E·XFL

Altera - EP2SGX30DF780C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1694
Number of Logic Elements/Cells	33880
Total RAM Bits	1369728
Number of I/O	361
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2sgx30df780c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Transmit State Machine

The transmit state machine operates in either PCI Express mode, XAUI mode, or GIGE mode, depending on the protocol used. The state machine is not utilized for certain protocols, such as SONET.

GIGE Mode

In GIGE mode, the transmit state machine converts all idle ordered sets (/K28.5/, /Dx.y/) to either /I1/ or /I2/ ordered sets. /I1/ consists of a negative-ending disparity /K28.5/ (denoted by /K28.5/-) followed by a neutral /D5.6/. /I2/ consists of a positive-ending disparity /K28.5/ (denoted by /K28.5/+) and a negative-ending disparity /D16.2/ (denoted by /D16.2/-). The transmit state machines do not convert any of the ordered sets to match /C1/ or /C2/, which are the configuration ordered sets. (/C1/ and /C2/ are defined by [/K28.5/, /D21.5/] and [/K28.5/, /D2.2/], respectively). Both the /I1/ and /I2/ ordered sets guarantee a negative-ending disparity after each ordered set.

XAUI Mode

The transmit state machine translates the XAUI XGMII code group to the XAUI PCS code group. Table 2–5 shows the code conversion.

Table 2–5.	Code Conversion		
XGMII TXC	XGMII TXD	PCS Code-Group	Description
0	00 through FF	Dxx.y	Normal data
1	07	K28.0 or K28.3 or K28.5	Idle in
1	07	K28.5	Idle in T
1	9C	K28.4	Sequence
1	FB	K27.7	Start
1	FD	K29.7	Terminate
1	FE	K30.7	Error
1	See IEEE 802.3 reserved code groups	See IEEE 802.3 reserved code groups	Reserved code groups
1	Other value	K30.7	Invalid XGMII character

The XAUI PCS idle code groups, /K28.0/ (/R/) and /K28.5/ (/K/), are automatically randomized based on a PRBS7 pattern with an $x^7 + x^6 + 1$ polynomial. The /K28.3/ (/A/) code group is automatically generated between 16 and 31 idle code groups. The idle randomization on the /A/, /K/, and /R/ code groups is done automatically by the transmit state machine.

If a design uses external termination, the receiver must be externally terminated and biased to 0.85 V or 1.2 V. Figure 2–14 shows an example of an external termination and biasing circuit.

Programmable Equalizer

The Stratix II GX receivers provide a programmable receive equalization feature to compensate the effects of channel attenuation for high-speed signaling. PCB traces carrying these high-speed signals have low-pass filter characteristics. The impedance mismatch boundaries can also cause signal degradation. The equalization in the receiver diminishes the lossy attenuation effects of the PCB at high frequencies.

asserted. All 8B/10B control signals, such as disparity error or control detect, are pipelined with the data in the Stratix II GX receiver block and are edge aligned with the data.

Figure 2–23 shows how the 20-bit code is decoded to the 16-bit data + 2-bit control indicator.

Figure 2–23. 20-Bit to 16-Bit Decoding Process

There are two optional error status ports available in the 8B/10B decoder, rx_errdetect and rx_disperr. These status signals are aligned with the code group in which the error occurred.

Receiver State Machine

The receiver state machine operates in Basic, GIGE, PCI Express, and XAUI modes. In GIGE mode, the receiver state machine replaces invalid code groups with K30.7. In XAUI mode, the receiver state machine translates the XAUI PCS code group to the XAUI XGMII code group.

Byte Deserializer

The byte deserializer widens the transceiver data path before the FPGA interface. This reduces the rate at which the received data needs to be clocked at in the FPGA logic. The byte deserializer block is available in both single- and double-width modes.

The byte deserializer converts the one- or two-byte interface into a two- or four-byte-wide data path from the transceiver to the FPGA logic (see Table 2–9). The FPGA interface has a limit of 250 MHz, so the byte deserializer is needed to widen the bus width at the FPGA interface and

Figure 2–29. EP2SGX130 Device Inter-Transceiver and Global Clock Connections

Notes to Figure 2–29:

- (1) There are two transmitter PLLs in each transceiver block.
- (2) There are four receiver PLLs in each transceiver block.
- (3) The Global Clock line must be driven by an input pin.

Figure 2–52. M4K RAM Block LAB Row Interface

M-RAM Block

The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO

You cannot use an initialization file to initialize the contents of a M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed.

On-Chip Termination

Stratix II GX devices provide differential (for the LVDS technology I/O standard) and series on-chip termination to reduce reflections and maintain signal integrity. On-chip termination simplifies board design by minimizing the number of external termination resistors required. Termination can be placed inside the package, eliminating small stubs that can still lead to reflections.

Stratix II GX devices provide four types of termination:

- Differential termination (R_D)
- Series termination (R_S) without calibration
- Series termination (R_S) with calibration
- Parallel termination (R_T) with calibration

Table 2–34 shows the Stratix II GX on-chip termination support per I/O bank.

Table 2–34. On-Chip Termination Support by I/O Banks (Part 1 of 2)						
On-Chip Termination Support	I/O Standard Support	Top and Bottom Banks (3, 4, 7, 8)	Left Bank (1, 2)			
	3.3-V LVTTL	\checkmark	\checkmark			
	3.3-V LVCMOS	~	\checkmark			
	2.5-V LVTTL	~	\checkmark			
	2.5-V LVCMOS	✓	\checkmark			
	1.8-V LVTTL	~	\checkmark			
	1.8-V LVCMOS	~	\checkmark			
	1.5-V LVTTL	~	\checkmark			
Series termination without calibration	1.5-V LVCMOS	~	\checkmark			
	SSTL-2 class I and II	~	\checkmark			
	SSTL-18 class I	~	\checkmark			
	SSTL-18 class II	~	_			
	1.8-V HSTL class I	~	\checkmark			
	1.8-V HSTL class II	~	_			
	1.5-V HSTL class I	~	\checkmark			
	1.2-V HSTL	~				

Table 3–4. Stratix II GX Configuration Features (Part 2 of 2)						
Configuration Scheme	Configuration Method	Design Security	Decompression	Remote System Upgrade		
	Download cable (4)					
JTAG	MAX II device or microprocessor and flash device					

Notes for Table 3–4:

- (1) In these modes, the host system must send a DCLK that is $4 \times$ the data rate.
- (2) The enhanced configuration device decompression feature is available, while the Stratix II GX decompression feature is not available.
- (3) Only remote update mode is supported when using the AS configuration scheme. Local update mode is not supported.
- (4) The supported download cables include the Altera USB-Blaster universal serial bus (USB) port download cable, MasterBlaster serial/USB communications cable, ByteBlaster II parallel port download cable, and the ByteBlasterMV parallel port download cable.

Device Security Using Configuration Bitstream Encryption

Stratix II and Stratix II GX FPGAs are the industry's first FPGAs with the ability to decrypt a configuration bitstream using the AES algorithm. When using the design security feature, a 128-bit security key is stored in the Stratix II GX FPGA. To successfully configure a Stratix II GX FPGA that has the design security feature enabled, the device must be configured with a configuration file that was encrypted using the same 128-bit security key. The security key can be stored in non-volatile memory inside the Stratix II GX device. This nonvolatile memory does not require any external devices, such as a battery back up, for storage.

An encrypted configuration file is the same size as a non-encrypted configuration file. When using a serial configuration scheme such as passive serial (PS) or active serial (AS), configuration time is the same whether or not the design security feature is enabled. If the fast passive parallel (FPP) scheme is used with the design security or decompression feature, a 4× DCLK is required. This results in a slower configuration time when compared to the configuration time of an FPGA that has neither the design security nor the decompression feature enabled. For more information about this feature, contact an Altera sales representative.

Device Configuration Data Decompression

Stratix II GX FPGAs support decompression of configuration data, which saves configuration memory space and time. This feature allows you to store compressed configuration data in configuration devices or other

memory, and transmit this compressed bitstream to Stratix II GX FPGAs. During configuration, the Stratix II GX FPGA decompresses the bitstream in real time and programs its SRAM cells. Stratix II GX FPGAs support decompression in the FPP (when using a MAX II device or microprocessor and flash memory), AS, and PS configuration schemes. Decompression is not supported in the PPA configuration scheme nor in JTAG-based configuration.

Remote System Upgrades

Shortened design cycles, evolving standards, and system deployments in remote locations are difficult challenges faced by system designers. Stratix II GX devices can help effectively deal with these challenges with their inherent re programmability and dedicated circuitry to perform remote system updates. Remote system updates help deliver feature enhancements and bug fixes without costly recalls, reducing time to market, and extending product life.

Stratix II GX FPGAs feature dedicated remote system upgrade circuitry to facilitate remote system updates. Soft logic (Nios processor or user logic) implemented in the Stratix II GX device can download a new configuration image from a remote location, store it in configuration memory, and direct the dedicated remote system upgrade circuitry to initiate a reconfiguration cycle. The dedicated circuitry performs error detection during and after the configuration process, recovers from any error condition by reverting back to a safe configuration image, and provides error status information. This dedicated remote system upgrade circuitry avoids system downtime and is the critical component for successful remote system upgrades.

Remote system configuration is supported in the following Stratix II GX configuration schemes: FPP, AS, PS, and PPA. Remote system configuration can also be implemented in conjunction with Stratix II GX features such as real-time decompression of configuration data and design security using AES for secure and efficient field upgrades.

Refer to the *Remote System Upgrades with Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II GX Device Handbook* for more information about remote configuration in Stratix II GX devices.

Configuring Stratix II GX FPGAs with JRunner

The JRunner[™] software driver configures Altera FPGAs, including Stratix II GX FPGAs, through the ByteBlaster II or ByteBlasterMV cables in JTAG mode. The programming input file supported is in Raw Binary File (.**rbf**) format. JRunner also requires a Chain Description File (.**cdf**)

Table 4–11. Typical V_{0D} Setting, TX Term = 120 Ω Note (1)								
V _{CCH} TX = 1.2 V		V _{OD} Setting (mV)						
	192	192 384 576 768 960						
V _{OD} Typical (mV)	210	410	600	780	960			

Note to Table 4–11:

 Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.

Table 4–12. Typical V_{0D} Setting, TX Term = 150 Ω Note (1)						
V _{CCH} TX = 1.2 V		V _{OD} Setting (mV)				
	240	480	720	960		
V _{OD} Typical (mV)	260	500	730	960		

Note to Table 4–12:

 Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.

Tables 4-13	through 4-18 sł	now the typical fir	st post-tap	pre-emphasis.
	()			

Table 4-	Table 4–13. Typical Pre-Emphasis (First Post-Tap), Note (1) (Part 1 of 2)											
V _{CCH} TX = 1.5 V		First Post Tap Pre-Emphasis Level										
V _{oD} Setting (mV)	1	2	3	4	5	6	7	8	9	10	11	12
	TX Term = 100 Ω											
						TX Term	= 100 Ω	2				
400	24%	62%	112%	184%		TX Term	= 100 Ω	2				
400 600	24%	62% 31%	112% 56%	184% 86%	122%	TX Term 168%	= 100 Ω 230%	329%	457%			
400 600 800	24%	62% 31% 20%	112% 56% 35%	184% 86% 53%	122% 73%	TX Term 168% 96%	= 100 Ω 230% 123%	329% 156%	457% 196%	237%	312%	387%
400 600 800 1000	24%	62% 31% 20%	112% 56% 35% 23%	184% 86% 53% 36%	122% 73% 49%	TX Term 168% 96% 64%	= 100 Ω 230% 123% 79%	329% 156% 97%	457% 196% 118%	237% 141%	312% 165%	387% 200%

Table 4–19. Stratix II GX Transceiver Block AC Specification Notes (1), (2), (3) (Part 5 of 19)											
Symbol/ Description	Conditions	-3 Speed Commercial Speed Grade		-4 Speed Commercial and Industrial Speed Grade		-5 Speed Commercial Speed Grade			Unit		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5			> 8.5	;	UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1		UI
PCI Express Trans	mit Jitter Generation	n (10)									
Total jitter at 2.5 Gbps	Compliance pattern V_{OD} = 800 mV Pre-emphasis (1st post-tap) = Setting 5	-	-	0.25	-	-	0.25	-	-	0.25	UI
PCI Express Recei	iver Jitter Tolerance	(10)									
Total jitter at 2.5 Gbps	Compliance pattern No Equalization DC gain = 3 dB		> 0.6			> 0.6			> 0.6	;	UI
Serial RapidIO Tra	nsmit Jitter Generati	on (11)									
Deterministic Jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps REFCLK = 125 MHz Pattern = CJPAT V_{OD} = 800 mV No Pre-emphasis	-	-	0.17	-	-	0.17	-	-	0.17	UI
Total Jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps REFCLK = 125 MHz Pattern = CJPAT V_{OD} = 800 mV No Pre-emphasis	_	-	0.35	-	-	0.35	-	-	0.35	UI

Figures 4–6 and 4–7 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS and LVPECL).

Figure 4–7. Transmitter Output Waveforms for Differential I/O Standards

Table 4–41. 1.2-V HSTL Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{OH}	High-level output voltage	I _{OH} = 8 mA	V _{REF} + 0.15		V _{CCIO} + 0.15	V
V _{OL}	Low-level output voltage	$I_{OH} = -8 \text{ mA}$	-0.15		V _{REF} – 0.15	V

Table 4–42. 1.5-V HSTL Class I Specifications

		1				
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		1.425	1.5	1.575	V
V _{REF}	Input reference voltage		0.713	0.75	0.788	V
V _{TT}	Termination voltage		0.713	0.75	0.788	V
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V
V _{IL} (DC)	DC low-level input voltage		-0.3		$V_{REF} - 0.1$	V
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V
V _{IL} (AC)	AC low-level input voltage				$V_{REF} - 0.2$	V
V _{OH}	High-level output voltage	I _{OH} = 8 mA (1)	$V_{\rm CCIO}-0.4$			v
V _{OL}	Low-level output voltage	I _{OH} = -8 mA (1)			0.4	V

Note to Table 4–42:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II GX Architecture* chapter in volume 1 of the *Stratix II GX Device Handbook*.

Table 4–4	Table 4–43. 1.5-V HSTL Class II Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		1.425	1.50	1.575	V			
V _{REF}	Input reference voltage		0.713	0.75	0.788	V			
V _{TT}	Termination voltage		0.713	0.75	0.788	V			
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V			
V _{IL} (DC)	DC low-level input voltage		-0.3		V _{REF} - 0.1	V			
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V			
V _{IL} (AC)	AC low-level input voltage				$V_{REF} - 0.2$	V			
V _{OH}	High-level output voltage	I _{OH} = 16 mA <i>(1)</i>	$V_{CCIO} - 0.4$			V			
V _{OL}	Low-level output voltage	I _{OH} = -16 mA <i>(1)</i>			0.4	V			

Note to Table 4–43:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II GX Architecture* chapter in volume 1 of the *Stratix II GX Device Handbook*.

- 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load.
- 4. Record the time to V_{MEAS} .
- 5. Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Standard Output Adder delays to yield the actual worst-case propagation delay (clock-to-output) of the PCB trace.

The Quartus II software reports the timing with the conditions shown in Table 4–53 using the above equation. Figure 4–8 shows the model of the circuit that is represented by the output timing of the Quartus II software.

Figure 4–8. Output Delay Timing Reporting Setup Modeled by Quartus II

Notes to Figure 4-8:

- Output pin timing is reported at the output pin of the FPGA device. Additional delays for loading and board trace delay need to be accounted for with IBIS model simulations.
- (2) V_{CCPD} is 3.085 V unless otherwise specified.
- (3) V_{CCINT} is 1.12 V unless otherwise specified.

Table 4–53. Output Timing Measurement Methodology for Output Pins (Part 1 of 2) Notes (1), (2), (3)							
I/O Standard	Loading and Termination						Measurement Point
	R_S (Ω)	R _D (Ω)	R_T (Ω)	V _{ccio} (V)	V _{TT} (V)	C _L (pF)	V _{MEAS} (V)
LVTTL (4)				3.135		0	1.5675
LVCMOS (4)				3.135		0	1.5675
2.5 V (4)				2.375		0	1.1875
1.8 V (4)				1.710		0	0.855
1.5 V (4)				1.425		0	0.7125

Table 4–81. Stratix II GX IOE Programmable Delay on Row Pins Note (1)													
	Paths	Available	Minimum Timing		-3 Speed Grade		-3 Speed Grade		-4 Speed Grade		-5 Speed Grade		Unit
Farailieler	Affected	Settings	Min Offset	Max Offset	UIII								
Input delay from pin to internal cells	Pad to I/O dataout to logic array	8	0	1782	0	2876	0	3020	0	3212	0	3853	ps
Input delay from pin to input register	Pad to I/O input register	64	0	2054	0	3270	0	3434	0	3652	0	4381	ps
Delay from output register to output pin	I/O output register to pad	2	0	332	0	500	0	525	0	559	0	670	ps
Output enable pin delay	t _{XZ} , t _{ZX}	2	0	320	0	483	0	507	0	539	0	647	ps

(1) The incremental values for the settings are generally linear. For the exact delay associated with each setting, use the latest version of the Quartus II software.

Default Capacitive Loading of Different I/O Standards

See Table 4–82 for default capacitive loading of different I/O standards.

Table 4–82. Default Loading of Different I/O Standards for Stratix II GX Devices (Part 1 of 2)							
I/O Standard	Capacitive Load	Unit					
LVTTL	0	pF					
LVCMOS	0	pF					
2.5 V	0	pF					
1.8 V	0	pF					
1.5 V	0	pF					
PCI	10	pF					
PCI-X	10	pF					
SSTL-2 Class I	0	pF					
SSTL-2 Class II	0	pF					

Table 4–84. Stratix II GX I/O Input Delay for Column Pins (Part 2 of 3)							
I/O Standard	Parameter	Fast Corner Industrial/ Commercial	-3 Speed Grade (2)	-3 Speed Grade (3)	-4 Speed Grade	-5 Speed Grade	Unit
2.5 V	t _{PI}	717	1210	1269	1349	1619	ps
	t _{PCOUT}	438	774	812	863	1036	ps
1.8 V	t _{PI}	783	1366	1433	1523	1829	ps
	t _{PCOUT}	504	930	976	1037	1246	ps
1.5 V	t _{PI}	786	1436	1506	1602	1922	ps
	t _{PCOUT}	507	1000	1049	1116	1339	ps
LVCMOS	t _{PI}	707	1223	1282	1364	1637	ps
	t _{PCOUT}	428	787	825	878	1054	ps
SSTL-2 Class I	t _{PI}	530	818	857	912	1094	ps
	t _{PCOUT}	251	382	400	426	511	ps
SSTL-2 Class II	t _{PI}	530	818	857	912	1094	ps
	t _{PCOUT}	251	382	400	426	511	ps
SSTL-18 Class I	t _{PI}	569	898	941	1001	1201	ps
	t _{PCOUT}	290	462	484	515	618	ps
SSTL-18 Class II	t _{PI}	569	898	941	1001	1201	ps
	t _{PCOUT}	290	462	484	515	618	ps
1.5-V HSTL Class I	t _{PI}	587	993	1041	1107	1329	ps
	t _{PCOUT}	308	557	584	621	746	ps
1.5-V HSTL Class II	t _{PI}	587	993	1041	1107	1329	ps
	t _{PCOUT}	308	557	584	621	746	ps
1.8-V HSTL Class I	t _{PI}	569	898	941	1001	1201	ps
	t _{PCOUT}	290	462	484	515	618	ps
1.8-V HSTL Class II	t _{PI}	569	898	941	1001	1201	ps
	t _{PCOUT}	290	462	484	515	618	ps
PCI	t _{PI}	712	1214	1273	1354	1625	ps
	t _{PCOUT}	433	778	816	868	1042	ps
PCI-X	t _{P1}	712	1214	1273	1354	1625	ps
	t _{PCOUT}	433	778	816	868	1042	ps
Differential SSTL-2	t _{PI}	530	818	857	912	1094	ps
Class I (1)	t _{PCOUT}	251	382	400	426	511	ps

Table 4–85. Stratix II GX I/O Input Delay for Row Pins (Part 2 of 3)								
I/O Standard	Parameter	Fast Corner Industrial/ Commercial	-3 Speed Grade (2)	-3 Speed Grade <i>(</i> 3)	-4 Speed Grade	-5 Speed Grade	Unit	
LVCMOS	t _{PI}	749	1287	1350	1435	1723	ps	
	t _{PCOUT}	410	760	798	848	1018	ps	
SSTL-2 Class I	t _{PI}	573	879	921	980	1176	ps	
	t _{PCOUT}	234	352	369	393	471	ps	
SSTL-2 Class II	t _{PI}	573	879	921	980	1176	ps	
	t _{PCOUT}	234	352	369	393	471	ps	
SSTL-18 Class I	t _{PI}	605	960	1006	1070	1285	ps	
	t _{PCOUT}	266	433	454	483	580	ps	
SSTL-18 Class II	t _{PI}	605	960	1006	1070	1285	ps	
	t _{PCOUT}	266	433	454	483	580	ps	
1.5-V HSTL Class I	t _{PI}	631	1056	1107	1177	1413	ps	
	t _{PCOUT}	292	529	555	590	708	ps	
1.5-V HSTL Class II	t _{PI}	631	1056	1107	1177	1413	ps	
	t _{PCOUT}	292	529	555	590	708	ps	
1.8-V HSTL Class I	t _{PI}	605	960	1006	1070	1285	ps	
	t _{PCOUT}	266	433	454	483	580	ps	
1.8-V HSTL Class II	t _{PI}	605	960	1006	1070	1285	ps	
	t _{PCOUT}	266	433	454	483	580	ps	
PCI	t _{PI}	830	1498	1571	1671	2006	ps	
	t _{PCOUT}	491	971	1019	1084	1301	ps	
PCI-X	t _{PI}	830	1498	1571	1671	2006	ps	
	t _{PCOUT}	491	971	1019	1084	1301	ps	
LVDS (1)	t _{PI}	540	948	994	1057	1269	ps	
	t _{PCOUT}	201	421	442	470	564	ps	
HyperTransport	t _{PI}	540	948	994	1057	1269	ps	
	t _{PCOUT}	201	421	442	470	564	ps	
Differential SSTL-2	t _{PI}	573	879	921	980	1176	ps	
	t _{PCOUT}	234	352	369	393	471	ps	
Differential SSTL-2	t _{PI}	573	879	921	980	1176	ps	
	t _{PCOUT}	234	352	369	393	471	ps	

Table 4–90. Stratix II GX Maximum Input Clock Rate for Dedicated Clock Pins (Part 2 of 2)							
I/O Standard	-3 Speed Grade	-4 Speed Grade	-5 Speed Grade	Unit			
1.8-V HSTL CLass I	500	500	500	MHz			
PCI	500	500	400	MHz			
PCI-X	500	500	400	MHz			
Differential SSTL-2 Class I	500	500	500	MHz			
Differential SSTL-2 Class II	500	500	500	MHz			
Differential SSTL-18 Class I	500	500	500	MHz			
Differential SSTL-18 Class II	500	500	500	MHz			
1.8-V differential HSTL Class I	500	500	500	MHz			
1.8-V differential HSTL Class II	500	500	500	MHz			
1.5-V differential HSTL Class I	500	500	500	MHz			
1.5-V differential HSTL Class I I	500	500	500	MHz			
HyperTransport (1)	717	717	640	MHz			
	450	450	400	MHz			
LVPECL (1), (2)	717	717	640	MHz			
	450	450	400	MHz			
LVDS (1)	717	717	640	MHz			
	450	450	400	MHz			

(1) The first set of numbers refers to the HIO dedicated clock pins. The second set of numbers refers to the VIO dedicated clock pins.(2) LVPECL is only supported on column clock pins.

Figure 4–12. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs

However, when the output is a double data rate input/output (DDIO) signal, both edges of the input clock signal (positive and negative) trigger output transitions (Figure 4–13). Therefore, any distortion on the input clock and the input clock buffer affect the output DCD.

Figure 4–13. DCD Measurement Technique for DDIO (Double-Data Rate) Outputs

When an FPGA PLL generates the internal clock, the PLL output clocks the IOE block. As the PLL only monitors the positive edge of the reference clock input and internally re-creates the output clock signal, any DCD present on the reference clock is filtered out. Therefore, the DCD for a DDIO output with PLL in the clock path is better than the DCD for a DDIO output without PLL in the clock path.

Referenced Documents

This chapter references the following documents:

- Operating Requirements for Altera Devices Data Sheet
- PowerPlay Power Analyzer chapter in volume 3 of the Quartus II Handbook.
- PowerPlay Early Power Estimator (EPE) and Power Analyzer
- Quartus II PowerPlay Analysis and Optimization Technology
- Stratix II GX Architecture chapter in volume 1 of the Stratix II GX Device Handbook
- Stratix II GX Transceiver Architecture Overview chapter in volume 2 of the Stratix II GX Device Handbook
- Volume 2, Stratix II GX Device Handbook

Figure 5–1. Stratix II GX Device Packaging Ordering Information

 Product code notations for ES silicon for all EP2SGX130 family members (standard and lead free) and EP2SGX90 (lead free) use the following codings to denote pin count: 35 for 1152-pin devices and 40 for 1508-pin devices

Referenced Documents

This chapter references the following documents:

- Package Information for Stratix II & Stratix II GX Devices chapter in volume 2 of the Stratix II GX Device Handbook
- Pin-Out Files for Altera Devices
- Quartus II Development Software Handbook

Document Revision History

Table 5–1 shows the revision history for this chapter.

Table 5–1. Document Revision History (Part 1 of 2)						
Date and Document Version	Changes Made	Summary of Changes				
August 2007 Added the "Referenced Documents" section.						
v1.3	Minor text edits.					