
E·XFL

Intel - EP2SGX30DF780C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

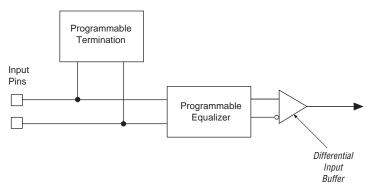
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	1694
Number of Logic Elements/Cells	33880
Total RAM Bits	1369728
Number of I/O	361
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2sgx30df780c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


- Lane deskew
- Rate matcher
- 8B/10B decoder
- Byte deserializer
- Byte ordering
- Receiver phase compensation FIFO buffer

Receiver Input Buffer

The Stratix II GX receiver input buffer supports the 1.2-V and 1.5-V PCML I/O standard at rates up to 6.375 Gbps. The common mode voltage of the receiver input buffer is programmable between 0.85 V and 1.2 V. You must select the 0.85 V common mode voltage for AC- and DC-coupled PCML links and the 1.2 V common mode voltage for DC-coupled LVDS links.

The receiver has programmable on-chip 100-, 120-, or 150- Ω differential termination for different protocols, as shown in Figure 2–12. The receiver's internal termination can be disabled if external terminations and biasing are provided. The receiver and transmitter differential termination resistances can be set independently of each other.

Figure 2–12. Receiver Input Buffer

Programmable Termination

The programmable termination can be statically set in the Quartus II software. Figure 2–13 shows the setup for programmable receiver termination. The termination can be disabled if external termination is provided.

Programmable Run Length Violation

The word aligner supports a programmable run length violation counter. Whenever the number of the continuous '0' (or '1') exceeds a user programmable value, the rx_rlv signal goes high for a minimum pulse width of two recovered clock cycles. The maximum run values supported are shown in Table 2–7.

Table 2–7. Ma	Table 2–7. Maximum Run Length (UI)									
Mode	PMA Serialization									
moue	8 Bit	10 Bit	16 Bit	20 Bit						
Single-Width	128	160	—	—						
Double-Width	_	—	512	640						

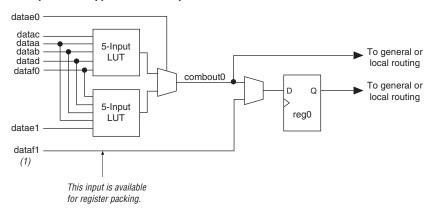
Running Disparity Check

The running disparity error rx_disperr and running disparity value rx_runningdisp are sent along with aligned data from the 8B/10B decoder to the FPGA. You can ignore or act on the reported running disparity value and running disparity error signals.

Bit-Slip Mode

The word aligner can operate in either pattern detection mode or in bit-slip mode.

The bit-slip mode provides the option to manually shift the word boundary through the FPGA. This feature is useful for:


- Longer synchronization patterns than the pattern detector can accommodate
- Scrambled data stream
- Input stream consisting of over-sampled data

This feature can be applied at 10-bit and 16-bit data widths.

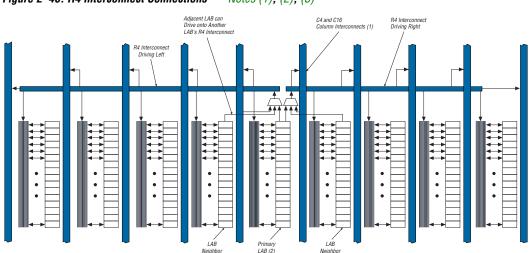
The word aligner outputs a word boundary as it is received from the analog receiver after reset. You can examine the word and search its boundary in the FPGA. To do so, assert the rx_bitslip signal. The rx_bitslip signal should be toggled and held constant for at least two FPGA clock cycles.

For every rising edge of the rx_bitslip signal, the current word boundary is slipped by one bit. Every time a bit is slipped, the bit received earliest is lost. If bit slipping shifts a complete round of bus width, the word boundary is back to the original boundary.

Figure 2–40. Template for Supported Seven-Input Functions in Extended LUT Mode

Note to Figure 2–40:

(1) If the seven-input function is un-registered, the unused eighth input is available for register packing. The second register, reg1, is not available.


Arithmetic Mode

The arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An ALM in arithmetic mode uses two sets of two four-input LUTs along with two dedicated full adders. The dedicated adders allow the LUTs to be available to perform pre-adder logic; therefore, each adder can add the output of two four-input functions. The four LUTs share the dataa and datab inputs. As shown in Figure 2–41, the carry-in signal feeds to adder0, and the carry-out from adder0 feeds to carry-in of adder1. The carry-out from adder1 drives to adder0 of the next ALM in the LAB. ALMs in arithmetic mode can drive out registered and/or un-registered versions of the adder outputs.

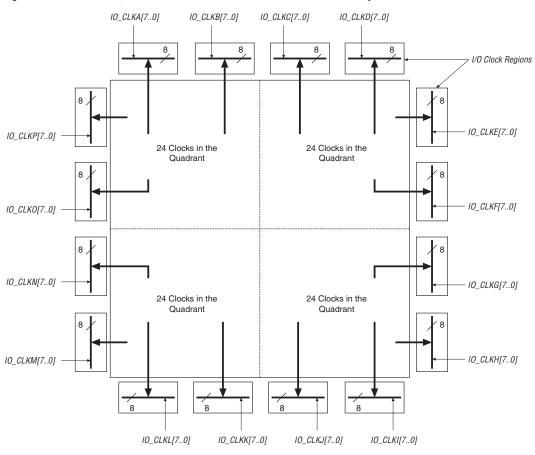
The direct link interconnect allows a LAB, DSP block, or TriMatrix memory block to drive into the local interconnect of its left and right neighbors and then back into itself, providing fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM block, two LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of a source LAB. These resources are used for fast row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–46 shows R4 interconnect connections from a LAB.

R4 interconnects can drive and be driven by DSP blocks and RAM blocks and row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive onto the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive onto the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 and C16 interconnects for connections from one row to another. Additionally, R4 interconnects can drive R24 interconnects.

Notes to Figure 2–46:

- (1) C4 and C16 interconnects can drive R4 interconnects.
- (2) This pattern is repeated for every LAB in the LAB row.
- (3) The LABs in Figure 2–46 show the 16 possible logical outputs per LAB.


M4K RAM Blocks

The M4K RAM block includes support for true dual-port RAM. The M4K RAM block is used to implement buffers for a wide variety of applications such as storing processor code, implementing lookup schemes, and implementing larger memory applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM blocks can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

The M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M4K RAM block registers (renwe, address, byte enable, datain, and output registers). Only the output register can be bypassed. The six labclk signals or local interconnects can drive the control signals for the A and B ports of the M4K RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–51.

You can use the Quartus II software to control whether a clock input pin drives either a global, regional, or dual-regional clock network. The Quartus II software automatically selects the clocking resources if not specified.

Clock Control Block

Each global clock, regional clock, and PLL external clock output has its own clock control block. The control block has two functions:

- Clock source selection (dynamic selection for global clocks)
- Clock power-down (dynamic clock enable or disable)

Table 2–34. On-Chip Terminati	on Support by I/O Banks (Pa	art 2 of 2)	
On-Chip Termination Support	I/O Standard Support	Top and Bottom Banks (3, 4, 7, 8)	Left Bank (1, 2)
	3.3-V LVTTL	\checkmark	—
	3.3-V LVCMOS	\checkmark	_
	2.5-V LVTTL	\checkmark	_
	2.5-V LVCMOS	\checkmark	_
	1.8-V LVTTL	\checkmark	_
	1.8-V LVCMOS	\checkmark	_
eries termination with	1.5-V LVTTL	\checkmark	_
calibration	1.5-V LVCMOS	\checkmark	_
	SSTL-2 class I and II	\checkmark	_
	SSTL-18 class I and II	\checkmark	_
	1.8-V HSTL class I	\checkmark	_
	1.8-V HSTL class II	\checkmark	—
	1.5-V HSTL class I	\checkmark	_
	1.2-V HSTL	\checkmark	—
Differential termination (4)	LVDS	—	\checkmark
Differential termination (1)	HyperTransport technology	—	\checkmark

Note to Table 2–34:

(1) Clock pins CLK1 and CLK3, and pins FPLL [7..8] CLK do not support differential on-chip termination. Clock pins CLK0 and CLK2, do support differential on-chip termination. Clock pins in the top and bottom banks (CLK [4..7, 12..15]) do not support differential on-chip termination.

Differential On-Chip Termination

Stratix II GX devices support internal differential termination with a nominal resistance value of 100 for LVDS input receiver buffers. LVPECL input signals (supported on clock pins only) require an external termination resistor. Differential on-chip termination is supported across the full range of supported differential data rates, as shown in the *High-Speed I/O Specifications* section of the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II GX Device Handbook*.

For more information on differential on-chip termination, refer to the *High-Speed Differential I/O Interfaces with DPA in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II GX Device Handbook*.

On-Chip Parallel Termination with Calibration

Stratix II GX devices support on-chip parallel termination with calibration for column I/O pins only. There is one calibration circuit for the top I/O banks and one circuit for the bottom I/O banks. Each on-chip parallel termination calibration circuit compares the total impedance of each I/O buffer to the external 50- Ω resistors connected to the RUP and RDN pins and dynamically enables or disables the transistors until they match. Calibration occurs at the end of device configuration. Once the calibration circuit finds the correct impedance, it powers down and stops changing the characteristics of the drivers.

On-chip parallel termination with calibration is only supported for input pins.

For more information about on-chip termination supported by Stratix II devices, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II GX Device Handbook*.

For more information about tolerance specifications for on-chip termination with calibration, refer to the *DC* & *Switching Characteristics* chapter in volume 1 of the *Stratix II GX Device Handbook*.

MultiVolt I/O Interface

The Stratix II GX architecture supports the MultiVolt I/O interface feature that allows Stratix II GX devices in all packages to interface with systems of different supply voltages. The Stratix II GX VCCINT pins must always be connected to a 1.2-V power supply. With a 1.2-V V_{CCINT} level, input pins are 1.2-, 1.5-, 1.8-, 2.5-, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.2-, 1.5-, 1.8-, 2.5-, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (for example, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). The Stratix II GX VCCPD power pins must be connected to a 3.3-V power supply. These power pins are used to supply the pre-driver power to the output buffers, which increases the performance of the output pins. The VCCPD pins also power configuration input pins and JTAG input pins.

Table 2–3	5. Stra	tix II G)	(MultiVol	t I/O Sup	oport N	ote (1)					
V _{ccio} (V)	(V) Input Signal (V) Output Signal (V)										
VCCIO (V)	1.2	1.5	1.8	2.5	3.3	1.2	1.5	1.8	2.5	3.3	5.0
1.2	(4)	✓ (2)	 (2) 	✓ (2)	(2)	✓ (4)	—	—	—	—	-
1.5	(4)	~	~	 (2) 	 (2) 	🗸 (3)	~	—	—		-
1.8	(4)	~	~	 (2) 	 (2) 	🗸 (3)	🗸 (3)	\checkmark	—		-
2.5	(4)	—	_	\checkmark	\checkmark	🗸 (3)	🗸 (3)	🗸 (3)	\checkmark	_	—
3.3	(4)		_	\checkmark	\checkmark	✓ (3)	✓ (3)	 (3) 	 (3) 	\checkmark	\checkmark

Table 2-35 summarizes Stratix II GX MultiVolt I/O support.

Notes to Table 2-35:

 To drive inputs higher than V_{CCIO} but less than 4.0 V, disable the PCI clamping diode and select the Allow LVTTL and LVCMOS input levels to overdrive input buffer option in the Quartus II software.

(2) The pin current may be slightly higher than the default value. You must verify that the driving device's V_{OL} maximum and V_{OH} minimum voltages do not violate the applicable Stratix II GX V_{IL} maximum and V_{IH} minimum voltage specifications.

(3) Although V_{CCIO} specifies the voltage necessary for the Stratix II GX device to drive out, a receiving device powered at a different level can still interface with the Stratix II GX device if it has inputs that tolerate the V_{CCIO} value.

(4) Stratix II GX devices support 1.2-V HSTL. They do not support 1.2-V LVTTL and 1.2-V LVCMOS.

The TDO and nCEO pins are powered by V_{CCIO} of the bank that they reside. TDO is in I/O bank 4 and nCEO is in I/O bank 7. Ideally, the V_{CC} supplies for the I/O buffers of any two connected pins are at the same voltage level. This may not always be possible depending on the V_{CCIO} level of TDO and nCEO pins on master devices and the configuration voltage level chosen by V_{CCSEL} on slave devices. Master and slave devices can be in any position in the chain. Master indicates that it is driving out TDO or nCEO to a slave device. For multi-device passive configuration schemes, the nCEO pin of the master device drives the nCE pin of the slave device. The VCCSEL pin on the slave device selects which input buffer is used for nCE. When V_{CCSEL} is logic high, it selects the 1.8-V/1.5-V buffer powered by V_{CCIO} . When V_{CCSEL} is logic low, it selects the 3.3-V/2.5-V input buffer powered by V_{CCPD} . The ideal case is to have the V_{CCIO} of the nCEO bank in a master device match the V_{CCSEL} settings for the nCE input buffer of the slave device it is connected to, but that may not be possible depending on the application.

Table 2–42. Docu	ment Revision History (Part 6 of 6)	
Date and Document Version	Changes Made	Summary of Changes
Previous Chapter 03 changes: December 2005 v1.1	Updated Figure 3–56.	
Previous Chapter 03 changes: October 2005 v1.0	Added chapter to the <i>Stratix II GX Device</i> Handbook.	

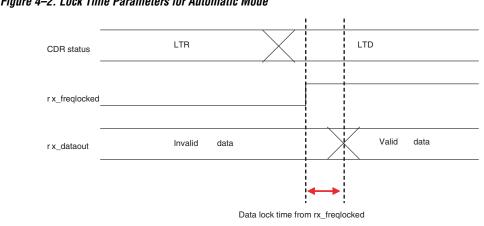
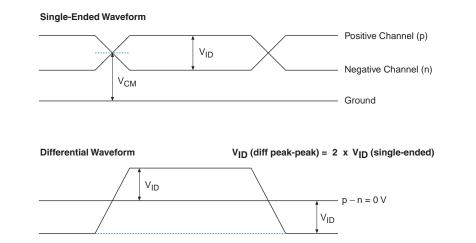



Figure 4–2. Lock Time Parameters for Automatic Mode

Figures 4–3 and 4–4 show differential receiver input and transmitter output waveforms, respectively.

Figure 4–3. Receiver Input Waveform

Symbol/ Description	Conditions	-3 Speed Commercial Speed Grade			-4 Speed Commercial and Industrial Speed Grade				-5 Spe mercia Grad	l Speed	Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	Jitter Frequency = 20 KHz Data Rate = 1.485 Gbps (HD) REFCLK = 74.25 MHz Pattern = 75% Color Bar No Equalization DC Gain = 0 dB		>1			>1			>1		UI
Sinusoidal Jitter Tolerance (peak-to-peak)	Jitter Frequency = 100 KHz Data Rate = 1.485 Gbps (HD) REFCLK = 74.25 MHz Pattern = 75% Color Bar No Equalization DC Gain = 0 dB		> 0.2			> 0.2			> 0.2	2	UI
	Jitter Frequency = 148.5 MHz Data Rate = 1.485 Gbps (HD) REFCLK = 74.25 MHz Pattern = 75% Color Bar No Equalization DC Gain = 0 dB		> 0.2			> 0.2			> 0.2	2	UI

Symbol	Parameter		peed e <i>(2)</i>		peed e <i>(3)</i>		peed ade	-5 Sj Gra		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{MEGABESU}	Byte enable setup time before clock	-9		-10		-11		-13		ps
t _{MEGABEH}	Byte enable hold time after clock	39		40		43		52		ps
t _{MEGADATAASU}	A port data setup time before clock	50		52		55		67		ps
t _{megadataah}	A port data hold time after clock	243		255		271		325		ps
t _{MEGAADDRASU}	A port address setup time before clock	589		618		657		789		ps
t _{megaaddrah}	A port address hold time after clock	-347		-365		-388		-465		ps
t _{MEGADATABSU}	B port setup time before clock	50		52		55		67		ps
t _{MEGADATABH}	B port hold time after clock	243		255		271		325		ps
t _{MEGAADDRBSU}	B port address setup time before clock	589		618		657		789		ps
t _{megaaddrbh}	B port address hold time after clock	-347		-365		-388		-465		ps
t _{MEGADATACO1}	Clock-to-output delay when using output registers	480	715	480	749	480	797	480	957	ps
t _{MEGADATACO2}	Clock-to-output delay without output registers	1950	2899	1950	3042	1950	3235	1950	3884	ps
t _{MEGACLKL}	Minimum clock low time	1250		1312		1395		1675		ps
t _{MEGACLKH}	Minimum clock high time	1250		1312		1395		1675		ps
t _{MEGACLR}	Minimum clear pulse width	144		151		160		192		ps

(1) The M512 block f_{MAX} obtained using the Quartus II software does not necessarily equal to 1/TMEGARC.

(2) This column refers to -3 speed grades for EP2SGX30, EP2SGX60, and EP2SGX90 devices.

(3) This column refers to -3 speed grades for EP2SGX130 devices.

Table 4–86. Stra	tix II GX I/O (Output Delay	for Column Pi	ins (Part 2 o	of 7)			
I/O Standard	Drive Strength	Parameter	Fast Corner Industrial/ Commercial	-3 Speed Grade (3)	-3 Speed Grade (4)	-4 Speed Grade	-5 Speed Grade	Unit
2.5 V	4 mA	t _{OP}	1053	2063	2165	2302	2480	ps
		t _{DIP}	1075	2129	2235	2376	2570	ps
	8 mA	t _{OP}	1001	1841	1932	2054	2218	ps
		t _{DIP}	1023	1907	2002	2128	2308	ps
	12 mA	t _{OP}	980	1742	1828	1944	2101	ps
		t _{DIP}	1002	1808	1898	2018	2191	ps
	16 mA (1)	t _{OP}	962	1679	1762	1873	2027	ps
		t _{DIP}	984	1745	1832	1947	2117	ps
1.8 V	2 mA	t _{OP}	1093	2904	3048	3241	3472	ps
		t _{DIP}	1115	2970	3118	3315	3562	ps
	4 mA	t _{OP}	1098	2248	2359	2509	2698	ps
		t _{DIP}	1120	2314	2429	2583	2788	ps
	6 mA	t _{OP}	1022	2024	2124	2258	2434	ps
		t _{DIP}	1044	2090	2194	2332	2524	ps
	8 mA	t _{OP}	1024	1947	2043	2172	2343	ps
		t _{DIP}	1046	2013	2113	2246	2433	ps
	10 mA	t _{OP}	978	1882	1975	2100	2266	ps
		t _{DIP}	1000	1948	2045	2174	2356	ps
	12 mA (1)	t _{OP}	979	1833	1923	2045	2209	ps
		t _{DIP}	1001	1899	1993	2119	2299	ps
1.5 V	2 mA	t _{OP}	1073	2505	2629	2795	3002	ps
		t _{DIP}	1095	2571	2699	2869	3092	ps
	4 mA	t _{OP}	1009	2023	2123	2257	2433	ps
		t _{DIP}	1031	2089	2193	2331	2523	ps
	6 mA	t _{OP}	1012	1923	2018	2146	2315	ps
		t _{DIP}	1034	1989	2088	2220	2405	ps
	8 mA (1)	t _{OP}	971	1878	1970	2095	2262	ps
		t _{DIP}	993	1944	2040	2169	2352	ps

I/O Standard	Drive Strength	-3 Speed Grade	-4 Speed Grade	-5 Speed Grade	Unit
LVTTL	4 mA	270	225	210	MHz
	8 mA	435	355	325	MHz
	12 mA	580	475	420	MHz
	16 mA	720	594	520	MHz
	20 mA	875	700	610	MHz
	24 mA (1)	1030	794	670	MHz
LVCMOS	4 mA	290	250	230	MHz
	8 mA	565	480	440	MHz
	12 mA	790	710	670	MHz
	16 mA	1020	925	875	MHz
	20 mA	1066	985	935	MHz
	24 mA (1)	1100	1040	1000	MHz
2.5 V	4 mA	230	194	180	MHz
	8 mA	430	380	380	MHz
	12 mA	630	575	550	MHz
	16 mA (1)	930	845	820	MHz
1.8 V	2 mA	120	109	104	MHz
	4 mA	285	250	230	MHz
	6 mA	450	390	360	MHz
	8 mA	660	570	520	MHz
	10 mA	905	805	755	MHz
	12 mA (1)	1131	1040	990	MHz
1.5 V	2 mA	244	200	180	MHz
	4 mA	470	370	325	MHz
	6 mA	550	430	375	MHz
	8 mA (1)	625	495	420	MHz
SSTL-2 Class I	8 mA	400	300	300	MHz
	12 mA (1)	400	400	350	MHz
SSTL-2 Class II	16 mA	350	350	300	MHz
	20 mA	400	350	350	MHz
	24 mA (1)	400	400	350	MHz

Table 4–91 shows the maximum output clock toggle rates for Stratix II GX device column pins.

I/O Standard	Drive Strength	-3 Speed Grade	-4 Speed Grade	-5 Speed Grade	Unit
Differential	4 mA	200	150	150	MHz
SSTL-18 Class I	6 mA	350	250	200	MHz
	8 mA	450	300	300	MHz
	10 mA	500	400	400	MHz
	12 mA	700	550	400	MHz
Differential	8 mA	200	200	150	MHz
SSTL-18 Class II	16 mA	400	350	350	MHz
	18 mA	450	400	400	MHz
	20 mA	550	500	450	MHz
1.8-V HSTL	4 mA	300	300	300	MHz
differential Class I	6 mA	500	450	450	MHz
	8 mA	650	600	600	MHz
	10 mA	700	650	600	MHz
	12 mA	700	700	650	MHz
1.8-V HSTL	16 mA	500	500	450	MHz
differential Class II	18 mA	550	500	500	MHz
	20 mA	650	550	550	MHz
1.5-V HSTL	4 mA	350	300	300	MHz
differential Class I	6 mA	500	500	450	MHz
UI235 I	8 mA	700	650	600	MHz
	10 mA	700	700	650	MHz
	12 mA	700	700	700	MHz
1.5-V HSTL	16 mA	600	600	550	MHz
differential Class II	18 mA	650	600	600	MHz
UI235 II	20 mA	700	650	600	MHz

(1) This is the default setting in the Quartus II software.

		Ν	laximum	Output (Clock Tog	gle Rate	Deratin	g Factors	s (ps/pF))
I/O Standard	Drive Strength	Column I/O Pins			Row I/O Pins			Dedicated Clock Outputs		
		-3	-4	-5	-3	-4	-5	-3	-4	-5
1.5-V differential	16 mA	95	101	101	-	-	-	96	101	101
HSTL Class II (3)	18 mA	95	100	100	-	-	-	101	100	100
	20 mA	94	101	101	-	-	-	104	101	101
3.3-V PCI		134	177	177	-	-	-	143	177	177
3.3-V PCI-X		134	177	177	-	-	-	143	177	177
LVDS		-	-	-	155 (1)	155 <i>(1)</i>	155 <i>(1)</i>	134	134	134
LVPECL (4)		-	-	-	-	-	-	134	134	134
3.3-V LVTTL	OCT 50 Ω	133	152	152	133	152	152	147	152	152
2.5-V LVTTL	OCT 50 Ω	207	274	274	207	274	274	235	274	274
1.8-V LVTTL	OCT 50 Ω	151	165	165	151	165	165	153	165	165
3.3-V LVCMOS	OCT 50 Ω	300	316	316	300	316	316	263	316	316
1.5-V LVCMOS	OCT 50 Ω	157	171	171	157	171	171	174	171	171
SSTL-2 Class I	OCT 50 Ω	121	134	134	121	134	134	77	134	134
SSTL-2 Class II	OCT 25 Ω	56	101	101	56	101	101	58	101	101
SSTL-18 Class I	OCT 50 Ω	100	123	123	100	123	123	106	123	123
SSTL-18 Class II	OCT 25 Ω	61	110	110	-	-	-	59	110	110
1.2-V HSTL (2)	OCT 50 Ω	95	-	-	-	-	-	95	-	-

(1) For LVDS output on row I/O pins the toggle rate derating factors apply to loads larger than 5 pF. In the derating calculation, subtract 5 pF from the intended load value in pF for the correct result. For a load less than or equal to 5 pF, refer to Tables 4–91 through 4–95 for output toggle rates.

(2) 1.2-V HSTL is only supported on column I/O pins on -3 devices.

(3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.

(4) LVPECL is only supported on column clock outputs.

Maximum DCD (ps) for DDIO Column Output I/O Standard	Input IO Standard (No PLL in the Clock Path)								
	TTL/C	MOS	SSTL-2 SSTL/HSTL		HSTL12	Unit			
	3.3/2.5V	1.8/1.5V	2.5V	1.8/1.5V	1.2V				
SSTL-18 Class II	140	260	70	70	70	ps			
1.8-V HSTL Class I	150	270	60	60	60	ps			
1.8-V HSTL Class II	150	270	60	60	60	ps			
1.5-V HSTL Class I	150	270	55	55	55	ps			
1.5-V HSTL Class II	125	240	85	85	85	ps			
1.2-V HSTL	240	360	155	155	155	ps			
LVPECL	180	180	180	180	180	ps			

Table A 109 Maximum DCD for DDIO Output on Column 1/0 Bins Without DLL in the Clock Both for 2

(1) Table 4–102 assumes the input clock has zero DCD.

Table 4–103. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -4 and -5 Devices Note (1)

Maximum DCD (ps) for _ DDIO Column Output I/O Standard	Input IO Standard (No PLL in the Clock Path)					
	TTL/CMOS		SSTL-2	SSTL/HSTL	Unit	
	3.3/2.5V	1.8/1.5V	2.5V	1.8/1.5V	1	
3.3-V LVTTL	440	495	170	160	ps	
3.3-V LVCMOS	390	450	120	110	ps	
2.5 V	375	430	105	95	ps	
1.8 V	325	385	90	100	ps	
1.5-V LVCMOS	430	490	160	155	ps	
SSTL-2 Class I	355	410	85	75	ps	
SSTL-2 Class II	350	405	80	70	ps	
SSTL-18 Class I	335	390	65	65	ps	
SSTL-18 Class II	320	375	70	80	ps	
1.8-V HSTL Class I	330	385	60	70	ps	
1.8-V HSTL Class II	330	385	60	70	ps	
1.5-V HSTL Class I	330	390	60	70	ps	
1.5-V HSTL Class II	330	360	90	100	ps	
LVPECL	180	180	180	180	ps	

(1) Table 4–103 assumes the input clock has zero DCD.

Table 4–109 shows the high-speed I/O timing specifications for -5 speed grade Stratix II GX devices.

• • • •	Conditions			-5 Speed Grade			
Symbol				Min	Тур	Max	Unit
$f_{IN} = f_{HSDR} / W$	W = 2 to 32 (LVDS, HyperTransport technology) (3)			16		420	MHz
	W = 1 (SERDES bypass, LVDS only)					500	MHz
	W = 1 (SERDES used, LVDS only)			150		640	MHz
f _{HSDR} (data rate)	J = 4 to 10 (LVDS, HyperTransport technology)			150		840	Mbps
	J = 2 (LVDS, HyperTransport technology)					700	Mbps
	J = 1 (LVDS only)					500	Mbps
f _{HSDRDPA} (DPA data rate)	J = 4 to 10 (LVDS, HyperTransport technology)					840	Mbps
TCCS	All differential I/O standards					200	ps
SW	All differential I/O standards					-	ps
Output jitter						190	ps
Output t _{RISE}	All differential I/O standards					290	ps
Output t _{FALL}	All differential I/O standards					290	ps
t _{DUTY}				45	50	55	%
DPA run length						6,400	UI
DPA jitter tolerance	Data channel peak-to-peak jitter						UI
DPA lock time							Number of repetitions
	SPI-4	000000000 1111111111	10%	256			
	Parallel Rapid I/O	00001111	25%	256			
		10010000	50%	256			
	Miscellaneous	10101010	100%	256			1
		01010101		256			1

(1) When J = 4 to 10, the SERDES block is used.

- (2) When J = 1 or 2, the SERDES block is bypassed.
- (3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: 150 ≤nput clock frequency × W ≤840.
- (4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not have a minimum toggle rate.