

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	3022
Number of Logic Elements/Cells	60440
Total RAM Bits	2544192
Number of I/O	534
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2sgx60ef1152i4n

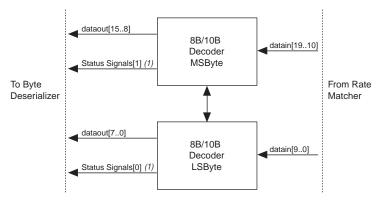
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The CRU has a built-in switchover circuit to select whether the PLL VCO is aligned by the reference clock or the data. The optional port rx freqlocked monitors when the CRU is in locked-to-data mode.

In the automatic mode, the CRU PLL must be within the prescribed PPM frequency threshold setting of the CRU reference clock for the CRU to switch from locked-to-reference to locked-to-data mode.

The automatic switchover circuit can be overridden by using the optional ports rx_locktorefclk and rx_locktodata. Table 2–6 shows the possible combinations of these two signals.


Table 2–6. Receiver Lock Combinations						
rx_locktodata	rx_locktorefk VCO (Lock to N					
0	0	Auto				
0	1	Reference clock				
1	х	Data				

If the rx_locktorefclk and rx_locktodata ports are not used, the default is auto mode.

Deserializer (Serial-to-Parallel Converter)

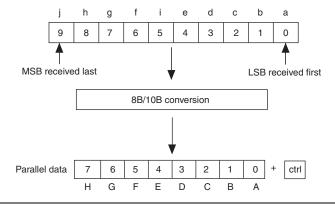

The deserializer converts a serial bitstream into 8, 10, 16, or 20 bits of parallel data. The deserializer receives the LSB first. Figure 2–17 shows the deserializer.

Figure 2-21. 8B/10B Decoder

The 8B/10B decoder in single-width mode translates the 10-bit encoded data into the 8-bit equivalent data or control code. The 10-bit code received must be from the supported Dx.y or Kx.y list with the proper disparity or error flags asserted. All 8B/10B control signals, such as disparity error or control detect, are pipelined with the data and edge-aligned with the data. Figure 2–22 shows how the 10-bit symbol is decoded in the 8-bit data + 1-bit control indicator.

Figure 2-22. 8B/10B Decoder Conversion

The 8B/10B decoder in double-width mode translates the 20-bit (2 \times 10-bits) encoded code into the 16-bit (2 \times 8-bits) equivalent data or control code. The 20-bit upper and lower symbols received must be from the supported Dx.y or Kx.y list with the proper disparity or error flags

The dynamic reconfiguration block can dynamically reconfigure the following PMA settings:

- Pre-emphasis settings
- Equalizer and DC gain settings
- Voltage Output Differential (V_{OD}) settings

The channel reconfiguration allows you to dynamically modify the data rate, local dividers, and the functional mode of the transceiver channel.

Refer to the *Stratix II GX Device Handbook*, volume 2, for more information.

The dynamic reconfiguration block requires an input clock between 2.5 MHz and 50 MHz. The clock for the dynamic reconfiguration block is derived from a high-speed clock and divided down using a counter.

Individual Power Down and Reset for the Transmitter and Receiver

Stratix II GX transceivers offer a power saving advantage with their ability to shut off functions that are not needed. The device can individually reset the receiver and transmitter blocks and the PLLs. The Stratix II GX device can either globally or individually power down and reset the transceiver. Table $2{\text -}16$ shows the connectivity between the reset signals and the Stratix II GX transceiver blocks. These reset signals can be controlled from the FPGA or pins.

Table 2–18. Stratix II GX Device Routing Scheme (Part 2 of 2)																
Destination																
Source	Shared Arithmetic Chair	Carry Chain	Register Chain	Local Interconnect	Direct Link Interconnect	R4 Interconnect	R24 Interconnect	C4 Interconnect	C16 Interconnect	ALM	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column IOE	Row IOE
Column IOE					✓			✓	✓							
Row IOE					✓	✓	✓	✓								

TriMatrix Memory

TriMatrix memory consists of three types of RAM blocks: M512, M4K, and M-RAM. Although these memory blocks are different, they can all implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. Table 2–19 shows the size and features of the different RAM blocks.

Table 2–19. TriMatrix Memory Features (Part 1 of 2)						
Memory Feature	M512 RAM Block (32 x 18 Bits)	M4K RAM Block (128 × 36 Bits)	M-RAM Block (4K × 144 Bits)			
Maximum performance	500 MHz	550 MHz	420 MHz			
True dual-port memory		✓	✓			
Simple dual-port memory	✓	✓	✓			
Single-port memory	✓	✓	✓			
Shift register	✓	✓				
ROM	✓	✓	(1)			
FIFO buffer	✓	✓	✓			
Pack mode		✓	✓			
Byte enable	✓	✓	✓			
Address clock enable		✓	✓			
Parity bits	✓	✓	✓			
Mixed clock mode	✓	✓	✓			
Memory initialization (.mif)	✓	✓				

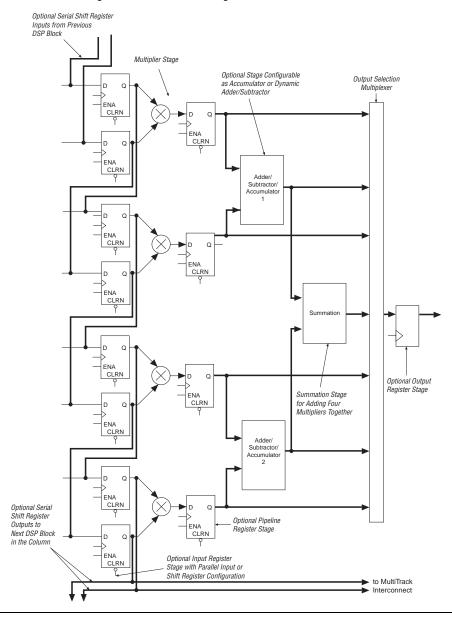


Figure 2-58. DSP Block Diagram for 18 x 18-Bit Configuration

PLLs and Clock Networks

Stratix II GX devices provide a hierarchical clock structure and multiple phase-locked loops (PLLs) with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution.

Global and Hierarchical Clocking

Stratix II GX devices provide 16 dedicated global clock networks and 32 regional clock networks (eight per device quadrant). These clocks are organized into a hierarchical clock structure that allows for up to 24 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains in Stratix II GX devices.

There are 12 dedicated clock pins to dive either the global or regional clock networks. Four clock pins drive each side of the device, as shown in Figures 2–61 and 2–62 Internal logic and enhanced and fast PLL outputs can also drive the global and regional clock networks. Each global and regional clock has a clock control block, which controls the selection of the clock source and dynamically enables or disables the clock to reduce power consumption. Table 2–24 shows global and regional clock features.

Table 2 24. Global and Regional Clock Features						
Feature	Global Clocks	Regional Clocks				
Number per device	16	32				
Number available per quadrant	16	8				
Sources	Clock pins, PLL outputs, core routings, inter-transceiver clocks	Clock pins, PLL outputs, core routings, inter-transceiver clocks				
Dynamic clock source selection	V	_				
Dynamic enable/disable	V	V				

Global Clock Network

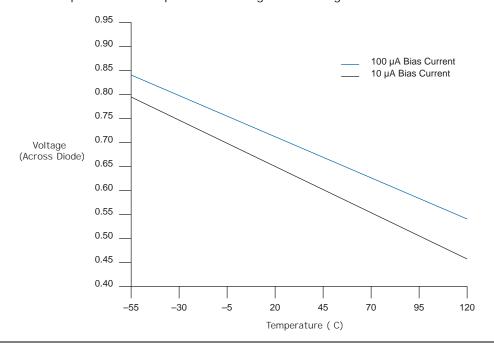

These clocks drive throughout the entire device, feeding all device quadrants. The global clock networks can be used as clock sources for all resources in the device IOEs, ALMs, DSP blocks, and all memory blocks. These resources can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin. The global clock networks can also be driven by internal logic for internally

Table 3–5shows the specifications for bias voltage and current of the Stratix II GX temperature sensing diode.

Table 3 5. Temperature-Sensingdlei Electrical Characteristics							
Parameter	Minimum	Typical	Maximu	ım Un			
IBIAS high	80	100	120	А			
IBIAS low	8	10	12	Α			
VBP - VBN	0.3		0.9	V			
VBN		0.7		V			
Series resistance			3				

The temperature-sensing diode works for the entire operating range shown in Figure 3–2.

Figure 3 2. Temperature Versums plerature-Sensing Diode Voltage

