

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

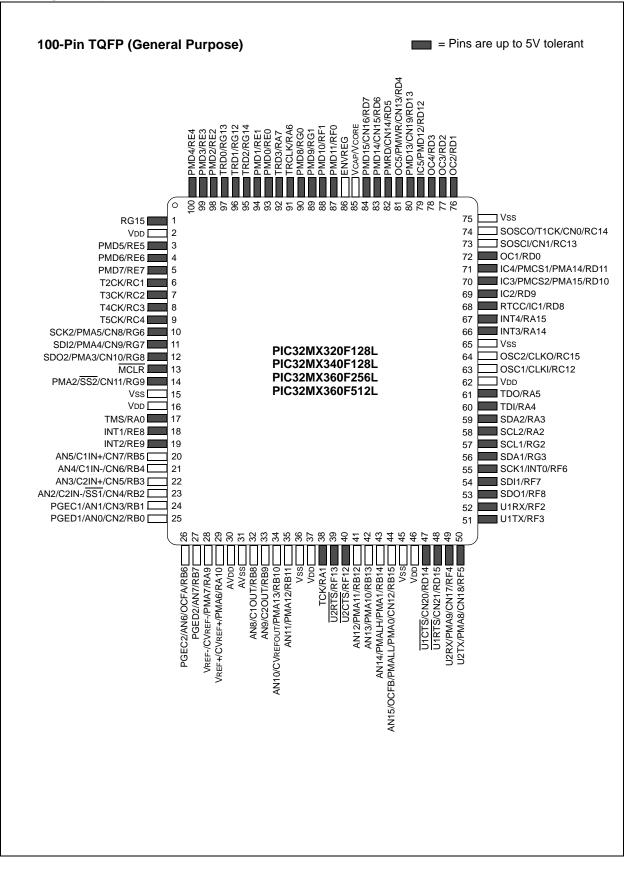
E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx460f256l-80v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PIC32MX USB – FEATURES


	USB														
Device	Pins	Packages ⁽²⁾	MHz	Program Memory (KB)	Data Memory (KB)	Timers/Capture/Compare	Programmable DMA Channels	Dedicated USB DMA Channels	VREG	Trace	EUART/SPI/I ² C™	10-bit ADC (ch)	Comparators	dSd/dWd	JTAG
PIC32MX420F032H	64	PT, MR	40	32 + 12 ⁽¹⁾	8	5/5/5	0	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F128H	64	PT, MR	80	128 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F256H	64	PT, MR	80	256 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
PIC32MX440F512H	64	PT, MR	80	512 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/1/2	16	2	Yes	Yes
	100	PT													
PIC32MX440F128L	121	BG	80	128 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	No	2/2/2	16	2	Yes	Yes
	100	PT													
PIC32MX460F256L	121	BG	80	256 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	Yes	2/2/2	16	2	Yes	Yes
	100	PT		(1)				_					_		
PIC32MX460F512L	121	BG	80	512 + 12 ⁽¹⁾	32	5/5/5	4	2	Yes	Yes	2/2/2	16	2	Yes	Yes

Legend: PT = TQFP MR = QFN BG = XBGA

Note 1: This device features 12 KB Boot Flash memory.

2: See Legend for an explanation of the acronyms. See Section 30.0 "Packaging Information" for details.

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3 or MPLAB REAL ICE[™].

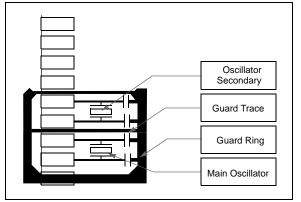
For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 Trace


The trace pins can be connected to a hardware-traceenabled programmer to provide a compress real time instruction trace. When used for trace the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0** "**Oscillator Configuration**" for details).

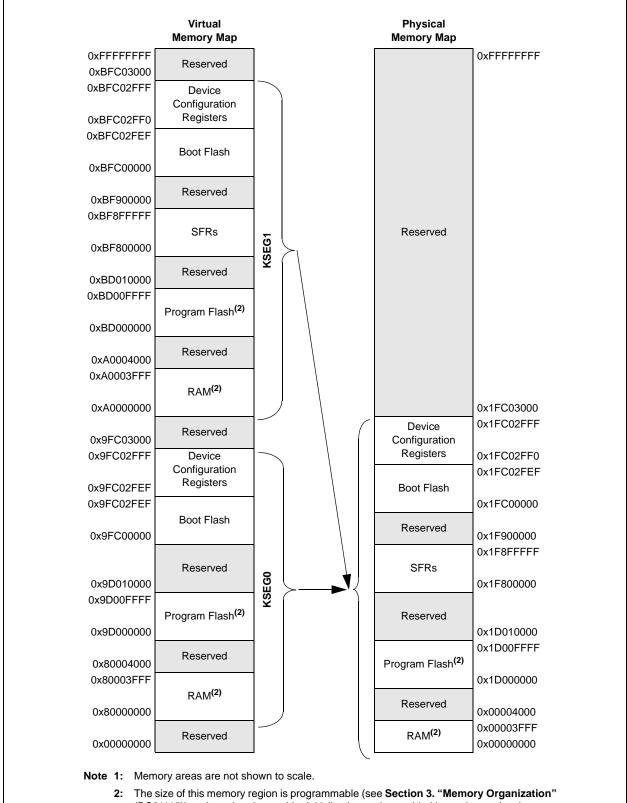

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

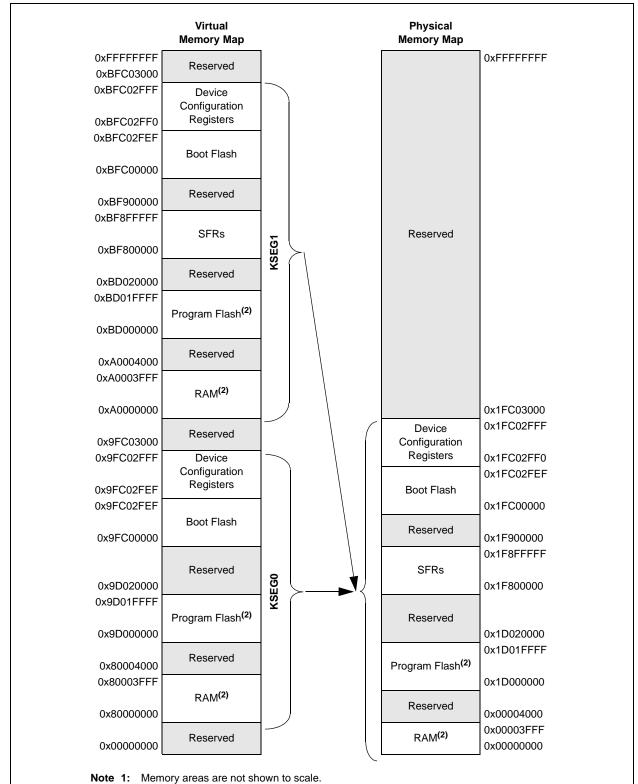

NOTES:

FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX320F064H DEVICE⁽¹⁾

(DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

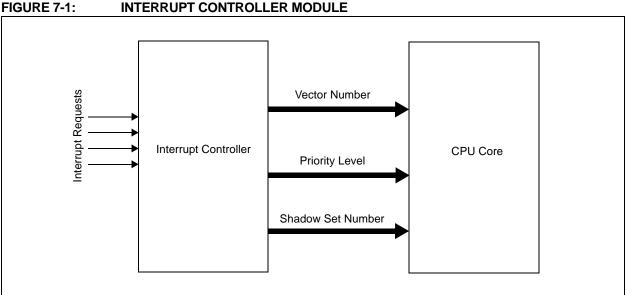
FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX320F128H AND PIC32MX320F128L DEVICES⁽¹⁾

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

SSS										В	its								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Recets
	INTCON	31:16	_	—	_	_	_	_	—	_	—	—	_	—	—	—	_	SS0	00
1000	INTCON	15:0	—	—	—	MVEC	—		TPC<2:0>	•	—	—	-	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	00
1010	INTSTAT ⁽²⁾	31:16	_	_	-	_	-	_		—	_	_	-	_	_	_	_	_	00
1010	INTSTAT	15:0	_	—	—	_			SRIPL<2:0>	`	_	—			VEC	<5:0>			00
1020	IPTMR	31:16 15:0								IPTMF	<31:0>								00
	1500	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	_	_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	00
1030	IFS0	15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	00
1010	IFS1	31:16	_	—	_	_	_		USBIF	FCEIF	-	_	-	—	DMA3IF	DMA2IF	DMA1IF	DMA0IF	00
1040	IF51	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2RXIF	SPI2TXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	00
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	—	-	-	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	00
1060	IEC0	15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	00
1070		31:16	—	—	_	—	_		USBIE	FCEIE	—	_	-	—	DMA3IE	DMA2IE	DMA1IE	DMA0IE	00
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	00
1090	IPC0	31:16	—	_	_	INT0IP<2:0>		INTOIS	S<1:0>	_	_	_	CS1IP<2:0>			CS1IS	<1:0>	00	
1090	IPCU	15:0	—	—	—		CS0IP<2:0>		CSOIS	S<1:0>	—	—	—	CTIP<2:0>			CTIS<1:0>		00
10A0	IPC1	31:16	—	-	-		NT1IP<2:0>		INT1IS	S<1:0>	_	_	-	OC1IP<2:0>			OC1IS<1:0>		00
IUAU	1 01	15:0	—	_	_		IC1IP<2:0>		IC1IS	5<1:0>		— — T1IP<2:0>			T1IS<1:0>		00		
10B0	IPC2	31:16	—	_	_		NT2IP<2:0>		INT2IS<1:0>		-	_			OC2IP<2:0>		OC2IS<1:0>		00
I O D O	11 02	15:0	_	—	—		IC2IP<2:0>		IC2IS<1:0>		—	—	_	T2IP<2:0>		T2IS-	<1:0>	00	
10C0	IPC3	31:16	—	—	_		NT3IP<2:0>		INT3IS<1:0> — — — OC3IP		OC3IP<2:0>		OC3IS	5<1:0>	00				
1000		15:0	_	_	_		IC3IP<2:0> IC3IS<1:0> T3		T3IP<2:0>		T3IS-		00						
10D0	IPC4	31:16	_	_	_		NT4IP<2:0>		INT4I	S<1:0>	—	—	_		OC4IP<2:0>	•	OC4IS	5<1:0>	00
		15:0	—	—	—		IC4IP<2:0>		IC4IS	5<1:0>	—	—	-		T4IP<2:0>		T4IS-		00
10E0	IPC5	31:16	—	_	—	—	—	—	—	—	—	—	—		OC5IP<2:0>		OC5IS	-	00
		15:0	_	—	—		IC5IP<2:0>			5<1:0>	—	—	_		T5IP<2:0>		T5IS-	-	00
10F0	IPC6	31:16	—	_	_		AD1IP<2:0>			S<1:0>	_	—	_		CNIP<2:0>		CNIS		00
		15:0	_	—	—		2C1IP<2:0>			S<1:0>	—	—	_		U1IP<2:0>		U1IS-	-	00
1100	IPC7	31:16	_	—	—		SPI2IP<2:0>		-	S<1:0>	—	—			CMP2IP<2:0		CMP2I		00
		15:0	_	—	—		CMP1IP<2:0>			S<1:0>	—	—		PMPIP<2:0>		PMPIS		00	
1110	IPC8	31:16	—	_	_		RTCCIP<2:0>			S<1:0>	—	—	_	FSCMIP<2:0>		FSCMI		00	
		15:0	_	_	_		I2C2IP<2:0>			S<1:0>	-	_	_	U2IP<2:0>			U2IS<1:0>		00
1120	IPC9	31:16	_	—	—		MA3IP<2:0:		-	S<1:0>	—	—	—	DMA2IP<2:0>		DMA2I		00	
		15:0	_	_	_		MA1IP<2:0:	>	DMA1	S<1:0>	-	_	-	[DMA0IP<2:0		DMA0I	5<1:0>	00
	IPC11	31:16		_	_		_	—											00

Except where noted, all registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

This register does not have associated CLR, SET, and INV registers. 2:


7.0 INTERRUPT CONTROLLER

- **Note 1:** This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS61108) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

PIC32MX3XX/4XX devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX3XX/4XX interrupts module includes the following features:

- · Up to 96 interrupt sources
- Up to 64 interrupt vectors
- · Single and Multi-Vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Module Freeze in Debug mode
- Seven user-selectable priority levels for each vector
- · Four user-selectable subpriority levels within each priority
- Dedicated shadow set for highest priority level
- Software can generate any interrupt
- · User-configurable interrupt vector table location
- · User-configurable interrupt vector spacing

Several of the registers cited in this section are not in the interrupt controller module. These registers (and Note: bits) are associated with the CPU. Details about them are available in Section 3.0 "CPU".

To avoid confusion, a typographic distinction is made for registers in the CPU. The register names in this section, and all other sections of this manual, are signified by uppercase letters only. The CPU register names are signified by upper and lowercase letters. For example, INTSTAT is an Interrupts register; whereas, IntCtl is a CPU register.

FIGURE 7-1:

© 2011 Microchip Technology Inc.

NOTES:

11.0 USB ON-THE-GO (OTG)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS61126) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1.

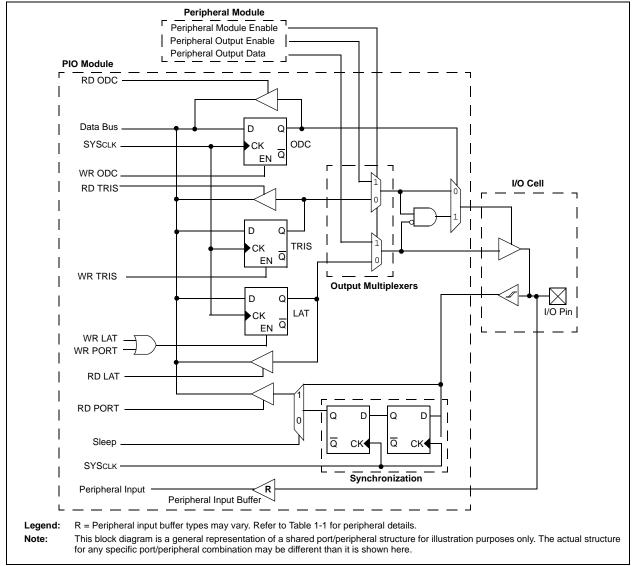
The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers, and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB OTG Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Transaction Handshaking Performed by Hardware
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA to Access System RAM and Flash

Note: The implementation and use of the USB specifications, as well as other third-party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

12.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS61120) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

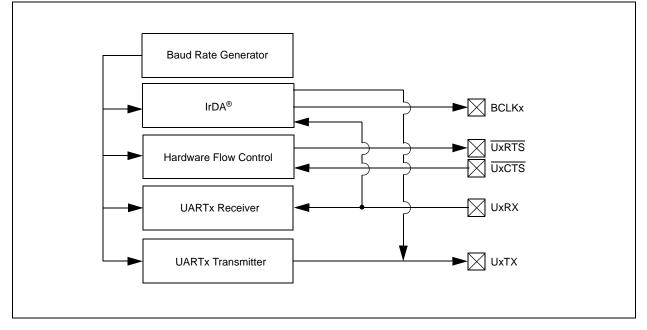
Following are some of the key features of this module:

- Individual Output Pin Open-drain Enable/Disable
- Individual Input Pin Weak Pull-up Enable/Disable
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- Operation during CPU Sleep and Idle modes
- Fast Bit Manipulation using CLR, SET and INV Registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS61107) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The UART module is one of the serial I/O modules available in PIC32MX3XX/4XX family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols such as RS-232, RS-485, LIN 1.2 and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, odd or no parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 20 Mbps at 80 MHz
- 4-level-deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-level-deep FIFO Receive Data Buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt only on address detect (9th bit = 1)
- Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

28.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

28.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

28.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

28.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

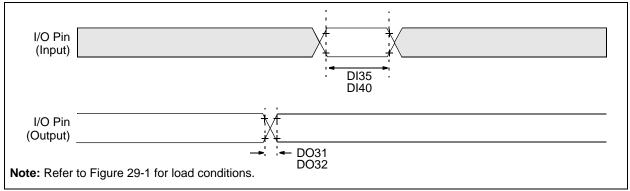
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

28.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

TABLE 29-17: EXTERNAL CLOCK TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		₅₀ (3) 50(5)	MHz MHz	EC (Note 5) ECPLL (Note 4)			
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 5)			
OS12			4	_	10	MHz	XTPLL (Notes 4, 5)			
OS13			10	—	25	MHz	HS (Note 5)			
OS14			10	_	25	MHz	HSPLL (Notes 4, 5)			
OS15			32	32.768	100	kHz	Sosc (Note 5)			
OS20	Tosc	Tosc = 1/Fosc = Tcy ⁽²⁾	_		_	_	See parameter OS10 for Fosc value			
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	_	ns	EC (Note 5)			
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	_	—	0.05 x Tosc	ns	EC (Note 5)			
OS40	Тоят	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 5)			
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	_	2		ms	(Note 5)			
OS42	Gм	External Oscillator Transconductance	—	12		mA/V	VDD = 3.3V TA = +25°C (Note 5)			

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

- **3:** 40 MHz maximum for PIC32MX320F032H and PIC32MX420F032H devices.
- **4:** PLL input requirements: 4 MHz ≤FPLLIN ≤5 MHz (use PLL prescaler to reduce FOSC). This parameter is characterized, but tested at 10 MHz only at manufacturing.
- 5: This parameter is characterized, but not tested in manufacturing.

FIGURE 29-3: I/O TIMING CHARACTERISTICS

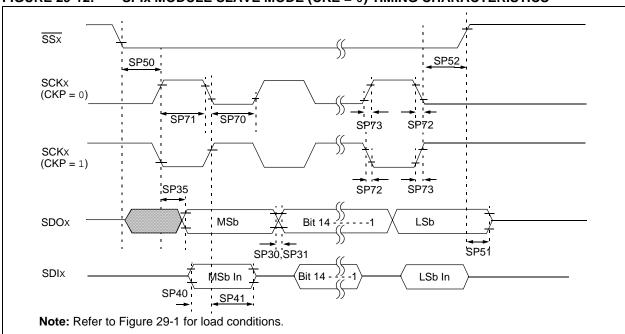


TABLE 29-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Ope (unless otherw Operating tem	vise stated) perature	-40°C ≤TA ≤++ -40°C ≤TA ≤++	85°C for Ind		
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	Port Output Rise Tir	ne	_	5	15	ns	Vdd < 2.5V
				_	5	10	ns	VDD > 2.5V
DO32	TIOF	Port Output Fall Tim	ne	—	5	15	ns	Vdd < 2.5V
				_	5	10	ns	VDD > 2.5V
DI35	TINP	INTx Pin High or Low Time		10	_	_	ns	
DI40	Trbp	CNx High or Low Time (input)		2	_	_	TSYSCLK	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 29-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions			
SP70	TscL	SCKx Input Low Time ⁽³⁾	Тѕск/2	_		ns	_			
SP71	TscH	SCKx Input High Time ⁽³⁾	Тѕск/2	_		ns	—			
SP72	TscF	SCKx Input Fall Time		_		ns	See parameter DO32			
SP73	TscR	SCKx Input Rise Time	_	_	_	ns	See parameter DO31			
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾				ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾	_	_	_	ns	See parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	15	ns	Vdd > 2.7V			
	TscL2doV	SCKx Edge	_	—	20	ns	Vdd < 2.7V			
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	_	—	ns	—			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	_			
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	175	_	_	ns	_			
SP51	TssH2doZ	SSx	5	—	25	ns	—			
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_		ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 40 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
Clock P	arameter	S					·			
AD50	Tad	Analog-to-Digital Clock Period	65	_	—	ns	See Table 29-35 and Note 2			
AD51	TRC	Analog-to-Digital Internal RC Oscillator Period	—	250	—	ns	See Note 3			
Conver	sion Rate									
AD55	TCONV	Conversion Time	—	12 Tad	—		—			
AD56			—	—	1000	KSPS	AVDD = 3.0V to 3.6V			
	(Sar	(Sampling Speed)		_	400	KSPS	AVDD = 2.5V to 3.6V			
AD57	TSAMP	Sample Time	1 Tad		—	—	TSAMP must be \geq 132 ns.			
Timing	Paramete	rs	1		II		I			
AD60	TPCS	Conversion Start from Sample Trigger	_	1.0 Tad	—		Auto-Convert Trigger (SSRC<2:0> = 111) not selected. See Note 3			
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 TAD	—	—			
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1)	—	0.5 Tad	—	_	See Note 3			
AD63	TDPU	Time to Stabilize Analog Stage from Analog-to-Digital OFF to Analog-to-Digital ON	—	—	2	μs	See Note 3			

TABLE 29-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Special Features"	Modified bit names and locations in Register 26-5 " DEVID: Device and Revision ID Register ".
	Replaced "TSTARTUP" with "TPU", and "64-ms nominal delay" with "TPWRT", in Section 26.3.1 "On-Chip Regulator and POR".
	The information that appeared in the Watchdog Timer and the Programming and Diagnostics sections of 61143E version of this data sheet has been incorporated into the Special Features section:
	 Section 26.2 "Watchdog Timer (WDT)"
	Section 26.4 "Programming and Diagnostics"
Section 29.0 "Electrical	Added the 64-Lead QFN package to Table 29-3.
Characteristics"	Updated data in Table 29-5.
	Updated data in Table 29-7.
	Updated data in Table 29-4, Table 29-5, Table 29-7 and Table 29-8.
	Updated data in Table 29-11.
	Added OS42 parameter to Table 29-17.
	Replaced Table 29-23.
	Replaced Table 29-24.
	Replaced Table 29-25.
	Updated Table 29-36.
Section 30.0 "Packaging Information"	Added 64-Lead QFN package marking information to Section 30.1 "Package Marking Information" .
	Added the 64-Lead QFN (MR) package drawing and land pattern to Section 30.2 "Package Details" .
"Product Identification System"	Added the MR package designator for the 64-Lead (9x9x0.9) QFN.