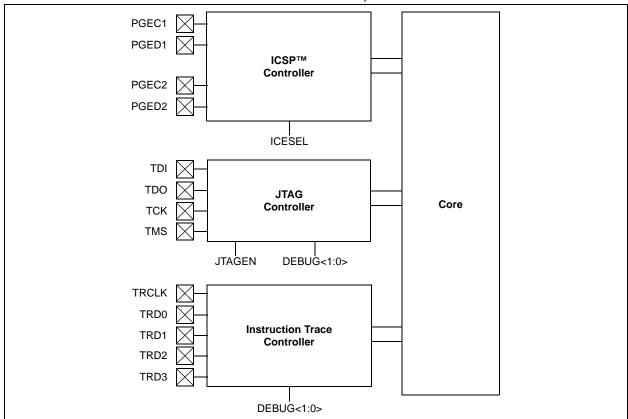

The CVREF is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them.

A block diagram of the module is illustrated in Figure 24-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

FIGURE 24-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM


26.4 Programming and Diagnostics

PIC32MX3XX/4XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming™ (ICSP™) interfaces
- · Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32MX devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 26-3: BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

28.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASMTM Assembler
 - MPLINK™ Object Linker/ MPLIB™ Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- · In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- · Device Programmers
 - PICkit™ 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

28.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 29-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	ACTERISTIC	es	(unless	d Operating Conditions: 2.3V totherwise stated) g temperature -40°C ≤TA ≤+85 -40°C ≤TA ≤+10	°C for Indus		
Param. No.	Typical ⁽³⁾	Max.	Units	C	Conditions		
Operating	Current (IDI	o) ^(1,2)					
DC20	8.5	13	mA	Code executing from Flash	-40°C, +25°C, +85°C	_	4 MHz
	9	15			+105°C		
DC20c	4.0	_	mA	Code executing from SRAM	_		
DC21	23.5	32	mA	Code executing from Flash			20 MHz
DC21c	16.4		mA	Code executing from SRAM			(Note 4)
DC22	48	61	mA	Code executing from Flash	_	_	60 MHz
DC22c	45	_	mA	Code executing from SRAM			(Note 4)
DC23	55	75	mA	Code executing from Flash	-40°C, +25°C, +85°C	2.3V	80 MHz
	60	100			+105°C		
DC23c	55	_	mA	Code executing from SRAM	_	_	
DC24	_	100	μA	_	-40°C		
DC24a	_	130	μA	_	+25°C	2.3V	
DC24b	_	670	μA	_	+85°C	2.3 V	
DC24c	_	850	μA	_	+105°C		
DC25	94	_	μA	_	-40°C		
DC25a	125	_	μA	_	+25°C	3.3V	1000 (04 111)
DC25b	302	_	μA	_	+85°C	3.3V	LPRC (31 kHz) (Note 4)
DC25d	400	_	μA	_	+105°C		(14010 4)
DC25c	71		μΑ	Code executing from SRAM	_		
DC26		110	μΑ	_	-40°C		
DC26a	_	180	B0 μA +2	+25°C	3.6V		
DC26b			μΑ	_	+85°C	3.0 v	
DC26c — 900		μΑ	_	+105°C			

- Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type as well as temperature can have an impact on the current consumption.
 - 2: The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by external square wave from rail to rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD.
 - **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 4: This parameter is characterized, but not tested in manufacturing.

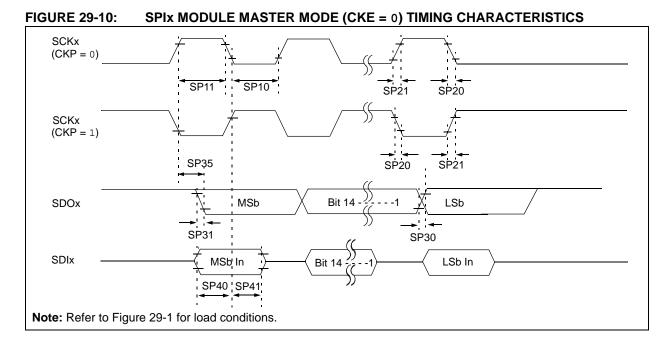


TABLE 29-28: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIST	rics	(unless o	d Operating otherwise sta g temperatu	ated) ure -4	0°C ≤Ta :	3V to 3.6V ≤+85°C for Industrial ≤+105°C for V-Temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tsck/2	_	_	ns	_
SP11	TscH	SCKx Output High Time ⁽³⁾	Tsck/2	_	_	ns	_
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_	_	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	_	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time(4)	_	_	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	_	_	ns	See parameter DO31
SP35	TscH2DoV,	SDOx Data Output Valid after	_	_	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	_	_	20	ns	VDD < 2.7V
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	_	_	ns	_
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	_

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - **2:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - **3:** The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.
 - 4: Assumes 50 pF load on all SPIx pins.

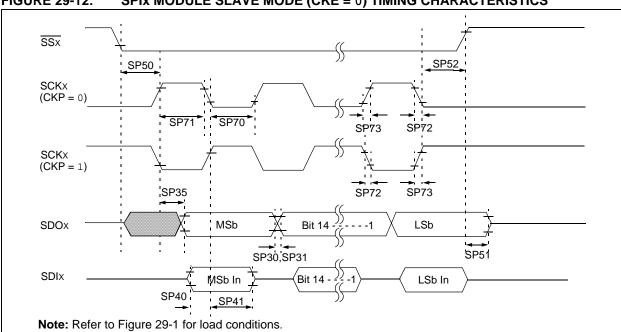


FIGURE 29-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time(3)	Tsck/2		-	ns	_	
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	_	_	ns	_	
SP72	TscF	SCKx Input Fall Time				ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	_	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time(4)	_	_	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time(4)	_	_	_	ns	See parameter DO31	
SP35	TscH2DoV, TscL2DoV	SDOx Data Output Valid after SCKx Edge	_	_	15	ns	VDD > 2.7V	
			_	_	20	ns	VDD < 2.7V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	_	_	ns	_	
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	_	
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx Input	175	_	_	ns	_	
SP51	TssH2DoZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	5	_	25	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Tsck + 20	_	_	ns	_	

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 3: The minimum clock period for SCKx is 40 ns.
 - 4: Assumes 50 pF load on all SPIx pins.

FIGURE 29-20: PARALLEL SLAVE PORT TIMING

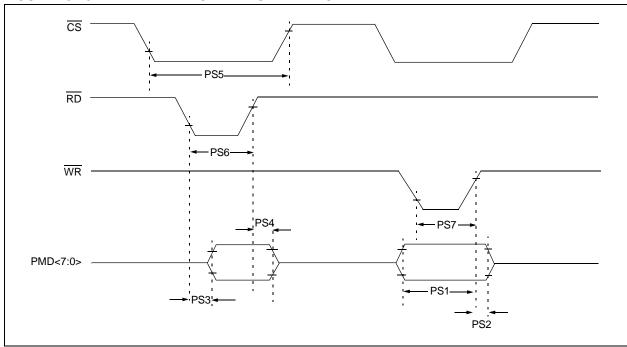


TABLE 29-37: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical	Max.	Units	Conditions	
PS1	TdtV2wrH	Data In Valid before WR or CS Inactive (setup time)	20	_	_	ns	_	
PS2	TwrH2dtl	WR or CS Inactive to Data – In Invalid (hold time)	40		_	ns	_	
PS3	TrdL2dtV	RD and CS Active to Data – Out Valid	_		60	ns	_	
PS4	TrdH2dtI	RD Active or CS Inactive to Data – Out Invalid	0		10	ns	_	
PS5	Tcs	CS Active Time	Трв + 40	_		ns	_	
PS6	Twr	WR Active Time	TpB + 25		_	ns		
PS7	TRD	RD Active Time	TpB + 25		1	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

30.0 PACKAGING INFORMATION

30.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

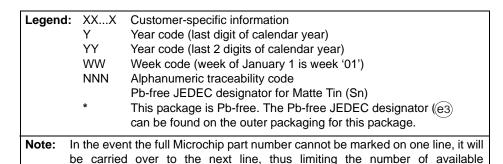
100-Lead TQFP (12x12x1 mm)

64-Lead QFN (9x9x0.9 mm)

121-Lead XBGA (10x10x1.1 mm)

Example

Example



Example

Example

characters for customer-specific information.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support