# E·XFL

## Intel - EP2SGX90EF1152C4 Datasheet



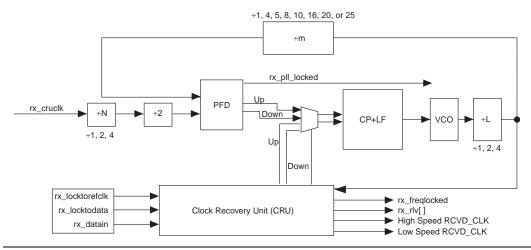
Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


#### Details

| Details                        |                                                             |
|--------------------------------|-------------------------------------------------------------|
| Product Status                 | Obsolete                                                    |
| Number of LABs/CLBs            | 4548                                                        |
| Number of Logic Elements/Cells | 90960                                                       |
| Total RAM Bits                 | 4520448                                                     |
| Number of I/O                  | 558                                                         |
| Number of Gates                | -                                                           |
| Voltage - Supply               | 1.15V ~ 1.25V                                               |
| Mounting Type                  | Surface Mount                                               |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                             |
| Package / Case                 | 1152-BBGA                                                   |
| Supplier Device Package        | 1152-FBGA (35x35)                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/ep2sgx90ef1152c4 |
|                                |                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





The receiver PLLs and CRUs can support frequencies up to 6.375 Gbps. The input clock frequency is limited to the full clock range of 50 to 622 MHz but only when using REFCLK0 or REFCLK1. An optional RX\_PLL\_LOCKED port is available to indicate whether the PLL is locked to the reference clock. The receiver PLL has a programmable loop bandwidth which can be set to low, medium, or high. The Quartus II software can statically set the loop bandwidth parameter.

All the parameters listed are programmable in the Quartus II software. The receiver PLL has the following features:

- Operates from 600 Mbps to 6.375 Gbps.
- Uses a reference clock between 50 MHz and 622.08 MHz.
- Programmable bandwidth settings: low, medium, and high.
- Programmable rx\_locktorefclk (forces the receiver PLL to lock to the reference clock) and rx\_locktodata (forces the receiver PLL to lock to the data).
- The voltage-controlled oscillator (VCO) operates at half rate and has two modes. These modes are for low or high frequency operation and provide optimized phase-noise performance.
- Programmable frequency multiplication W of 1, 4, 5, 8, 10, 16, 20, and 25. Not all settings are supported for any particular frequency.
- Two lock indication signals are provided. They are found in PFD mode (lock-to-reference clock), and PD (lock-to-data).

#### Programmable Run Length Violation

The word aligner supports a programmable run length violation counter. Whenever the number of the continuous '0' (or '1') exceeds a user programmable value, the rx\_rlv signal goes high for a minimum pulse width of two recovered clock cycles. The maximum run values supported are shown in Table 2–7.

| Table 2–7. Maximum Run Length (UI) |       |         |             |        |  |  |  |
|------------------------------------|-------|---------|-------------|--------|--|--|--|
| Mode                               |       | PMA Sei | rialization |        |  |  |  |
| moue                               | 8 Bit | 10 Bit  | 16 Bit      | 20 Bit |  |  |  |
| Single-Width                       | 128   | 160     | —           | —      |  |  |  |
| Double-Width                       |       | —       | 512         | 640    |  |  |  |

#### **Running Disparity Check**

The running disparity error rx\_disperr and running disparity value rx\_runningdisp are sent along with aligned data from the 8B/10B decoder to the FPGA. You can ignore or act on the reported running disparity value and running disparity error signals.

#### **Bit-Slip Mode**

The word aligner can operate in either pattern detection mode or in bit-slip mode.

The bit-slip mode provides the option to manually shift the word boundary through the FPGA. This feature is useful for:

- Longer synchronization patterns than the pattern detector can accommodate
- Scrambled data stream
- Input stream consisting of over-sampled data

This feature can be applied at 10-bit and 16-bit data widths.

The word aligner outputs a word boundary as it is received from the analog receiver after reset. You can examine the word and search its boundary in the FPGA. To do so, assert the rx\_bitslip signal. The rx\_bitslip signal should be toggled and held constant for at least two FPGA clock cycles.

For every rising edge of the rx\_bitslip signal, the current word boundary is slipped by one bit. Every time a bit is slipped, the bit received earliest is lost. If bit slipping shifts a complete round of bus width, the word boundary is back to the original boundary. Figure 2–25 shows the data path in parallel loopback mode.

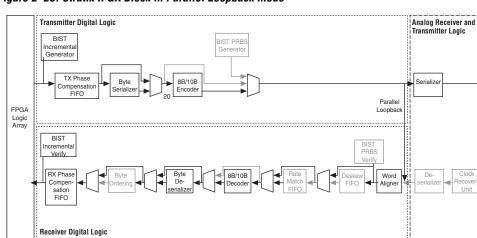
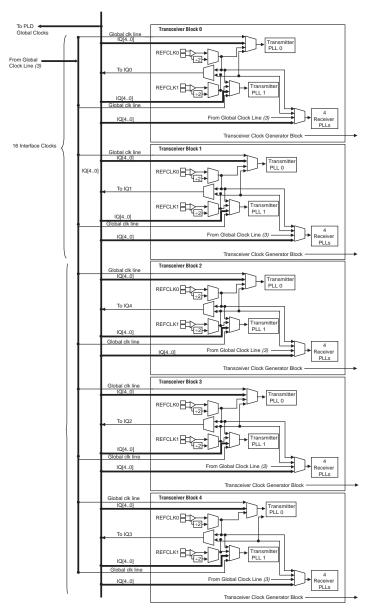
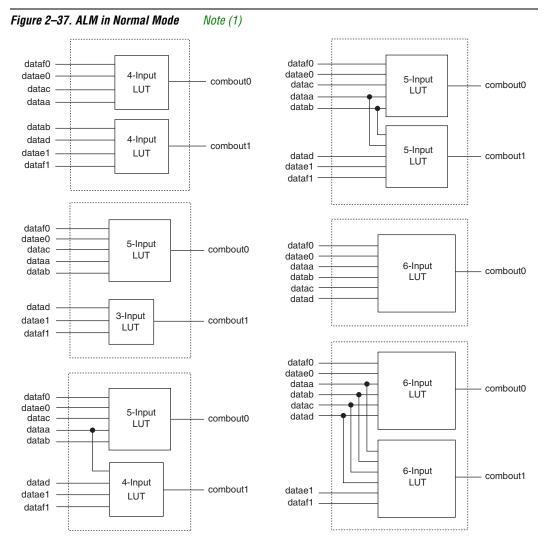




Figure 2–25. Stratix II GX Block in Parallel Loopback Mode

### Reverse Serial Loopback

The reverse serial loopback mode uses the analog portion of the transceiver. An external source (pattern generator or transceiver) generates the source data. The high-speed serial source data arrives at the high-speed differential receiver input buffer, passes through the CRU unit, and the retimed serial data is looped back and transmitted though the high-speed differential transmitter output buffer.

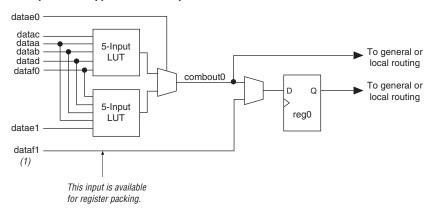

►



#### Figure 2–29. EP2SGX130 Device Inter-Transceiver and Global Clock Connections

#### Notes to Figure 2–29:

- (1) There are two transmitter PLLs in each transceiver block.
- (2) There are four receiver PLLs in each transceiver block.
- (3) The Global Clock line must be driven by an input pin.




#### *Note to Figure 2–37:*

(1) Combinations of functions with less inputs than those shown are also supported. For example, combinations of functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, etc.

The normal mode provides complete backward compatibility with four-input LUT architectures. Two independent functions of four inputs or less can be implemented in one Stratix II GX ALM. In addition, a five-input function and an independent three-input function can be implemented without sharing inputs.

Figure 2–40. Template for Supported Seven-Input Functions in Extended LUT Mode



#### Note to Figure 2–40:

(1) If the seven-input function is un-registered, the unused eighth input is available for register packing. The second register, reg1, is not available.

### **Arithmetic Mode**

The arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An ALM in arithmetic mode uses two sets of two four-input LUTs along with two dedicated full adders. The dedicated adders allow the LUTs to be available to perform pre-adder logic; therefore, each adder can add the output of two four-input functions. The four LUTs share the dataa and datab inputs. As shown in Figure 2–41, the carry-in signal feeds to adder0, and the carry-out from adder0 feeds to carry-in of adder1. The carry-out from adder1 drives to adder0 of the next ALM in the LAB. ALMs in arithmetic mode can drive out registered and/or un-registered versions of the adder outputs.

| Table 2–18. Stratix II GX Device Routing Scheme (Part 2 of 2) |                         |             |                |                    |                          |                 |                  |                 |                  |     |                |               |             |            |            |         |
|---------------------------------------------------------------|-------------------------|-------------|----------------|--------------------|--------------------------|-----------------|------------------|-----------------|------------------|-----|----------------|---------------|-------------|------------|------------|---------|
|                                                               |                         | Destination |                |                    |                          |                 |                  |                 |                  |     |                |               |             |            |            |         |
| Source                                                        | Shared Arithmetic Chain | Carry Chain | Register Chain | Local Interconnect | Direct Link Interconnect | R4 Interconnect | R24 Interconnect | C4 Interconnect | C16 Interconnect | WIM | M512 RAM Block | M4K RAM Block | M-RAM Block | DSP Blocks | Column IOE | Row IOE |
| Column IOE                                                    |                         |             |                |                    | $\checkmark$             |                 |                  | $\checkmark$    | $\checkmark$     |     |                |               |             |            |            |         |
| Row IOE                                                       |                         |             |                |                    | $\checkmark$             | ~               | $\checkmark$     | $\checkmark$    |                  |     |                |               |             |            |            |         |

# TriMatrix Memory

TriMatrix memory consists of three types of RAM blocks: M512, M4K, and M-RAM. Although these memory blocks are different, they can all implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. Table 2–19 shows the size and features of the different RAM blocks.

| Memory Feature               | M512 RAM Block<br>(32 × 18 Bits) | M4K RAM Block<br>(128 × 36 Bits) | M-RAM Block<br>(4K × 144 Bits) |
|------------------------------|----------------------------------|----------------------------------|--------------------------------|
| Maximum performance          | 500 MHz                          | 550 MHz                          | 420 MHz                        |
| True dual-port memory        |                                  | $\checkmark$                     | $\checkmark$                   |
| Simple dual-port memory      | $\checkmark$                     | $\checkmark$                     | $\checkmark$                   |
| Single-port memory           | $\checkmark$                     | $\checkmark$                     | $\checkmark$                   |
| Shift register               | $\checkmark$                     | $\checkmark$                     |                                |
| ROM                          | $\checkmark$                     | $\checkmark$                     | (1)                            |
| FIFO buffer                  | $\checkmark$                     | $\checkmark$                     | $\checkmark$                   |
| Pack mode                    |                                  | $\checkmark$                     | $\checkmark$                   |
| Byte enable                  | $\checkmark$                     | $\checkmark$                     | $\checkmark$                   |
| Address clock enable         |                                  | $\checkmark$                     | $\checkmark$                   |
| Parity bits                  | $\checkmark$                     | $\checkmark$                     | $\checkmark$                   |
| Mixed clock mode             | $\checkmark$                     | $\checkmark$                     | $\checkmark$                   |
| Memory initialization (.mif) | $\checkmark$                     | $\checkmark$                     |                                |

# **M4K RAM Blocks**

The M4K RAM block includes support for true dual-port RAM. The M4K RAM block is used to implement buffers for a wide variety of applications such as storing processor code, implementing lookup schemes, and implementing larger memory applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM blocks can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

The M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M4K RAM block registers (renwe, address, byte enable, datain, and output registers). Only the output register can be bypassed. The six labclk signals or local interconnects can drive the control signals for the A and B ports of the M4K RAM block. ALMs can also control the clock\_a, clock\_b, renwe\_a, renwe\_b, clr\_a, clr\_b, clocken\_a, and clocken\_b signals, as shown in Figure 2–51.

The Stratix II GX clock networks can be disabled (powered down) by both static and dynamic approaches. When a clock net is powered down, all the logic fed by the clock net is in an off-state, thereby reducing the overall power consumption of the device. The global and regional clock networks can be powered down statically through a setting in the configuration file (**.sof** or **.pof**). Clock networks that are not used are automatically powered down through configuration bit settings in the configuration file generated by the Quartus II software. The dynamic clock enable and disable feature allows the internal logic to control power up and down synchronously on GCLK and RCLK nets and PLL\_OUT pins. This function is independent of the PLL and is applied directly on the clock network or PLL\_OUT pin, as shown in Figures 2–67 through 2–69.

# **Enhanced and Fast PLLs**

Stratix II GX devices provide robust clock management and synthesis using up to four enhanced PLLs and four fast PLLs. These PLLs increase performance and provide advanced clock interfacing and clock frequency synthesis. With features such as clock switchover, spread spectrum clocking, reconfigurable bandwidth, phase control, and reconfigurable phase shifting, the Stratix II GX device's enhanced PLLs provide you with complete control of clocks and system timing. The fast PLLs provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix II GX high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth. Figure 2–78 shows how a column I/O block connects to the logic array.

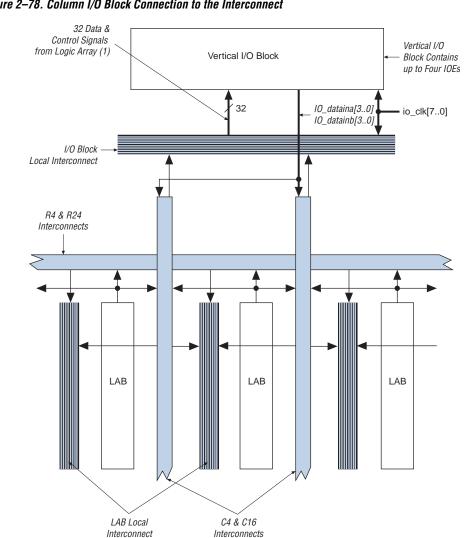



Figure 2–78. Column I/O Block Connection to the Interconnect

#### Note to Figure 2-78:

(1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications io\_dataouta[3..0] and io\_dataoutb[3..0], four output enables io\_oe[3..0], four input clock enables io\_ce\_in[3..0], four output clock enables io\_ce\_out [3..0], four clocks io\_clk [3..0], four asynchronous clear and preset signals io\_aclr/apreset [3..0], and four synchronous clear and preset signals io sclr/spreset[3..0].

These dedicated circuits combined, with enhanced PLL clocking and phase-shift ability, provide a complete hardware solution for interfacing to high-speed memory.



For more information on external memory interfaces, refer to the *External Memory Interfaces in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II GX Device Handbook*.

# **Programmable Drive Strength**

The output buffer for each Stratix II GX device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL, LVCMOS, SSTL, and HSTL standards have several levels of drive strength that you can control. The default setting used in the Quartus II software is the maximum current strength setting that is used to achieve maximum I/O performance. For all I/O standards, the minimum setting is the lowest drive strength that guarantees the I<sub>OH</sub>/I<sub>OL</sub> of the standard. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot.

| Table 2–42. Docu                                                      | ment Revision History (Part 5 of 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Date and<br>Document<br>Version                                       | Changes Made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Summary of Changes                                                                        |
| Previous Chapter<br>02 changes:<br>June 2006, v1.2                    | <ul> <li>Updated notes 1 and 2 in Figure 2–1.</li> <li>Updated "Byte Serializer" section.</li> <li>Updated Tables 2–4, 2–7, and 2–16.</li> <li>Updated "Programmable Output Driver" section.</li> <li>Updated Figure 2–12.</li> <li>Updated "Programmable Pre-Emphasis" section.</li> <li>Added Table 2–11.</li> <li>Added "Dynamic Reconfiguration" section.</li> <li>Added "Calibration Block" section.</li> <li>Updated "Programmable Equalizer" section, including addition of Figure 2–18.</li> </ul> | Updated input frequency range in<br>Table 2–4.                                            |
| <i>Previous Chapter<br/>02 changes:</i><br>April 2006, v1.1           | <ul> <li>Updated Figure 2–3.</li> <li>Updated Figure 2–7.</li> <li>Updated Table 2–4.</li> <li>Updated "Transmit Buffer" section.</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | Updated input frequency range in<br>Table 2–4.                                            |
| <i>Previous Chapter</i><br><i>02 changes:</i><br>October 2005<br>v1.0 | Added chapter to the <i>Stratix II GX Device Handbook</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
| <i>Previous Chapter<br/>03 changes:</i><br>August 2006, v1.4          | <ul> <li>Updated Table 3–18 with note.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |
| <i>Previous Chapter<br/>03 changes:</i><br>June 2006, v1.3            | <ul> <li>Updated note 2 in Figure 3–41.</li> <li>Updated column title in Table 3–21.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |
| <i>Previous Chapter<br/>03 changes:</i><br>April 2006, v1.2           | <ul> <li>Updated note 1 in Table 3–9.</li> <li>Updated note 1 in Figure 3–40.</li> <li>Updated note 2 in Figure 3–41.</li> <li>Updated Table 3–16.</li> <li>Updated Figure 3–56.</li> <li>Updated Tables 3–19 through 3–22.</li> <li>Updated Tables 3–25 and 3–26.</li> <li>Updated "Fast PLL &amp; Channel Layout" section.</li> </ul>                                                                                                                                                                    | Added 1,152-pin FineLine BGA package<br>information for EP2SGX60 device in<br>Table 3–16. |

| Symbol/<br>Description                                                                | Conditions                                                                                                                                                                        | Comm  | -3 Speed<br>Commercial Speed<br>Grade |             |        | -4 Speed<br>Commercial and<br>Industrial Speed<br>Grade |     |        | -5 Speed<br>Commercial Speed<br>Grade |     |    |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------------|--------|---------------------------------------------------------|-----|--------|---------------------------------------|-----|----|
|                                                                                       |                                                                                                                                                                                   |       | Тур                                   | Max         | Min    | Тур                                                     | Max | Min    | Тур                                   | Max |    |
| SONET/SDH Rece                                                                        | Jitter frequency =<br>0.03 KHz<br>Pattern = PRBS23<br>No Equalization<br>DC Gain = 0 dB                                                                                           | (7)   | > 15                                  |             |        | > 15                                                    |     |        | > 15                                  | i   | UI |
| Jitter tolerance at 622.08 Mbps                                                       | Jitter frequency = 25<br>KHZ Pattern =<br>PRBS23<br>No Equalization<br>DC Gain = 0 dB                                                                                             | > 1.5 |                                       |             | > 1.5  |                                                         |     |        | UI                                    |     |    |
|                                                                                       | Jitter frequency =<br>250 KHz Pattern =<br>PRBS23<br>No Equalization<br>DC Gain = 0 dB                                                                                            |       | > 0.15                                |             | > 0.15 |                                                         |     | > 0.15 |                                       |     | UI |
|                                                                                       | Jitter frequency =<br>0.06 KHz<br>Pattern = PRBS23<br>No Equalization<br>DC Gain = 0 dB<br>Jitter frequency =<br>100 KHZ<br>Pattern = PRBS23<br>No Equalization<br>DC Gain = 0 dB |       | > 15                                  |             |        | > 15                                                    |     |        | > 15                                  |     |    |
|                                                                                       |                                                                                                                                                                                   |       | > 1.5                                 |             |        | > 1.5                                                   |     |        | > 1.5                                 |     |    |
| Jitter tolerance at 2488.32 MBps                                                      | Jitter frequency =<br>1 MHz<br>Pattern = PRBS23<br>No Equalization<br>DC Gain = 0 dB                                                                                              |       | > 0.15                                | 0.15 > 0.15 |        |                                                         | 5   | > 0.15 |                                       |     | UI |
| Jitter frequency = 10<br>MHz<br>Pattern = PRBS23<br>No Equalization<br>DC Gain = 0 dB |                                                                                                                                                                                   |       | > 0.15                                |             |        | > 0.15                                                  | 5   |        | > 0.1                                 | 5   | UI |

| Symbol/<br>Description                              | Conditions                                                                                                                                   | -3 Speed<br>Commercial Speed<br>Grade |        |     | -4 Speed<br>Commercial and<br>Industrial Speed<br>Grade |     |     | -5 Speed<br>Commercial Speed<br>Grade |     |     | Unit |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-----|---------------------------------------------------------|-----|-----|---------------------------------------|-----|-----|------|
|                                                     |                                                                                                                                              | Min                                   | Тур    | Max | Min                                                     | Тур | Max | Min                                   | Тур | Max |      |
| Sinusoidal Jitter                                   | Jitter Frequency =<br>1.875 MHz<br>Data Rate =<br>3.75 Gbps<br>REFCLK =<br>187.5 MHz<br>Pattern = CJPAT<br>No Equalization<br>DC Gain = 3 dB |                                       | > 0.1  |     |                                                         | -   |     |                                       | -   |     | UI   |
| Tolerance<br>(peak-to-peak)                         | Jitter Frequency =<br>20 MHz<br>Data Rate =<br>3.75 Gbps<br>REFCLK =<br>187.5 MHz<br>Pattern = CJPAT<br>No Equalization<br>DC Gain = 3 dB    |                                       | > 0.1  |     |                                                         | -   |     |                                       | -   |     | UI   |
| (OIF) CEI Transmi                                   | tter Jitter Generation                                                                                                                       | (14)                                  |        |     | 1                                                       |     |     | 1                                     |     |     |      |
| Total Jitter<br>(peak-to-peak)                      | Data Rate =<br>6.375 Gbps<br>REFCLK =<br>318.75 MHz<br>Pattern = PRBS15<br>Vod=1000 mV (5)<br>NoPre-emphasis<br>BER = 10 <sup>-12</sup>      |                                       |        | 0.3 |                                                         |     | N/A |                                       |     | N/A | UI   |
| (OIF) CEI Receive                                   | r Jitter Tolerance (14)                                                                                                                      | )                                     |        | •   | •                                                       |     | •   | •                                     |     |     |      |
| Deterministic Jitter<br>Tolerance<br>(peak-to-peak) | Data Rate =<br>6.375 Gbps<br>Pattern = PRBS31<br>Equalizer Setting =<br>15<br>DCGain = 0 dB<br>BER = $10^{-12}$                              |                                       | > 0.67 | 5   |                                                         | N/A |     |                                       | N/A |     | UI   |

| Symbol/<br>Description             | Conditions                                                                                                                                                                        |     | -3 Speed<br>Commercial Speed<br>Grade |     |     | -4 Speed<br>Commercial and<br>Industrial Speed<br>Grade |     |     | -5 Speed<br>Commercial Speed<br>Grade |     |    |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|-----|-----|---------------------------------------------------------|-----|-----|---------------------------------------|-----|----|
|                                    |                                                                                                                                                                                   | Min | Тур                                   | Max | Min | Тур                                                     | Max | Min | Тур                                   | Max |    |
| SDI Transmitter 、                  | Jitter Generation (16)<br>Data Rate =<br>1.485 Gbps (HD)<br>REFCLK =<br>74.25 MHz<br>Pattern = ColorBar<br>Vod = 800 mV<br>No Pre-emphasis<br>Low-Frequency<br>Roll-Off = 100 KHz |     | 0.2                                   |     |     | 0.2                                                     |     |     | 0.2                                   |     | UI |
|                                    | Data Rate =<br>2.97 Gbps (3G)<br>REFCLK =<br>148.5 MHz<br>Pattern = ColorBar<br>Vod = 800 mV<br>No Pre-emphasis<br>Low-Frequency<br>Roll-Off = 100 KHz                            |     | 0.3                                   |     |     | 0.3                                                     |     |     | 0.3                                   |     | UI |
| Alignment Jitter<br>(peak-to-peak) |                                                                                                                                                                                   |     |                                       |     |     |                                                         |     |     |                                       |     |    |
|                                    |                                                                                                                                                                                   |     |                                       |     |     |                                                         |     |     |                                       |     |    |

# **DC Electrical Characteristics**

Table 4–23 shows the Stratix II GX device family DC electrical characteristics.

| Table 4-            | -23. Stratix II GX Device             | DC Operating Condi                  | itions (Part 1 o | <b>f 2)</b> Not | e (1)   |         |      |
|---------------------|---------------------------------------|-------------------------------------|------------------|-----------------|---------|---------|------|
| Symbol              | Parameter                             | Conditions                          | Device           | Minimum         | Typical | Maximum | Unit |
| I <sub>I</sub>      | Input pin leakage<br>current          | $V_I = V_{CCIOmax}$ to<br>0 V (2)   | All              | -10             |         | 10      | μA   |
| I <sub>OZ</sub>     | Tri-stated I/O pin<br>leakage current | $V_{O} = V_{CCIOmax}$ to<br>0 V (2) | All              | -10             |         | 10      | μA   |
| I <sub>CCINT0</sub> | V <sub>CCINT</sub> supply current     | V <sub>I</sub> = ground, no         | EP2SGX30         |                 | 0.30    | (3)     | Α    |
|                     | (standby)                             | load, no toggling<br>inputs         | EP2SGX60         |                 | 0.50    | (3)     | Α    |
|                     |                                       | $T_{\rm I} = 25 \ ^{\circ}{\rm C}$  | EP2SGX90         |                 | 0.62    | (3)     | А    |
|                     |                                       | Ŭ                                   | EP2SGX130        |                 | 0.82    | (3)     | Α    |
| I <sub>CCPD0</sub>  | V <sub>CCPD</sub> supply current      | V <sub>I</sub> = ground, no         | EP2SGX30         |                 | 2.7     | (3)     | mA   |
|                     | (standby)                             | load, no toggling                   | EP2SGX60         |                 | 3.6     | (3)     | mA   |
|                     |                                       | inputs<br>T <sub>.1</sub> = 25 °C,  | EP2SGX90         |                 | 4.3     | (3)     | mA   |
|                     |                                       | $V_{CCPD} = 3.3V$                   | EP2SGX130        |                 | 5.4     | (3)     | mA   |
| I <sub>CCI00</sub>  | V <sub>CCIO</sub> supply current      | $V_I = ground, no$                  | EP2SGX30         |                 | 4.0     | (3)     | mA   |
|                     | (standby)                             | load, no toggling                   | EP2SGX60         |                 | 4.0     | (3)     | mA   |
|                     |                                       | inputs<br>T <sub>.1</sub> = 25 °C   | EP2SGX90         |                 | 4.0     | (3)     | mA   |
|                     |                                       | -                                   | EP2SGX130        |                 | 4.0     | (3)     | mA   |

| I/O Standard        | Drive<br>Strength | Parameter        | Fast Corner<br>Industrial/<br>Commercial | -3 Speed<br>Grade (3) | -3 Speed<br>Grade (4) | -4 Speed<br>Grade | -5 Speed<br>Grade | Unit |
|---------------------|-------------------|------------------|------------------------------------------|-----------------------|-----------------------|-------------------|-------------------|------|
| 1.5-V HSTL          | 16 mA             | t <sub>OP</sub>  | 924                                      | 1431                  | 1501                  | 1596              | 1734              | ps   |
| Class II            |                   | t <sub>DIP</sub> | 946                                      | 1497                  | 1571                  | 1670              | 1824              | ps   |
|                     | 18 mA             | t <sub>OP</sub>  | 927                                      | 1439                  | 1510                  | 1605              | 1744              | ps   |
|                     |                   | t <sub>DIP</sub> | 949                                      | 1505                  | 1580                  | 1679              | 1834              | ps   |
|                     | 20 mA (1)         | t <sub>OP</sub>  | 929                                      | 1450                  | 1521                  | 1618              | 1757              | ps   |
|                     |                   | t <sub>DIP</sub> | 951                                      | 1516                  | 1591                  | 1692              | 1847              | ps   |
| PCI                 | -                 | t <sub>OP</sub>  | 1082                                     | 1956                  | 2051                  | 2176              | 2070              | ps   |
|                     |                   | t <sub>DIP</sub> | 1104                                     | 2022                  | 2121                  | 2250              | 2160              | ps   |
| PCI-X               | -                 | t <sub>OP</sub>  | 1082                                     | 1956                  | 2051                  | 2176              | 2070              | ps   |
|                     |                   | t <sub>DIP</sub> | 1104                                     | 2022                  | 2121                  | 2250              | 2160              | ps   |
| Differential SSTL-  | 8 mA              | t <sub>OP</sub>  | 957                                      | 1715                  | 1799                  | 1913              | 2041              | ps   |
| 2 Class I (2)       |                   | t <sub>DIP</sub> | 979                                      | 1781                  | 1869                  | 1987              | 2131              | ps   |
|                     | 12 mA             | t <sub>OP</sub>  | 940                                      | 1672                  | 1754                  | 1865              | 1991              | ps   |
|                     |                   | t <sub>DIP</sub> | 962                                      | 1738                  | 1824                  | 1939              | 2081              | ps   |
| Differential        | 16 mA             | t <sub>OP</sub>  | 918                                      | 1609                  | 1688                  | 1795              | 1918              | ps   |
| SSTL-2 Class II (2) |                   | t <sub>DIP</sub> | 940                                      | 1675                  | 1758                  | 1869              | 2008              | ps   |
|                     | 20 mA             | t <sub>OP</sub>  | 919                                      | 1598                  | 1676                  | 1783              | 1905              | ps   |
|                     |                   | t <sub>DIP</sub> | 941                                      | 1664                  | 1746                  | 1857              | 1995              | ps   |
|                     | 24 mA             | t <sub>OP</sub>  | 915                                      | 1596                  | 1674                  | 1781              | 1903              | ps   |
|                     |                   | t <sub>DIP</sub> | 937                                      | 1662                  | 1744                  | 1855              | 1993              | ps   |
| Differential        | 4 mA              | t <sub>OP</sub>  | 953                                      | 1690                  | 1773                  | 1886              | 2012              | ps   |
| SSTL-18 Class I (2) |                   | t <sub>DIP</sub> | 975                                      | 1756                  | 1843                  | 1960              | 2102              | ps   |
| (-)                 | 6 mA              | t <sub>OP</sub>  | 958                                      | 1656                  | 1737                  | 1848              | 1973              | ps   |
|                     |                   | t <sub>DIP</sub> | 980                                      | 1722                  | 1807                  | 1922              | 2063              | ps   |
|                     | 8 mA              | t <sub>OP</sub>  | 937                                      | 1640                  | 1721                  | 1830              | 1954              | ps   |
|                     |                   | t <sub>DIP</sub> | 959                                      | 1706                  | 1791                  | 1904              | 2044              | ps   |
|                     | 10 mA             | t <sub>OP</sub>  | 942                                      | 1638                  | 1718                  | 1827              | 1952              | ps   |
|                     |                   | t <sub>DIP</sub> | 964                                      | 1704                  | 1788                  | 1901              | 2042              | ps   |
|                     | 12 mA             | t <sub>OP</sub>  | 936                                      | 1626                  | 1706                  | 1814              | 1938              | ps   |
|                     |                   | t <sub>DIP</sub> | 958                                      | 1692                  | 1776                  | 1888              | 2028              | ps   |

Tables 4–98 through 4–105 show the maximum DCD in absolution derivation for different I/O standards on Stratix II GX devices. Examples are also provided that show how to calculate DCD as a percentage.

| Table 4–98. Maximum DCD for Non-DDIO Output on Row I/O Pins |                                      |                   |      |  |  |  |  |  |  |
|-------------------------------------------------------------|--------------------------------------|-------------------|------|--|--|--|--|--|--|
| Dow 1/0 Output Standard                                     | Maximum DCD (ps) for Non-DDIO Output |                   |      |  |  |  |  |  |  |
| Row I/O Output Standard                                     | -3 Devices                           | -4 and -5 Devices | Unit |  |  |  |  |  |  |
| 3.3-V LVTTTL                                                | 245                                  | 275               | ps   |  |  |  |  |  |  |
| 3.3-V LVCMOS                                                | 125                                  | 155               | ps   |  |  |  |  |  |  |
| 2.5 V                                                       | 105                                  | 135               | ps   |  |  |  |  |  |  |
| 1.8 V                                                       | 180                                  | 180               | ps   |  |  |  |  |  |  |
| 1.5-V LVCMOS                                                | 165                                  | 195               | ps   |  |  |  |  |  |  |
| SSTL-2 Class I                                              | 115                                  | 145               | ps   |  |  |  |  |  |  |
| SSTL-2 Class II                                             | 95                                   | 125               | ps   |  |  |  |  |  |  |
| SSTL-18 Class I                                             | 55                                   | 85                | ps   |  |  |  |  |  |  |
| 1.8-V HSTL Class I                                          | 80                                   | 100               | ps   |  |  |  |  |  |  |
| 1.5-V HSTL Class I                                          | 85                                   | 115               | ps   |  |  |  |  |  |  |
| LVDS                                                        | 55                                   | 80                | ps   |  |  |  |  |  |  |

Here is an example for calculating the DCD as a percentage for a non-DDIO output on a row I/O on a -3 device:

If the non-DDIO output I/O standard is SSTL-2 Class II, the maximum DCD is 95 ps (see Table 4–99). If the clock frequency is 267 MHz, the clock period T is:

T = 1 / f = 1 / 267 MHz = 3.745 ns = 3,745 ps

To calculate the DCD as a percentage:

(T/2 - DCD) / T = (3,745 ps/2 - 95 ps) / 3,745 ps = 47.5% (for low boundary)

(T/2 + DCD) / T = (3,745 ps/2 + 95 ps) / 3,745 ps = 52.5% (for high boundary)



# 5. Reference and Ordering Information

SIIGX51007-1.3

| Software                | Stratix <sup>®</sup> II GX devices are supported by the Altera <sup>®</sup> Quartus <sup>®</sup> II design<br>software, which provides a comprehensive environment for<br>system-on-a-programmable-chip (SOPC) design. The Quartus II software<br>includes HDL and schematic design entry, compilation and logic<br>synthesis, full simulation and advanced timing analysis, SignalTap <sup>®</sup> II<br>logic analyzer, and device configuration.<br>Refer to the <i>Quartus II Development Software Handbook</i> for more<br>information on the Quartus II software features. |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | The Quartus II software supports the Windows XP/2000/NT, Sun<br>Solaris 8/9, Linux Red Hat v7.3, Linux Red Hat Enterprise 3, and HP-UX<br>operating systems. It also supports seamless integration with<br>industry-leading EDA tools through the NativeLink interface.                                                                                                                                                                                                                                                                                                          |
| Device Pin-Outs         | Stratix II GX device pin-outs ( <i>Pin-Out Files for Altera Devices</i> ) are available on the Altera web site at www.altera.com.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ordering<br>Information | Figure 5–1 describes the ordering codes for Stratix II GX devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · •                     | For more information on a specific package, refer to the <i>Package</i><br><i>Information for Stratix II &amp; Stratix II GX Devices</i> chapter in volume 2 of the<br><i>Stratix II GX Device Handbook</i> .                                                                                                                                                                                                                                                                                                                                                                    |