

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	•
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx460f512l-80v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

•	Pin Number ⁽¹⁾			(-		,
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description
INT3	44	66	E11	I	ST	External interrupt 3.
INT4	45	67	E8	I	ST	External interrupt 4.
RA0	—	17	G3	I/O	ST	PORTA is a bidirectional I/O port.
RA1	—	38	J6	I/O	ST	
RA2	—	58	H11	I/O	ST	
RA3	—	59	G10	I/O	ST	
RA4	_	60	G11	I/O	ST	
RA5	—	61	G9	I/O	ST	
RA6	—	91	C5	I/O	ST	
RA7	_	92	B5	I/O	ST	
RA9	—	28	L2	I/O	ST	
RA10	_	29	K3	I/O	ST	
RA14	_	66	E11	I/O	ST	
RA15	_	67	E8	I/O	ST	
RB0	16	25	K2	I/O	ST	PORTB is a bidirectional I/O port.
RB1	15	24	K1	I/O	ST	
RB2	14	23	J2	I/O	ST	
RB3	13	22	J1	I/O	ST	
RB4	12	21	H2	I/O	ST	
RB5	11	20	H1	I/O	ST	
RB6	17	26	L1	I/O	ST	
RB7	18	27	J3	I/O	ST	
RB8	21	32	K4	I/O	ST	
RB9	22	33	L4	I/O	ST	
RB10	23	34	L5	I/O	ST	
RB11	24	35	J5	I/O	ST	
RB12	27	41	J7	I/O	ST	
RB13	28	42	L7	I/O	ST	
RB14	29	43	K7	I/O	ST	
RB15	30	44	L8	I/O	ST	
RC1	_	6	D1	I/O	ST	PORTC is a bidirectional I/O port.
RC2	_	7	E4	I/O	ST	
RC3	_	8	E2	I/O	ST	
RC4	_	9	E1	I/O	ST	
RC12	39	63	F9	I/O	ST]
RC13	47	73	C10	I/O	ST]
RC14	48	74	B11	I/O	ST]
RC15	40	64	F11	I/O	ST	
Legend:	CMOS = CM ST = Schmitt TTL = TTL in	OS compa Trigger in put buffer	tible input put with Cl	or outpu MOS leve	t A els C	Analog = Analog inputP = Power) = OutputI = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

	Pin Number ⁽¹⁾				Pin Buffer	
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Pin Type	Buffer Type	Description
RD0	46	72	D9	I/O	ST	PORTD is a bidirectional I/O port.
RD1	49	76	A11	I/O	ST	
RD2	50	77	A10	I/O	ST	
RD3	51	78	B9	I/O	ST	
RD4	52	81	C8	I/O	ST	
RD5	53	82	B8	I/O	ST	
RD6	54	83	D7	I/O	ST	
RD7	55	84	C7	I/O	ST	
RD8	42	68	E9	I/O	ST	
RD9	43	69	E10	I/O	ST	
RD10	44	70	D11	I/O	ST	
RD11	45	71	C11	I/O	ST	
RD12	_	79	A9	I/O	ST	
RD13		80	D8	I/O	ST	
RD14		47	L9	I/O	ST	
RD15	_	48	K9	I/O	ST	
RE0	60	93	A4	I/O	ST	PORTE is a bidirectional I/O port.
RE1	61	94	B4	I/O	ST	
RE2	62	98	B3	I/O	ST	
RE3	63	99	A2	I/O	ST	
RE4	64	100	A1	I/O	ST	
RE5	1	3	D3	I/O	ST	
RE6	2	4	C1	I/O	ST	
RE7	3	5	D2	I/O	ST	
RE8	_	18	G1	I/O	ST	
RE9	_	19	G2	I/O	ST	
RF0	58	87	B6	I/O	ST	PORTF is a bidirectional I/O port.
RF1	59	88	A6	I/O	ST	
RF2	34	52	K11	I/O	ST	
RF3	33	51	K10	I/O	ST	
RF4	31	49	L10	I/O	ST	
RF5	32	50	L11	I/O	ST	
RF6	35	55	H9	I/O	ST	
RF7	_	54	H8	I/O	ST	
RF8	_	53	J10	I/O	ST	
RF12	—	40	K6	I/O	ST]
RF13	_	39	L6	I/O	ST]
Legend:	CMOS = CM	OS compa	tible input	or outpu	t A	nalog = Analog input P = Power
	ST = Schmitt TTL = TTL in	Trigger in put buffer	put with Cl	MOS leve	els C	D = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)	
			/

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

3.2 Architecture Overview

The MIPS32[®] M4K[®] Processor Core contains several logic blocks working together in parallel, providing an efficient high performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e Support
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32[®] M4K[®] Processor Core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit general purpose registers used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Bypass multiplexers used to avoid stalls when executing instructions streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and Store Aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32[®] M4K[®] Processor Core includes a multiply/divide unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32MX core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16bit-wide rs, 15 iterations are skipped, and for a 24-bitwide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32MX core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 4-25: PORTD REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

ess				Bits															
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	TRICD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-	—	0000
0000	TRISD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
6000		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
0000	FORTD	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0		31:16	—	—	—	_	_	_	_	—	—	—	—	—	—	—	_	_	0000
00EU	LAID	15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6050	0000	31:16	—	—	_	—	_	_	—	—	—	—	—	—	—	—	_	—	0000
0000	0000	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-26: PORTD REGISTERS MAP FOR PIC32MX320F032H, PIC32MX320F064H, PIC32MX320F128H, PIC32MX340F128H, PIC32MX340F256H, PIC32MX340F512H, PIC32MX420F032H, PIC32MX440F128H, PIC32MX440F256H AND PIC32MX440F512H DEVICES ONLY⁽¹⁾

ess		i i								В	its								
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	TRICD	31:16	-	—	—	-	—	—	—	—	—	-	—	—	—	—	—	—	0000
0000	TRISD	15:0	—	—	_	—	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
6000	POPTD	31:16	_	—	_	—	_	_	—	—	—	—	—	_	—	_	—	—	0000
0000	FORID	15:0	_	-	_	-	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
60E0		31:16	—	—	_	—	_	_	—	—	—	—	—	—	—	_	—	_	0000
UULU	LAID	15:0		-	—	-	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
60E0		31:16	_	-	_	-	-	_	-	-	-	-	—	-	-	-	-	-	0000
0000	0000	15:0	_	_	_	_	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-39: PREFETCH REGISTERS MAP

SSS										Bit	S								
Virtual Addre (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000		31:16	—		_	_		_	—	_		—	—	_	—	_		CHECOH	0000
4000	ONECON	15:0	—	_	_	—	—	_	DCSZ	<1:0>	—	—	PREFE	N<1:0>	—	I	PFMWS<2:0	>	0007
4010		31:16	CHEWEN	_		—	—	_	_	—	_	—	—	_	—	—	—	—	0000
1010	OTIE/100	15:0	—	_	_	—	—	_	_	—	—	—	—	—		CHEID)X<3:0>		00xx
4020	CHETAG ⁽¹⁾	31:16	LTAGBOOT	—	—	—	—	_	_	—				LTAG<	:23:16>		•		xxx0
.020	0.12.0.10	15:0						LTAG<	15:4>						LVALID	LLOCK	LTYPE	—	xxx2
4030	CHEMSK ⁽¹⁾	31:16		—	—	—	—	—	—	—	—	—	—		—	—	—	—	0000
		15:0					LI	MASK<15:5:	>					_	—	—		—	xxxx
4040	CHEW0	31:16		CHEW0<31:0>															
		15:0																	XXXX
4050	CHEW1	31:16								CHEW1	<31:0>								xxxx
		15:0																	XXXX
4060	CHEW2	31:16								CHEW2	<31:0>								XXXX
		15.0																	xxxx
4070	CHEW3	15.0								CHEW3	<31:0>								XXXX
		31.16	_	_	_	_	_	_	_				C	HELRU<24:1	6>				0000
4080	CHELRU	15.0								CHELRI	<15:0>								0000
		31:16								ONEERC	10.02								xxxx
4090	CHEHIT	15:0	CHEHIT<31:0>																
		31:16	XXXX																
40A0	CHEMIS	15:0	CHEMIS<31:0>																
	0	31:16								0	T 04 0								xxxx
40C0	CHEPFABT	15:0	CHEPFABI<31:0>																
Legen	d: x = ur	hknown	value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-43: USB REGISTERS MAP⁽¹⁾

0
S
o,
-
<u> </u>
4
ω
т
T
$\overline{\mathbf{O}}$
<u>.</u>
Ω.
Ð
8
Ň
10

			<i>(</i> 0																
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5040	U1OTG	31:16	—	—	_	—	_	_	_	-	—	—	—	—	_	—	—	-	
0010	IR ⁽²⁾	15:0	—	—	—	—	—	—	_	_	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF	0000
5050	U1OTG	31:16	—	—	—	—	—	—	_	_	-	—	—	—		—	—	—	0000
	IE	15:0	_	—	—	—	_	—	_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE	0000
5060	U1OTG	31:16	_	—	—	—	—	—	_	_	-	—	—	—		—	—	—	0000
	STATU	15:0	—	—	—	—	—	—	—	—	ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD	0000
5070	U1OTG	31:16	_	—	—	—	_	—	_	_	-	—	—	—	_	—	—	—	0000
	CON	15:0	—	—	—	—	—	—	—	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
5080	U1PWRC	31:16	—		_	—	_		_	_	—	—	—	—		—		—	0000
		15:0	—	_	_	—	—				UACTPND ⁽⁴⁾	—	—	USLPGRD	_	_	USUSPEND	USBPWR	0000
	(2)	31:16	—		_	—	_		_	_	—			—		—		—	0000
5200	U1IR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
																		DETACHIF	0000
		31:16	_	—	—	—	_	_	_	_	-	—	—	_		—	—	—	0000
5210	U1IE	15:0	_	_	_	_	_	_	_	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
																		DETACHIE	0000
5000		31:16	_		_	_			_	_	_	_	_	_			-	_	0000
5220	U1EIR	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000
		04.40															EOFEF		0000
5000		31:16	_	_	_	_	_	_	_	_	_	_	_	_	-	_		_	0000
5230	UTEIE	15:0	_	—	—	—	_	—	_	_	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRUSEE	PIDEE	0000
		21.16															EOFEE		0000
5240	U1STAT ⁽³⁾	15.0	_				_				_		— T = 2:0 \ (4)				_		0000
		21.16										LINDI	1<3.02**		DIK	TTD			0000
5250		51.10									_								0000
5250	UICON	15:0	-	—	—	—	—	—	—	—	JSTATE ⁽⁴⁾	SE0 ⁽⁴⁾	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
		31.16									_				_				0000
5260	U1ADDR	15.0	_	_	_		_	_	_	_	I SPDEN			DF	VADDR<6.0	>			0000
		31.16	_		_	_	_		_	_		_	_	_		_	_	_	0000
5270	U1BDTP1	15.0	_	_	_		_	_	_	_			R	I DTPTRI <7:15				_	0000
		10.0		Deset	unimplomo	ntod rood o	a foi Deast	voluce ere	ahawa ia h	avadaaimal	1		D	2.1 INCN///					0000

Legend: Note 1:

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

This register does not have associated CLR, SET, and INV registers. 2:

All bits in this register are read-only; therefore, CLR, SET, and INV registers are not supported. 3:

4: The reset value for this bit is undefined.

TABLE 4-43: USB REGISTERS MAP⁽¹⁾ (CONTINUED)

SS						-		-			Bits								
Virtual Addre (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	111FRMI (3)	31:16		—	_	—		_	_	_	_	—	_	—	_	_	—	_	0000
5200		15:0	-	—	—	—	-	_		—				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	—	—	—	—	_	—	-	—	—	-	—	-	—	—	—	—	0000
0200		15:0	_	_	_	—	_	_	_	_	_	—	_	_	_		FRMH<10:8>	>	0000
52A0	U1TOK	31:16		-	—			_		—	—	—	—	—	—	—	—	—	0000
		15:0	—	—		—	—	—	—	—		PID	<3:0>	1		EP<	<3:0>		0000
52B0	U1SOF	31:16	_	—	—	_	_	_	_	_	—	-	—	-	—	—	—	—	0000
		15:0	_	_	_		_	_	_	_				CNT<7	7:0>				0000
52C0	U1BDTP2	31:16	_	_	_	-	_	_	—	_		—	_	-	-	—			0000
		15:0		_	_	_	_	_	_					BDIPIR	1<7:0>				0000
52D0	U1BDTP3	31:16	_	_	_		_	_	_	_	_	_	_		-	_	_	—	0000
		15.0		_										DUPIR	J<7.0>				0000
52E0	U1CNFG1	15.0		_															0000
		31.16											USBERZ	USBSIDE			_		0000
5300	U1EP0	15.0	_	_	_	_	_	_	_	_	L SPD	RETRYDIS		FPCONDIS	FPRXEN	FPTXEN	FPSTALL	FPHSHK	0000
		31.16		_	_	_		_		_		_			_	_	_	_	0000
5310	U1EP1	15:0	_	_	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
		31:16	_	_		_	_	_	_	_	_	_	_	_					0000
5320	U1EP2	15:0	_	_	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
		31:16	_	_		_	_	_	_	_	_	_	_	_	_	_			0000
5330	U1EP3	15:0	_	_	_	—	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5040		31:16		—	—	—	_	_	_	—	_	_	—	—	—	—	_	—	0000
5340	UTEP4	15:0		_	_	—		_		_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5250		31:16		—		—	-	—	_	_	_	—	—	—	—	—	—		0000
5550	UTEF5	15:0		_	_	—	-	_		_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5360	LI1EP6	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5500	01210	15:0	_	—	—	—	_	—	_	_	-	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5370	U1EP7	31:16	_	—	_	—	_	—	_	_	_	—	_	_	_	_	—	—	0000
5010		15:0	—	—	_	_	—	_	—	—	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
Legen Note	a: x = 0 1: Exce Reg	unknow ept whe isters"	n value on ere noted, al for more in	Reset, — = Il registers in formation.	unimpleme n this table	nted, read a have corres	ponding CL	t values are .R, SET and	snown in h I INV regist	exadecimal ers at their v	virtual addres	ses, plus offs	ets of 0x4, 0>	8 and 0xC, res	spectively. S	ee Section	12.1.1 "CLR,	SET and IN	1V

2:

This register does not have associated CLR, SET, and INV registers. All bits in this register are read-only; therefore, CLR, SET, and INV registers are not supported. The reset value for this bit is undefined. 3:

4:

8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"* Section 6. *"Oscillator Configuration"* (DS61112), which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC32MX oscillator system has the following modules and features:

- A total of four external and internal oscillator options as clock sources
- On-chip PLL (phase-locked loop) with userselectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shut down
- Dedicated on-chip PLL for USB peripheral

11.0 USB ON-THE-GO (OTG)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS61126) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 fullspeed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers, and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB OTG Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Transaction Handshaking Performed by Hardware
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA to Access System RAM and Flash

Note: The implementation and use of the USB specifications, as well as other third-party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

14.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS61105) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This family of PIC32MX devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-bit Timer
- Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous Internal 32-bit Timer
- Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer
- Note: Throughout this chapter, references to registers TxCON, TMRx and PRx use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.

14.1 Additional Supported Features

- · Selectable clock prescaler
- Timers operational during CPU Idle
- Time base for input capture and output compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 only)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

20.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS61128) of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Key features of the PMP module include:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait states
- · Operate during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers
- Freeze option for in-circuit debugging

Note: On 64-pin devices, data pins PMD<15:8> are not available.

FIGURE 20-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

TADLE 27-1:		<u>-D)</u>
Instruction	Description	Function
RDPGPR	Read GPR from Previous Shadow Set	Rt = SGPR[SRSCtl _{PSS} , Rd]
ROTR	Rotate Word Right	$Rd = Rt_{sa-10} Rt_{31sa}$
ROTRV	Rotate Word Right Variable	$Rd = Rt_{Rs-10} Rt_{31Rs}$
SB	Store Byte	(byte)Mem[Rs+offset] = Rt
SC	Store Conditional Word	<pre>if LL_{bit} = 1 mem[Rs+offset> = Rt Rt = LL_{bit}</pre>
SDBBP	Software Debug Break Point	Trap to SW Debug Handler
SEB	Sign-Extend Byte	Rd = SignExtend (Rs-70)
SEH	Sign-Extend Half	Rd = SignExtend (Rs-150)
SH	Store Half	(half)Mem[Rs+offset> = Rt
SLL	Shift Left Logical	Rd = Rt << sa
SLLV	Shift Left Logical Variable	Rd = Rt << Rs[4:0]
SLT	Set on Less Than	<pre>if (int)Rs < (int)Rt Rd = 1 else Rd = 0</pre>
SLTI	Set on Less Than Immediate	<pre>if (int)Rs < (int)Immed Rt = 1 else Rt = 0</pre>
SLTIU	Set on Less Than Immediate Unsigned	<pre>if (uns)Rs < (uns)Immed Rt = 1 else Rt = 0</pre>
SLTU	Set on Less Than Unsigned	<pre>if (uns)Rs < (uns)Immed Rd = 1 else Rd = 0</pre>
SRA	Shift Right Arithmetic	Rd = (int)Rt >> sa
SRAV	Shift Right Arithmetic Variable	Rd = (int)Rt >> Rs[4:0]
SRL	Shift Right Logical	Rd = (uns)Rt >> sa
SRLV	Shift Right Logical Variable	Rd = (uns)Rt >> Rs[4:0]
SSNOP	Superscalar Inhibit No Operation	NOP
SUB	Integer Subtract	Rt = (int)Rs - (int)Rd
SUBU	Unsigned Subtract	Rt = (uns)Rs - (uns)Rd
SW	Store Word	Mem[Rs+offset] = Rt
SWL	Store Word Left	Mem[Rs+offset] = Rt
SWR	Store Word Right	Mem[Rs+offset] = Rt
SYNC	Synchronize	Orders the cached coherent and uncached loads and stores for access to the shared memory
SYSCALL	System Call	SystemCallException
TEQ	Trap if Equal	if Rs == Rt TrapException
TEQI	Trap if Equal Immediate	if Rs == (int)Immed TrapException

TABLE 27-1: MIPS32[®] INSTRUCTION SET (CONTINUED)

Note 1: This instruction is deprecated and should not be used.

28.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

28.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

28.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

28.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

28.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

Product Identification System

To order or obtain informat	tion, e.g., on pricing or delivery, refer to the factory or the li	isted sales office.
Microchip Brand Architecture Product Groups Flash Memory Family_ Program Memory Size Pin Count Tape and Reel Flag (if Speed Temperature Range Package Pattern	PIC32 MX 3XX F 512 H T - 80 I / PT - XXX (KB) applicable)	Examples: PIC32MX320F032H-40I/PT: General purpose PIC32MX, 32 KB program memory, 64-pin, Industrial temperature, TQFP package. PIC32MX360F256L-80I/PT: General purpose PIC32MX, 256 KB program memory, 100-pin, Industrial temperature, TQFP package.
Flash Memory Family		
Architecture	MX = 32-bit RISC MCU core	
Product Groups	3XX = General purpose microcontroller family 4XX = USB	
Flash Memory Family	F = Flash program memory	
Program Memory Size	32 = 32K 64 = 64K 128 = 128K 256 = 256K 512 = 512K	
Speed	40 = 40 MHz 80 = 80 MHz	
Pin Count	H = 64-pin L = 100-pin	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) V = -40° C to $+105^{\circ}$ C (V-Temp)	
Package	PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpa PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatp MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) BG = 121-Lead (10x10x1.1 mm) XBGA (Plastic Thin Pr	ck) ack) rofile Ball Grid Array)
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (ES = Engineering Sample	(blank otherwise)