

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx460f512lt-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U S A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-149-0

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

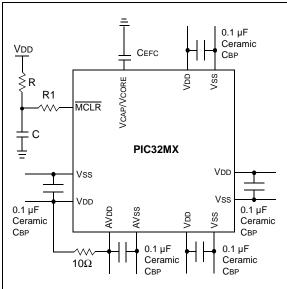
Getting started with the PIC32MX3XX/4XX family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VCORE
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.8 "External Oscillator Pins")

- Additionally, the following pins may be required:
- VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of ADC use and ADC voltage reference source.


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP/VCORE)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (< 1 Ohm) capacitor is required on the VCAP/VCORE pin, which is used to stabilize the internal voltage regulator output. The VCAP/VCORE pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 29.0** "**Electrical Characteristics**" for additional information on CEFC specifications. This mode is enabled by connecting the ENVREG pin to VDD.

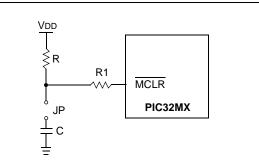
2.3.2 EXTERNAL REGULATOR MODE

In this mode the core voltage is supplied externally through the VCORE/VCAP pin. A low-ESR capacitor of 10 μF is recommended on the VCAP/VCORE pin. This mode is enabled by grounding the ENVREG pin.

The placement of this capacitor should be close to the VCAP/VCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 26.3** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

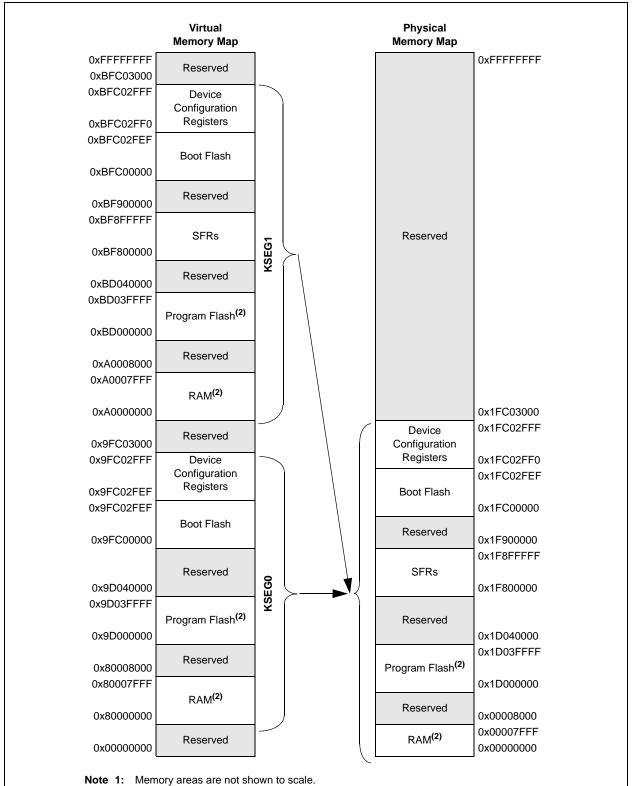
The MCLR pin provides for two specific device functions:


- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.


FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Note 1: R ≤10 kΩ is recommended. A suggested starting value is 10 kΩ Ensure that the MCLR pin VIH and VIL specifications are met.

- <u>R1 ≤ 470Ω</u> will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.
- **3:** The capacitor can be sized to prevent unintentional resets from brief glitches or to extend the device reset period during POR.

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX340F256H, PIC32MX360F256L, PIC32MX440F256H AND PIC32MX460F256L DEVICES⁽¹⁾

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS61115)) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

SS										В	its								
VIITUAI Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Pacate
1000	INTCON	31:16	_	_	_	—	_	—		—	—	—	_	—	-	-	-	SS0	00
		15:0 31:16	_	_		MVEC		_	TPC<2:0>					INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0
010	INTSTAT ⁽²⁾	15:0	_	_	_				SRIPL<2:0>		_	_			VEC-	<5:0>			0
020	IPTMR	31:16 15:0						1		IPTMF	₹<31:0>								0
030	IFS0	31:16 15:0	I2C1MIF INT3IF	I2C1SIF OC3IF	I2C1BIF IC3IF	U1TXIF T3IF	U1RXIF INT2IF	U1EIF OC2IF	– IC2IF	— T2IF	— INT1IF	OC5IF OC1IF	IC5IF IC1IF	T5IF T1IF	INT4IF INT0IF	OC4IF CS1IF	IC4IF CS0IF	T4IF CTIF	0
040	IFS1	31:16 15:0	- RTCCIF	- FSCMIF	– I2C2MIF	– I2C2SIF	– I2C2BIF	U2TXIF	USBIF U2RXIF	FCEIF U2EIF	— SPI2RXIF	- SPI2TXIF	— SPI2EIF	— CMP2IF	— CMP1IF	– PMPIF	AD1IF	— CNIF	0
060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE		_	—	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	(
070	IEC1	15:0 31:16	INT3IE —	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE USBIE	T2IE FCEIE	INT1IE	OC1IE	IC1IE	T1IE	INTOIE	CS1IE	CS0IE	CTIE	(
0.0		15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2RXIE	SPI2TXIE	SPI2EIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	(
090	IPC0	31:16 15:0	_	_			INT0IP<2:0> CS0IP<2:0>			S<1:0> S<1:0>			_		CS1IP<2:0> CTIP<2:0>		CS1IS CTIS		(
		31:16	_	_	_		INT1IP<2:0>			S<1:0>	_	_	_		OC1IP<2:0>		OC1IS		-
0A0	IPC1	15:0	_	_	_		IC1IP<2:0>			<1:0>	_	_	_		T1IP<2:0>		T1IS-		
)B0	IPC2	31:16	—	_	—		INT2IP<2:0>			S<1:0>	—	_	—		OC2IP<2:0>		OC2IS		
		15:0 31:16	_	_			IC2IP<2:0> INT3IP<2:0>			S<1:0> S<1:0>					T2IP<2:0> OC3IP<2:0>		T2IS- OC3IS		
0C0	IPC3	15:0	_	_	_		IC3IP<2:0>			<1:0>	_	_	_		T3IP<2:0>		T3IS-		
DD0	IPC4	31:16	—	_	_		INT4IP<2:0>	>	INT4I	S<1:0>	—	—	_		OC4IP<2:0>		OC4IS	6<1:0>	
500	11 04	15:0	—	-	-		IC4IP<2:0>		IC4IS	<1:0>	—	-			T4IP<2:0>		T4IS		
0E0	IPC5	31:16	—	—	—		—	—	-	—	—	-	-		OC5IP<2:0>		OC5IS		1
		15:0	—	—	—		IC5IP<2:0>			<1:0>	—		_		T5IP<2:0>		T5IS-		1
0F0	IPC6	31:16	—	_	—		AD1IP<2:0>			6<1:0>	—	_	—		CNIP<2:0>		CNIS		(
		15:0	_				12C1IP<2:0>			S<1:0>	_				U1IP<2:0>			<1:0>	1
100	IPC7	31:16 15:0	_				SPI2IP<2:0> CMP1IP<2:0			S<1:0> S<1:0>					CMP2IP<2:0 PMPIP<2:0>		PMPIS	S<1:0>	1
		31:16	_	_			RTCCIP<2:0			S<1:0>	_	_			SCMIP<2:0		FSCMI		(
110	IPC8	15:0	_	_	_		12C2IP<2:0>			S<1:0>	_	_	_		U2IP<2:0>		U2IS		(
4.40	10044	31:16	_	_	_	—	_	—	_	_	-	_	_	—	_	—	_		(
1140	IPC11	15:0	_	_	_		USBIP<2:0>		USBI	S<1:0>	_	L _	_		FCEIP<2:0>		FCEIS	S<1.0>	(

INTERRIPT REGISTERS MAP FOR THE PIC32MX420E032H DEVICE ONI V(1) TADIE 1.6.

© 2011 Microchip Technology Inc.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

PIC32MX3XX/4XX

This register does not have associated CLR, SET, and INV registers. 2:

TABLE 4-42: DEVICE AND REVISION ID SUMMARY

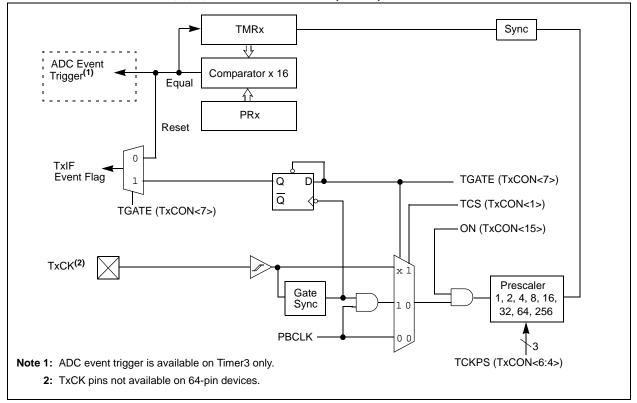
ess		e	Bits												ø				
Virtual Addro (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5000	DEVID	31:16	16 VER<3:0> DEVID<27:16>					xxxx											
F220	DEVID	15:0 DEVID<15:0>										xxxx							
Legend	Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.									· · · ·									

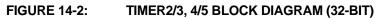
14.0 TIMER2/3 AND TIMER4/5

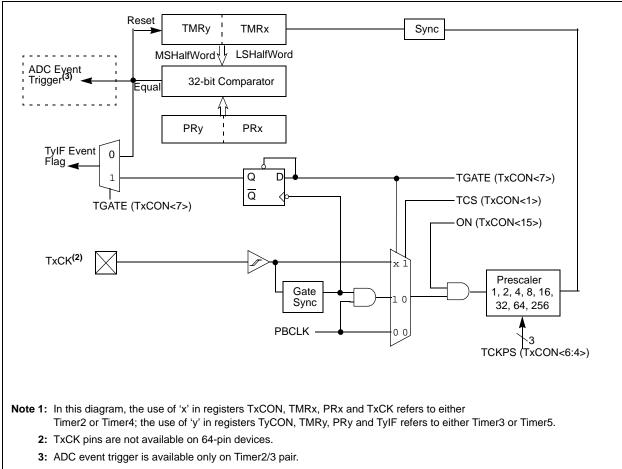
- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS61105) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This family of PIC32MX devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous Internal 16-bit Timer
- Synchronous Internal 16-bit Gated Timer
- Synchronous External 16-bit Timer

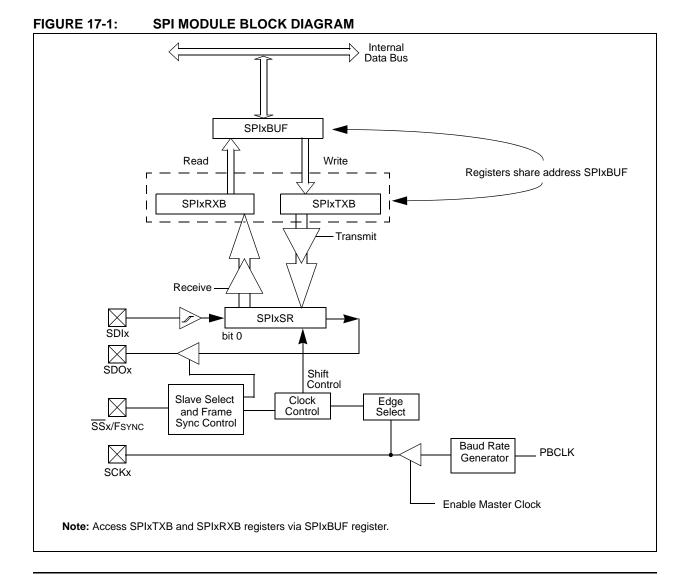

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:


- Synchronous Internal 32-bit Timer
- Synchronous Internal 32-bit Gated Timer
- Synchronous External 32-bit Timer
- Note: Throughout this chapter, references to registers TxCON, TMRx and PRx use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.

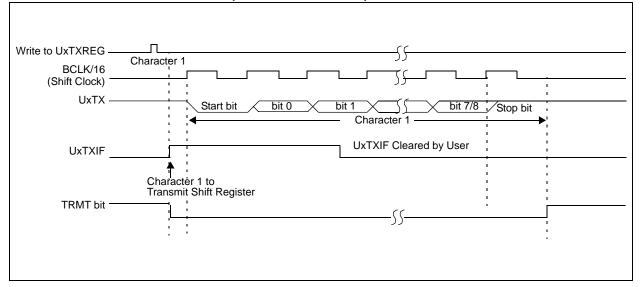

14.1 Additional Supported Features

- · Selectable clock prescaler
- Timers operational during CPU Idle
- Time base for input capture and output compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 only)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)


17.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC32MX3XX/4XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS61106) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The SPI module is a synchronous serial interface useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The PIC32MX SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

Following are some of the key features of this module:

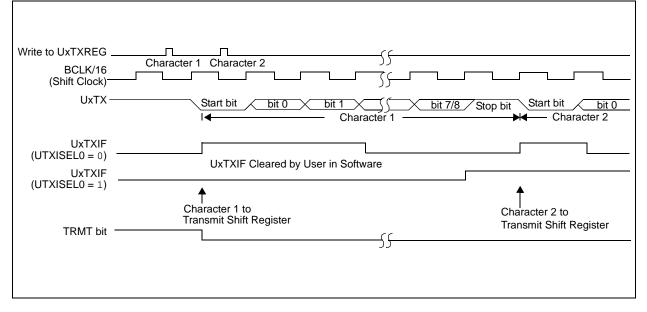

- Master and Slave Modes Support
- Four Different Clock Formats
- Framed SPI Protocol Support
- User Configurable 8-bit, 16-bit and 32-bit Data
 Width
- Separate SPI Data Registers for Receive and Transmit
- Programmable Interrupt Event on every 8-bit, 16-bit and 32-bit Data Transfer
- Operation during CPU Sleep and Idle Mode
- Fast Bit Manipulation using CLR, SET and INV Registers

FIGURE 19-2: TRANSMISSION (8-BIT OR 9-BIT DATA)

NOTES:

TABLE 27-1:	MIPS32 [®] INSTRUCTION SET (CONTINUED)	
Instruction	Description	Function
BLEZL	Branch on Less Than or Equal to Zero Likely ⁽¹⁾	<pre>if Rs[31] Rs == 0 PC += (int)offset else Ignore Next Instruction</pre>
BLTZ	Branch on Less Than Zero	if Rs[31] PC += (int)offset
BLTZAL	Branch on Less Than Zero and Link	GPR[31] = PC + 8 if Rs[31] PC += (int)offset
BLTZALL	Branch on Less Than Zero and Link Likely ⁽¹⁾	<pre>GPR[31] = PC + 8 if Rs[31] PC += (int)offset else Ignore Next Instruction</pre>
BLTZL	Branch on Less Than Zero Likely ⁽¹⁾	if Rs[31] PC += (int)offset else Ignore Next Instruction
BNE	Branch on Not Equal	if Rs != Rt PC += (int)offset
BNEL	Branch on Not Equal Likely ⁽¹⁾	if Rs != Rt PC += (int)offset else Ignore Next Instruction
BREAK	Breakpoint	Break Exception
CLO	Count Leading Ones	Rd = NumLeadingOnes(Rs)
CLZ	Count Leading Zeroes	Rd = NumLeadingZeroes(Rs)
DERET	Return from Debug Exception	PC = DEPC Exit Debug Mode
DI	Atomically Disable Interrupts	Rt = Status; Status _{IE} = 0
DIV	Divide	LO = (int)Rs / (int)Rt HI = (int)Rs % (int)Rt
DIVU	Unsigned Divide	LO = (uns)Rs / (uns)Rt HI = (uns)Rs % (uns)Rt
EHB	Execution Hazard Barrier	Stop instruction execution until execution hazards are cleared
EI	Atomically Enable Interrupts	Rt = Status; Status _{IE} = 1
ERET	Return from Exception	if Status _{ERL} PC = ErrorEPC else PC = EPC Status _{ERL} = 0 Status _{ERL} = 0 LL = 0
EXT	Extract Bit Field	<pre>Rt = ExtractField(Rs, pos, size)</pre>
INS	Insert Bit Field	Rt = InsertField(Rs, Rt, pos, size)
J	Unconditional Jump	PC = PC[31:28] offset<<2

<u></u>

Note 1: This instruction is deprecated and should not be used.

28.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

28.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

28.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

28.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

28.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

TABLE 29-13: COMPARATOR SPECIFICATIONS

DC CHA	ARACTERI	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D300	VIOFF	Input Offset Voltage	-	±7.5	±25	mV	AVdd = Vdd, AVss = Vss		
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVDD = VDD, AVSS = VSS (Note 2)		
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)		
D303	TRESP	Response Time	—	150	400	ns	AVDD = VDD, AVss = Vss (Notes 1,2)		
D304	ON2ov	Comparator Enabled to Output Valid	_	-	10	μs	Comparator module is configured before setting the comparator ON bit. (Note 2)		
D305	IVREF	Internal Voltage Reference	0.57	0.6	0.63	V	—		

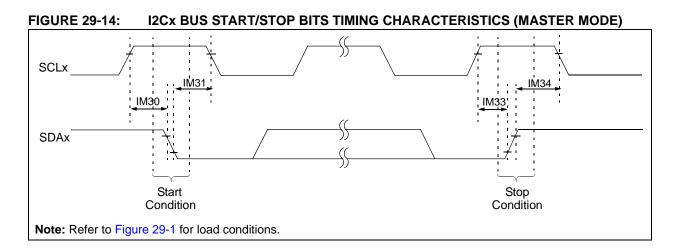
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

TABLE 29-14: VOLTAGE REFERENCE SPECIFICATIONS

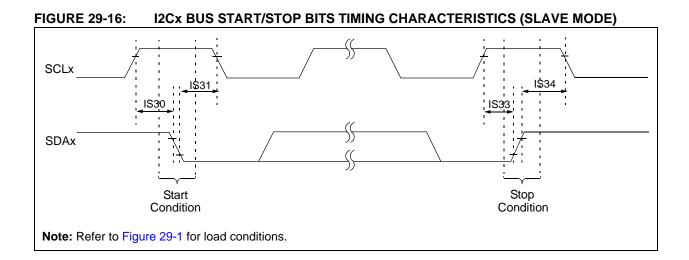
DC CHA	RACTERIS	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D310	VRES	Resolution	Vdd/24	_	VDD/32	LSb	—		
D311	VRAA	Absolute Accuracy	—	_	1/2	LSb	—		
D312	TSET	Settling Time ⁽¹⁾	_		10	μs	_		

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

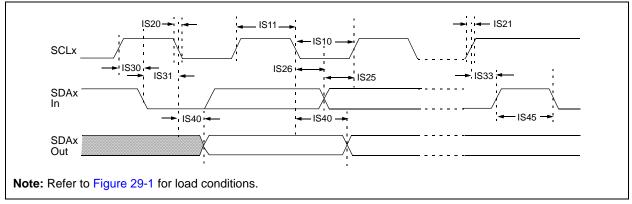

TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHA	RACTERIS	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments	
D320	VCORE	Regulator Output Voltage	1.62	1.80	1.98	V	_	
D321	CEFC	External Filter Capacitor Value	8	10	_	μF	Capacitor must be low series resistance (< 1 Ohm)	
D322	TPWRT	Power-up Timer Period		64		ms	ENVREG = 0	

TABLE 29-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS


					Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+105°C for V-Temp						
Param. No.	Symbol	Chara	cteristic	s ⁽¹⁾	Min. Max. Units		Conditions				
TB10	ТтхН	TxCK High Time	Synchr with pre	onous, escaler	[(12.5 ns or 1ТРВ)/N] + 25 ns		ns	Must also meet parameter TB15.	N = prescale value (1, 2, 4, 8, 16,		
TB11	TTXL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1ТРВ)/N] + 25 ns	—	ns	Must also meet parameter TB15.	32, 64, 256)		
TB15	ΤτχΡ	oynom		onous, escaler	[(Greater of 25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V			
					[(Greater of 25 ns or 2 Трв)/N] + 50 ns	_	ns	VDD < 2.7V	_		
TB20	TCKEXTMRL	Delay fror TxCK Clo Timer Inci	ck Edge			1	Трв	_	-		

Note 1: These parameters are characterized, but not tested in manufacturing.



64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

	Units						
Dimens	MIN	NOM	MAX				
Number of Pins	N		64				
Pitch	е		0.50 BSC				
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3		0.20 REF				
Overall Width	E		9.00 BSC				
Exposed Pad Width	E2	7.05	7.15	7.50			
Overall Length	D		9.00 BSC				
Exposed Pad Length	D2	7.05	7.15	7.50			
Contact Width	b	0.18	0.25	0.30			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

INDEX

1	۱.
r	۰.

AC Characteristics	. 161
Internal RC Accuracy	. 163
AC Electrical Specifications	
Parallel Master Port Read Requirements	. 186
Parallel Master Port Write Requirements	. 187
Parallel Slave Port Requirements	. 185
Assembler	
MPASM Assembler	. 148

В

Block Diagrams	
ADC Module	123
Comparator I/O Operating Modes	125
Comparator Voltage Reference	127
Connections for On-Chip Voltage Regulator.	
Input Capture	
JTAG Compliant Application Showing	
Daisy-Chaining of Components	
Output Compare Module	109
Reset System	
RTCC	
Type B Timer	37, 95, 105
UART	
WDT	
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	

С

C Compilers	
•	
MPLAB C18	
Comparator	
Operation	126
Comparator Voltage Reference	
Configuring	
CPU Module	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

-	
DC Characteristics	
I/O Pin Input Specifications	157
I/O Pin Output Specifications	
Idle Current (IIDLE)	154
Operating Current (IDD)	153
Power-Down Current (IPD)	155
Program Memory	159
Temperature and Voltage Specifications	152
Development Support	147
E	
Electrical Characteristics	151
AC	161
Errata	19
F	
Flash Program Memory	85
RTSP Operation	
I	
I/O Ports	101, 115
Parallel I/O (PIO)	
Internet Address	

Μ

Microchip Internet Web Site
P
Packaging 191
Details 192
Marking 191
PIC32 Family USB Interface Diagram 100
Pinout I/O Descriptions (table)
Power-on Reset (POR)
and On-Chip Voltage Regulator
R
Reader Response
S
Serial Peripheral Interface (SPI) 87, 97, 111, 119, 121, 130
Software Simulator (MPLAB SIM) 149
Special Features
Special realures
Т
Timer1 Module
Timing Diagrams
10-bit Analog-to-Digital Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) 183
10-bit Analog-to-Digital Conversion (CHPS<1:0> = 01,
SIMSAM = 0, $ASAM = 1$, $SSRC<2:0> = 111$,
SAMC<4:0> = 00001)
I2Cx Bus Data (Master Mode) 175
I2Cx Bus Data (Slave Mode) 177
I2Cx Bus Start/Stop Bits (Master Mode) 175
I2Cx Bus Start/Stop Bits (Slave Mode)
Input Capture (CAPx)
OC/PWM
Output Compare (OCx) 169
Parallel Master Port Write 186, 187
Parallel Slave Port 185
SPIx Master Mode (CKE = 0) 171
SPIx Master Mode (CKE = 1) 172
SPIx Slave Mode (CKE = 0) 173
SPIx Slave Mode (CKE = 1)
Timer1, 2, 3, 4, 5 External Clock
Transmission (8-bit or 9-bit Data) 116
UART Reception with Receive Overrun 117
Timing Requirements
CLKO and I/O 164
Timing Specifications
I2Cx Bus Data Requirements (Master Mode) 175
I2Cx Bus Data Requirements (Slave Mode) 178
Output Compare Requirements 169
Simple OC/PWM Mode Requirements 170
SPIx Master Mode (CKE = 0) Requirements
SPIx Master Mode (CKE = 1) Requirements
SPIx Slave Mode (CKE = 1) Requirements
V
VCORE/VCAP Pin
Voltage Reference Specifications

Voltage Regulator (On-Chip) 138

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820