E·XFL

Altera - EP2SGX60EF1152C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3022
Number of Logic Elements/Cells	60440
Total RAM Bits	2544192
Number of I/O	534
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2sgx60ef1152c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Support for multiple intellectual property megafunctions from Altera[®] MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- Support for design security using configuration bitstream encryption
- Support for remote configuration updates
- Transceiver block features:
 - High-speed serial transceiver channels with clock data recovery (CDR) provide 600-megabits per second (Mbps) to 6.375-Gbps full-duplex transceiver operation per channel
 - Devices available with 4, 8, 12, 16, or 20 high-speed serial transceiver channels providing up to 255 Gbps of serial bandwidth (full duplex)
 - Dynamically programmable voltage output differential (V_{OD}) and pre-emphasis settings for improved signal integrity
 - Support for CDR-based serial protocols, including PCI Express, Gigabit Ethernet, SDI, Altera's SerialLite II, XAUI, CEI-6G, CPRI, Serial RapidIO, SONET/SDH
 - Dynamic reconfiguration of transceiver channels to switch between multiple protocols and data rates
 - Individual transmitter and receiver channel power-down capability for reduced power consumption during non-operation
 - Adaptive equalization (AEQ) capability at the receiver to compensate for changing link characteristics
 - Selectable on-chip termination resistors (100, 120, or 150 Ω) for improved signal integrity on a variety of transmission media
 - Programmable transceiver-to-FPGA interface with support for 8-, 10-, 16-, 20-, 32-, and 40-bit wide data transfer
 - 1.2- and 1.5-V pseudo current mode logic (PCML) for 600 Mbps to 6.375 Gbps (AC coupling)
 - Receiver indicator for loss of signal (available only in PIPE mode)
 - Built-in self test (BIST)
 - Hot socketing for hot plug-in or hot swap and power sequencing support without the use of external devices
 - Rate matcher, byte-reordering, bit-reordering, pattern detector, and word aligner support programmable patterns
 - Dedicated circuitry that is compliant with PIPE, XAUI, and GIGE
 - Built-in byte ordering so that a frame or packet always starts in a known byte lane
 - Transmitters with two PLL inputs for each transceiver block with independent clock dividers to provide varying clock rates on each of its transmitters

reduce the interface speed. For example, at 6.375 Gbps, the transceiver logic has a double-byte-wide data path that runs at 318.75 MHz in a ×20 deserializer factor, which is above the maximum FPGA interface speed. When using the byte deserializer, the FPGA interface width doubles to 40-bits (36-bits when using the 8B/10B encoder) and the interface speed reduces to 159.375 MHz.

Table 2–9. Byte Deserializer Input an	d Output Widths
Input Data Width (Bits)	Deserialized Output Data Width to the FPGA (Bits)
20	40
16	32
10	20
8	16

Byte Ordering Block

The byte ordering block shifts the byte order. A pre-programmed byte in the input data stream is detected and placed in the least significant byte of the output stream. Subsequent bytes start appearing in the byte positions following the LSB. The byte ordering block inserts the programmed PAD characters to shift the byte order pattern to the LSB.

Based on the setting in the MegaWizard[®] Plug-In Manager, the byte ordering block can be enabled either by the rx_syncstatus signal or by the rx_enabyteord signal from the PLD. When the rx_syncstatus signal is used as enable, the byte ordering block reorders the data only for the first occurrence of the byte order pattern that is received after word alignment is completed. You must assert rx_digitalreset to perform byte ordering again. However, when the byte ordering block is controlled by rx_enabyteord, the byte ordering block can be controlled by the PLD logic dynamically. When you create your functional mode in the MegaWizard, you can select byte ordering block only if rate matcher is not selected.

Receiver Phase Compensation FIFO Buffer

The receiver phase compensation FIFO buffer resides in the transceiver block at the FPGA boundary and cannot be bypassed. This FIFO buffer compensates for phase differences and clock tree timing skew between the receiver clock domain within the transceiver and the receiver FPGA clock after it has transferred to the FPGA. When the FIFO pointers initialize, the receiver domain clock must remain phase locked to receiver FPGA clock.

After resetting the receiver FIFO buffer, writing to the receiver FIFO buffer begins and continues on each parallel clock. The phase compensation FIFO buffer is eight words deep for PIPE mode and four words deep for all other modes.

Loopback Modes

The Stratix II GX transceiver has built-in loopback modes for debugging and testing. The loopback modes are configured in the Stratix II GX ALT2GXB megafunction in the Quartus II software. The available loopback modes are:

- Serial loopback
- Parallel loopback
- Reverse serial loopback
- Reverse serial loopback (pre-CDR)
- PCI Express PIPE reverse parallel loopback (available only in PIPE mode)

Serial Loopback

The serial loopback mode exercises all the transceiver logic, except for the input buffer. Serial loopback is available for all non-PIPE modes. The loopback function is dynamically enabled through the rx_seriallpbken port on a channel-by-channel basis.

In serial loopback mode, the data on the transmit side is sent by the PLD. A separate mode is available in the ALT2GXB megafunction under Basic protocol mode, in which PRBS data is generated and verified internally in the transceiver. The PRBS patterns available in this mode are shown in Table 2–10.

Table 2–10 shows the BIST data output and verifier alignment pattern.

Table 2–10. Bls	Table 2–10. BIST Data Output and Verifier Alignment Pattern											
Parallel Data Width Pattern Polynomial												
Fallerii	Fulyilullilai	nomial 8-Bit 10-Bit 16-Bit 2										
PRBS-7	×7 + ×6 + 1				\checkmark							
PRBS-10	×10 + ×7 + 1		\checkmark									

Figure 2–24 shows the data path in serial loopback mode.

Figure 2–24. Stratix II GX Block in Serial Loopback Mode with BIST and PRBS

Parallel Loopback

The parallel loopback mode exercises the digital logic portion of the transceiver data path. The analog portions are not used in this loopback path, and the received high-speed serial data is not retimed. This protocol is available as one of the sub-protocols under Basic mode and can be used only for Basic double-width mode.

In this loopback mode, the data from the internally available BIST generator is transmitted. The data is looped back after the end of PCS and before the PMA. On the receive side, an internal BIST verifier checks for errors. This loopback enables you to verify the PCS block.

Figure 2–44. Example of a 3-Bit Add Utilizing Shared Arithmetic Mode

Shared Arithmetic Chain

In addition to the dedicated carry chain routing, the shared arithmetic chain available in shared arithmetic mode allows the ALM to implement a three-input add, which significantly reduces the resources necessary to implement large adder trees or correlator functions. The shared arithmetic chains can begin in either the first or fifth ALM in a LAB. The Quartus II Compiler automatically links LABs to create shared arithmetic chains longer than 16 (8 ALMs in arithmetic or shared arithmetic mode). For enhanced fitting, a long shared arithmetic chain runs vertically

Note to Figure 2–48:

C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs, TriMatrix memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-RAM blocks and also drive to row and column interconnects at every fourth LAB. C16 interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly. All embedded blocks communicate with the logic array similar to LAB-to-LAB interfaces. Each block (that is, TriMatrix memory and DSP blocks) connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. These blocks also have direct link interconnects for fast connections to and from a neighboring LAB. All blocks are fed by the row LAB clocks, labclk [5..0].

Table 2–18 shows the Stratix II GX device's routing scheme.

Table 2–18. Stratix II GX Device Routing Scheme (Part 1 of 2)																
							[Desti	natio	n						
Source	Shared Arithmetic Chain	Carry Chain	Register Chain	Local Interconnect	Direct Link Interconnect	R4 Interconnect	R24 Interconnect	C4 Interconnect	C16 Interconnect	ALM	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column IOE	Row IOE
Shared arithmetic chain										<						
Carry chain										\checkmark						
Register chain										\checkmark						
Local interconnect										>	>	>	>	>	>	<
Direct link interconnect				~												
R4 interconnect				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark							
R24 interconnect						\checkmark	\checkmark	\checkmark	\checkmark							
C4 interconnect				\checkmark		\checkmark		\checkmark								
C16 interconnect						\checkmark	\checkmark	\checkmark	\checkmark							
ALM	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
M512 RAM block				\checkmark	\checkmark	\checkmark		\checkmark								
M4K RAM block				\checkmark	\checkmark	\checkmark		\checkmark								
M-RAM block					\checkmark	\checkmark	\checkmark	\checkmark								
DSP blocks					\checkmark	\checkmark		\checkmark								

M4K RAM Blocks

The M4K RAM block includes support for true dual-port RAM. The M4K RAM block is used to implement buffers for a wide variety of applications such as storing processor code, implementing lookup schemes, and implementing larger memory applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM blocks can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

The M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M4K RAM block registers (renwe, address, byte enable, datain, and output registers). Only the output register can be bypassed. The six labclk signals or local interconnects can drive the control signals for the A and B ports of the M4K RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–51.

Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M-RAM block registers (renwe, address, byte enable, datain, and output registers). The output register can be bypassed. The six labclk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–53.

Dedicated 6 Row LAB Clocks I ocal Local Interconnect Interconnect Local Local Interconnect Interconnect Local Local Interconnect Interconnect Local Local Interconnect Interconnect Local Local Interconnect Interconnect clocken a clock_b renwe a aclr b Local Local Interconnect Interconnect clocken b clock a aclr_a renwe b

Figure 2–53. M-RAM Block Control Signals

The R4, R24, C4, and direct link interconnects from adjacent LABs on either the right or left side drive the M-RAM block local interconnect. Up to 16 direct link input connections to the M-RAM block are possible from the left adjacent LABs and another 16 possible from the right adjacent LAB. M-RAM block outputs can also connect to left and right LABs through direct link interconnect. Figure 2–54 shows an example floorplan for the EP2SGX130 device and the location of the M-RAM interfaces. Figures 2–55 and 2–56 show the interface between the M-RAM block and the logic array. The Stratix II GX clock networks can be disabled (powered down) by both static and dynamic approaches. When a clock net is powered down, all the logic fed by the clock net is in an off-state, thereby reducing the overall power consumption of the device. The global and regional clock networks can be powered down statically through a setting in the configuration file (**.sof** or **.pof**). Clock networks that are not used are automatically powered down through configuration bit settings in the configuration file generated by the Quartus II software. The dynamic clock enable and disable feature allows the internal logic to control power up and down synchronously on GCLK and RCLK nets and PLL_OUT pins. This function is independent of the PLL and is applied directly on the clock network or PLL_OUT pin, as shown in Figures 2–67 through 2–69.

Enhanced and Fast PLLs

Stratix II GX devices provide robust clock management and synthesis using up to four enhanced PLLs and four fast PLLs. These PLLs increase performance and provide advanced clock interfacing and clock frequency synthesis. With features such as clock switchover, spread spectrum clocking, reconfigurable bandwidth, phase control, and reconfigurable phase shifting, the Stratix II GX device's enhanced PLLs provide you with complete control of clocks and system timing. The fast PLLs provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix II GX high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth.

Figure 2–72. Global and Regional Clock Connections from Corner Clock Pins and Fast PLL Outputs Notes (1), (2)

Notes to Figure 2–72:

- (1) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. A dedicated clock input pin or other PLL must drive the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.
- (2) EP2SGX30C/D and EP2SGX60C/D devices only have two fast PLLs (1 and 2); they do not contain corner fast PLLs.

Table 2–27. Global and Regional Clock Connections from Left Side Clock Pins and Fast PLL Outputs (Part 1 of 3)												
Left Side Global and Regional Clock Network Connectivity	CLK0	CLK1	CLK2	CLK3	RCLKO	RCLK1	RCLK2	RCLK3	RCLK4	RCLK5	RCLK6	RCLK7
Clock pins												
CLK0p	\checkmark	\checkmark			\checkmark				\checkmark			
CLK1p	\checkmark	\checkmark				\checkmark				\checkmark		
CLK2p			~	\checkmark			\checkmark				\checkmark	
СLКЗр			~	~				~				~

Table 4-	-17. Typi	cal Pre-E	mphasis	(First Pa	ost-Tap),	Note (1)							
V _{CCH} TX = 1.2 V	First Post Tap Pre-Emphasis Level												
V _{OD} Setting (mV)	1	2	3	4	5	6	7	8	9	10	11	12	
	TX Term = 120 Ω												
						TX Term	= 120 Ω	2					
192	45%					TX Term	= 120 Ω						
192 384	45%	41%	76%	114%	166%	TX Term 257%	= 120 Ω 355%	2					
192 384 576	45%	41% 23%	76% 38%	114% 55%	166% 84%	TX Term 257% 108%	= 120 Ω 355% 137%	179%	226%	280%	405%	477%	
192 384 576 768	45%	41% 23% 15%	76% 38% 24%	114% 55% 36%	166% 84% 47%	TX Term 257% 108% 64%	= 120 Ω 355% 137% 80%	179% 97%	226% 122%	280% 140%	405% 170%	477% 196%	

Note to Table 4–17:

(1) Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.

Table 4-	-18. Typi	cal Pre-E	mphasis	(First Pa	ost-Tap),	Note (1)						
V _{CCH} TX = 1.2 V	First Post Tap Pre-Emphasis Level											
V _{oD} Setting (mV)	1	2	3	4	5	6	7	8	9	10	11	12
						TX Term	= 150 Ω	2				
240	31%	85%										
480		32%	52%	78%	112%	152%	195%	275%				
720		19%	28%	37%	56%	68%	86%	108%	133%	169%	194%	239%
960			17%	22%	30%	39%	51%	59%	75%	85%	94%	109%

Note to Table 4–18:

(1) Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.

Figures 4–9 and 4–10 show the measurement setup for output disable and output enable timing.

Figure 4–9. Measurement Setup for t_{xz} Note (1)

t_{XZ}, Driving Low to Tristate

Note to Figure 4–9:(1) V_{CCINT} is 1.12 V for this measurement.

Table 4–5	5. Stratix II GX Pe	rformance	Notes (Pa	rt 2 of 3)	Note (1))			
		Re	sources Us	ed		Pe	rformance		
Арј	plications	ALUTs	TriMatrix Memory Blocks	DSP Blocks	-3 Speed Grade (2)	-3 Speed Grade (3)	-4 Speed Grade	-5 Speed Grade	Units
TriMatrix Memory MegaRAM	Single port RAM 4K x 144bit	0	1	0	349.65	333.33	313.47	261.09	MHz
block	Simple dual- port RAM 4K x 144bit	0	1	0	420.16	400.0	375.93	313.47	MHz
	True dual-port RAM 4K x 144 bit	0	1	0	349.65	333.33	313.47	261.09	MHz
	Single port RAM 8K x 72 bit	0	1	0	354.6	337.83	317.46	263.85	MHz
	Simple dual- port RAM 8K x 72 bit	0	1	0	420.16	400.0	375.93	313.47	MHz
	True dual-port RAM 8K x 72 bit	0	1	0	349.65	333.33	313.47	261.09	MHz
	Single port RAM 16K x 36 bit	0	1	0	364.96	347.22	325.73	271.73	MHz
	Simple dual- port RAM 16K x 36 bit	0	1	0	420.16	400.0	375.93	313.47	MHz
	True dual-port RAM 16K x 36 bit	0	1	0	359.71	342.46	322.58	268.09	MHz
	Single port RAM 32K x 18 bit	0	1	0	364.96	347.22	325.73	271.73	MHz
	Simple dual- port RAM 32K x 18 bit	0	1	0	420.16	400.0	375.93	313.47	MHz
	True dual-port RAM 32K x 18 bit	0	1	0	359.71	342.46	322.58	268.09	MHz

Table 4–59.	Table 4–59. M512 Block Internal Timing Microparameters (Part 2 of 2)											
Symbol	Parameter	-3 Speed Grade(2)		-3 Speed Grade		-4 Spee	d Grade	-5 Spee	Unit			
-		Min	Max	Min	Max	Min	Max	Min	Max			
t _{M512CLR}	Minimum clear pulse width	144		151		160		192		ps		

(1) The M512 block f_{MAX} obtained using the Quartus II software does not necessarily equal to 1/TM512RC.

(2) This column refers to -3 speed grades for EP2SGX30, EP2SGX60, and EP2SGX90 devices.

(3) This column refers to -3 speed grades for EP2SGX130 devices.

Table 4–60. M4K Block Internal Timing Microparameters (Part 1 of 2) Note (1)													
Symbol	Parameter	-3 Spee (2	d Grade 2)	-3 Spee (d Grade 3)	-4 Spee	d Grade	-5 Spee	d Grade	Unit			
		Min	Мах	Min	Max	Min	Max	Min	Max				
t _{M4KRC}	Synchronous read cycle time	1462	2240	1462	2351	1462	2500	1462	3000	ps			
t _{M4KWERESU}	Write or read enable setup time before clock	22		23		24		29		ps			
t _{M4KWEREH}	Write or read enable hold time after clock	203		213		226		272		ps			
t _{M4KBESU}	Byte enable setup time before clock	22		23		24		29		ps			
t _{M4KBEH}	Byte enable hold time after clock	203		213		226		272		ps			
t _{M4KDATAASU}	A port data setup time before clock	22		23		24		29		ps			
t _{M4KDATAAH}	A port data hold time after clock	203		213		226		272		ps			
t _{M4KADDRASU}	A port address setup time before clock	22		23		24		29		ps			
t _{m4kaddrah}	A port address hold time after clock	203		213		226		272		ps			
t _{M4KDATABSU}	B port data setup time before clock	22		23		24		29		ps			

Table 4–61.	Table 4–61. M-RAM Block Internal Timing Microparameters (Part 2 of 2) Note (1)													
Symbol	Parameter	-3 S Grad	peed le <i>(2)</i>	-3 S Grad	peed e <i>(3)</i>	-4 S Gra	peed ade	-5 Sj Gra	peed Ide	Unit				
-		Min	Max	Min	Max	Min	Max	Min	Max					
t _{MEGABESU}	Byte enable setup time before clock	-9		-10		-11		-13		ps				
t _{MEGABEH}	Byte enable hold time after clock	39		40		43		52		ps				
t _{MEGADATAASU}	A port data setup time before clock	50		52		55		67		ps				
t _{megadataah}	A port data hold time after clock	243		255		271		325		ps				
t _{MEGAADDRASU}	A port address setup time before clock	589		618		657		789		ps				
t _{megaaddrah}	A port address hold time after clock	-347		-365		-388		-465		ps				
t _{MEGADATABSU}	B port setup time before clock	50		52		55		67		ps				
t _{MEGADATABH}	B port hold time after clock	243		255		271		325		ps				
t _{MEGAADDRBSU}	B port address setup time before clock	589		618		657		789		ps				
t _{megaaddrbh}	B port address hold time after clock	-347		-365		-388		-465		ps				
t _{MEGADATACO1}	Clock-to-output delay when using output registers	480	715	480	749	480	797	480	957	ps				
t _{MEGADATACO2}	Clock-to-output delay without output registers	1950	2899	1950	3042	1950	3235	1950	3884	ps				
t _{MEGACLKL}	Minimum clock low time	1250		1312		1395		1675		ps				
t _{MEGACLKH}	Minimum clock high time	1250		1312		1395		1675		ps				
t _{MEGACLR}	Minimum clear pulse width	144		151		160		192		ps				

(1) The M512 block f_{MAX} obtained using the Quartus II software does not necessarily equal to 1/TMEGARC.

(2) This column refers to -3 speed grades for EP2SGX30, EP2SGX60, and EP2SGX90 devices.

(3) This column refers to -3 speed grades for EP2SGX130 devices.

Table 4–86. Stratix II GX I/O Output Delay for Column Pins (Part 1 of 7)													
I/O Standard	Drive Strength	Parameter	Fast Corner Industrial/ Commercial	-3 Speed Grade <i>(3)</i>	-3 Speed Grade (4)	-4 Speed Grade	-5 Speed Grade	Unit					
LVTTL	4 mA	t _{OP}	1236	2351	2467	2624	2820	ps					
		t _{DIP}	1258	2417	2537	2698	2910	ps					
	8 mA	t _{OP}	1091	2036	2136	2272	2448	ps					
		t _{DIP}	1113	2102	2206	2346	2538	ps					
	12 mA	t _{OP}	1024	2036	2136	2272	2448	ps					
		t _{DIP}	1046	2102	2206	2346	2538	ps					
	16 mA	t _{OP}	998	1893	1986	2112	2279	ps					
		t _{DIP}	1020	1959	2056	2186	2369	ps					
	20 mA	t _{OP}	976	1787	1875	1994	2154	ps					
		t _{DIP}	998	1853	1945	2068	2244	ps					
	24 mA (1)	t _{OP}	969	1788	1876	1995	2156	ps					
		t _{DIP}	991	1854	1946	2069	2246	ps					
LVCMOS	4 mA	t _{OP}	1091	2036	2136	2272	2448	ps					
		t _{DIP}	1113	2102	2206	2346	2538	ps					
	8 mA	t _{OP}	999	1786	1874	1993	2153	ps					
		t _{DIP}	1021	1852	1944	2067	2243	ps					
	12 mA	t _{OP}	971	1720	1805	1919	2075	ps					
		t _{DIP}	993	1786	1875	1993	2165	ps					
	16 mA	t _{OP}	978	1693	1776	1889	2043	ps					
		t _{DIP}	1000	1759	1846	1963	2133	ps					
	20 mA	t _{OP}	965	1677	1759	1871	2025	ps					
		t _{DIP}	987	1743	1829	1945	2115	ps					
	24 mA (1)	t _{OP}	954	1659	1741	1851	2003	ps					
		t _{DIP}	976	1725	1811	1925	2093	ps					

Table 4–87. Stratix II GX I/O Output Delay for Row Pins (Part 3 of 4)								
I/O Standard	Drive Strength	Parameter	Fast Corner Industrial/ Commercial	-3 Speed Grade <i>(3)</i>	-3 Speed Grade <i>(4)</i>	-4 Speed Grade	-5 Speed Grade	Unit
SSTL-18 Class I	4 mA	t _{OP}	1038	1709	1793	1906	2046	ps
		t _{DIP}	995	1654	1736	1846	1973	ps
	6 mA	t _{OP}	1042	1648	1729	1838	1975	ps
		t _{DIP}	999	1593	1672	1778	1902	ps
	8 mA	t _{OP}	1018	1633	1713	1821	1958	ps
		t _{DIP}	975	1578	1656	1761	1885	ps
	10 mA <i>(1)</i>	t _{OP}	1021	1615	1694	1801	1937	ps
		t _{DIP}	978	1560	1637	1741	1864	ps
1.8-V HSTL	4 mA	t _{OP}	1019	1610	1689	1795	1956	ps
Class I		t _{DIP}	976	1555	1632	1735	1883	ps
	6 mA	t _{OP}	1022	1580	1658	1762	1920	ps
		t _{DIP}	979	1525	1601	1702	1847	ps
	8 mA	t _{OP}	1004	1576	1653	1757	1916	ps
		t _{DIP}	961	1521	1596	1697	1843	ps
	10 mA	t _{OP}	1008	1567	1644	1747	1905	ps
		t _{DIP}	965	1512	1587	1687	1832	ps
	12 mA <i>(1)</i>	t _{OP}	999	1566	1643	1746	1904	ps
		t _{DIP}	956	1511	1586	1686	1831	ps
1.5-V HSTL Class I	4 mA	t _{OP}	1018	1591	1669	1774	1933	ps
Class I	D Standard Drive Strength 'L-18 4 mA 'S I 6 mA 6 mA 10 mA (1) V HSTL 4 mA S I 6 mA 10 mA (1) 4 mA V HSTL 4 mA 10 mA (1) 10 mA V HSTL 4 mA 10 mA 10 mA 112 mA (1) 12 mA (1) V HSTL 4 mA 8 mA 10 mA 12 mA (1) 8 mA (1) erential 8 mA 'L-2 Class II 16 mA	t _{DIP}	975	1536	1612	1714	1860	ps
	6 mA	t _{OP}	1021	1579	1657	1761	1919	ps
		t _{DIP}	978	1524	1600	1701	1846	ps
	8 mA (1)	t _{OP}	1006	1572	1649	1753	1911	ps
		t _{DIP}	963	1517	1592	1693	1838	ps
Differential	8 mA	t _{OP}	1050	1759	1846	1962	2104	ps
SSTL-2 Class I		t _{DIP}	1007	1704	1789	1902	2031	ps
	12 mA	t _{OP}	1026	1694	1777	1889	2028	ps
		t _{DIP}	983	1639	1720	1829	1955	ps
Differential	16 mA	t _{OP}	992	1581	1659	1763	1897	ps
SSTL-2 Class II		t _{DIP}	949	1526	1602	1703	1824	ps

Table 4–93. Stratix II GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 4 of 4)							
I/O Standard	Drive Strength	-3 Speed Grade	-4 Speed Grade	-5 Speed Grade	Unit		
1.8-V differential Class II	16 mA	500	500	450	MHz		
	18 mA	550	500	500	MHz		
	20 mA	550	550	550	MHz		
1.5-V differential Class I	4 mA	350	300	300	MHz		
	6 mA	500	500	450	MHz		
	8 mA	700	650	600	MHz		
	10 mA	700	700	650	MHz		
	12 mA	700	700	700	MHz		
1.5-V differential	16 mA	600	600	550	MHz		
Class II	18 mA	650	600	600	MHz		
	20 mA	700	650	600	MHz		
HyperTransport	-	300	250	125	MHz		
LVPECL	-	450	400	300	MHz		

(1) This is the default setting in Quartus II software.

Table 4–94 shows the maximum output clock toggle rate for Stratix II GX device series-terminated column pins.

Table 4–94. Stratix II GX Maximum Output Clock Rate for Column Pins (Series Termination) (Part 1 of 2)							
I/O Standard	Drive Strength	-3 Speed Grade	-4 Speed Grade	-5 Speed Grade	Unit		
LVTTL	OCT_25_OHMS	400	400	350	MHz		
	OCT_50_OHMS	400	400	350	MHz		
LVCMOS	OCT_25_OHMS	350	350	300	MHz		
	OCT_50_OHMS	350	350	300	MHz		
2.5 V	OCT_25_OHMS	350	350	300	MHz		
	OCT_50_OHMS	350	350	300	MHz		
1.8 V	OCT_25_OHMS	700	550	450	MHz		
	OCT_50_OHMS	700	550	450	MHz		
1.5 V	OCT_50_OHMS	550	450	400	MHz		
SSTL-2 Class I	OCT_50_OHMS	600	500	500	MHz		
SSTL-2 Class II	OCT_25_OHMS	600	550	500	MHz		

Table 4–109 shows the high-speed I/O timing specifications for -5 speed grade Stratix II GX devices.

Table 4–109. High-Speed I/O Specifications for -5 Speed Grade Notes (1), (2)								
Question	Conditions			-5 Speed Grade				
Symbol				Min	Тур	Max	Unit	
$f_{IN} = f_{HSDR} / W$	W = 2 to 32 (LVDS, HyperTransport technology) (3)					420	MHz	
	W = 1 (SERDES bypass, LVDS only)			16		500	MHz	
	W = 1 (SERDES used, LVDS only)					640	MHz	
f _{HSDR} (data rate)	J = 4 to 10 (LVDS, HyperTransport technology)					840	Mbps	
	J = 2 (LVDS, HyperTransport technology)					700	Mbps	
	J = 1 (LVDS only)					500	Mbps	
f _{HSDRDPA} (DPA data rate)	J = 4 to 10 (LVDS, H	150		840	Mbps			
TCCS	All differential I/O sta	-		200	ps			
SW	All differential I/O sta	440		-	ps			
Output jitter	Output jitter					190	ps	
Output t _{RISE}	All differential I/O sta			290	ps			
Output t _{FALL}	All differential I/O sta			290	ps			
t _{DUTY}		45	50	55	%			
DPA run length	length					6,400	UI	
DPA jitter tolerance	Data channel peak-	0.44			UI			
DPA lock time							Number of repetitions	
	SPI-4	0000000000 1111111111	10%	256				
	Parallel Rapid I/O	00001111	25%	256				
		10010000	50%	256				
	Miscellaneous	10101010	100%	256			1	
		01010101		256			1	

(1) When J = 4 to 10, the SERDES block is used.

- (2) When J = 1 or 2, the SERDES block is bypassed.
- (3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: 150 ≤nput clock frequency × W ≤840.
- (4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not have a minimum toggle rate.