E·XFL

Altera - EP2SGX90EF1152C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4548
Number of Logic Elements/Cells	90960
Total RAM Bits	4520448
Number of I/O	558
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2sgx90ef1152c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Tableshows the data path configurations for the Stratix II GX devicein single-width and double-width modes.

1 Refer to the sectionB/B Encoder on page for a description of the single- and double-width modes.

Table 2 4. Data Path ConfiguratNoomse (1)										
	Single-W	idth Mode	Double-Width Mode							
Parameter	Without Byte Serialization/ Deserialization	With Byte Serialization/ Deserializatior	Without Byte Serialization/ Deserializatior	With Byte Serialization/ Deserializatior						
Fabric to PCS data path width (bits)	8 or 10	16 or 20	16 or 20	32 or 40						
Data rate range (Gbps)	0.6 to 2.5	0.6 to 3.125	1 to 5.0	1 to 6.375						
PCS to PMA data path width (bits)	8 or 10	8 or 10	16 or 20	16 or 20						
Byte ordering (1)		V		V						
Data symbol A (MSB)				V						
Data symbol B		V		V						
Data symbol C			V	V						
Data symbol D (LSB)	V	V	V	V						

Note toTable 2 4

() Designs can use byte ordering when byte serialiation and deserialiation are used.

8B/10B Encoder

There are two different modes of operation for B/B encoding. Single-width (-bit) mode supports natural data rates from Mbps to . Gbps. Double-width (-bit cascaded) mode supports data rates above . Gbps. The encoded data has a maximum run length of five. The B/B encoder can be bypassed. igure diagrams the -bit encoding process.

If a design uses external termination the receiver must be externally terminated and biased to . V or . V. igure shows an example of an external terminaton and biasing circuit.

Programmable Equalizer

The Stratix II GX receivers provide a programmable receive eualiation feature to compensate the effects of channel attenuation for high-speed signaling. PCB traces carrying these high-speed signals have low-pass filter characteristics. The impedance mismatch boundaries can also cause signal degradation. The eualiation in the receiver diminishes the lossy attenuation effects of the PCB at high freuencies. To pack two five-input functions ito one ALM the functions must have at least two common inputs. The common inputs are and . The combination of a four-input function with a five-input function reuires one common input (either or).

To implement two six-input functions one ALM four inputs must be shared and the combinational function must be the same. or example a crossbar switch (two -tomultiplexers with common inputs and uniue select lines) can be implemented in one ALM as shown in . The shared inputs are igure an while the uniue select lines are and for and 🔊 for T This crossbar switch and consumes four LUTs in a four-input LUT-based architecture.

In a sparsely used device functions that could be placed into one ALM can be implemented in separate ALMs. The uartus II Compiler spreads a design out to achieve thebest possible performance. As a device begins to fill up the uartus II software au tomatically utilies the full potential of the Stratix II GX ALM. The uartu s II Compiler automatically searches for functions of common inputs or ompletely independent functions to be placed into one ALM and to make efficient use of the device resources. In addition you can manually control usage by setting location assignments. Any six-input function be implemented utiling inputs

and either and or . . If aution and and are utilied the output is driven to ← an∉/or ← is bypassed and the data drives out to the interconnect using he top set of output drivers (see igure). If and are utilied the output drives to and drives to the interconnect and/br bypasses ←

Adder trees are used in many different applications. or example the summation of the partial products in a logic-based multiplier can be implemented in a tree structure. Anotheæxample is a corælator function that can use a large adder tree to sum filtered data samples in a given time frame to recover or to de-spread datawhich was transmitted utiling spread spectrum technology. An example of a three-bit add operation utiling the shared arithmetic mode is shown inigure . The partial sum () and the partial carry () is obtained using the LUTs while the result () is computed using the dedicated adders.

C column interconnects span a length of LABs and provide the fastest resource for long columnconnections between LABs TriMatrix memory blocks DSP blocks and IOEs. C interconnects can cross M-RAM blocks and also drive to row and column interconnects at every fourth LAB. C interconnects drive LAB local interconnects via C and R interconnects and do not drive LAB local interconnects directly. All embedded blocks communicate with the logic array similar to LAB-to-LAB interfaces. Each block (that is TriMatrix memory and DSP blocks) connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. These blocks also have direct link interconects for fast connections to and from a neighboring LAB. All blocks are fed by the row LAB clocks

Table shows the Stratix II GX devices routing scheme.

Table 2 18. Stratix II GX Device Routing Scheme (Part 1 of 2)																
	ain				ect		[Dest	inati	on						
Source	Shared Arithmetic Ch	Carry Chain	Register Chain	Local Interconnect	Direct Link Interconn	R4 Interconnect	R24 Interconnect	C4 Interconnect	C16 Interconnect	ALM	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column IOE	Row IOE
Shared arithmetic chain										V						
Carry chain										V						
Register chain										V						
Local interconnect										V	v v	V	v v	V		
Direct link interconnect				v												
R4 interconnect				V		v v	V	v								
R24 interconnect						V	v v	V								
C4 interconnect				V		V	V									
C16 interconnect						V	v v	V								
ALM	V	v v	V	v v		V										
M512 RAM block				V	v v		V									
M4K RAM block				V	v v		V									
M-RAM block					V	v v	V									
DSP blocks					V	V	V									

Tableshows the input and output data signal connections alongwith the address and control signal input connections to the row unitinterfaces (L to L and R to R).

			-
Table 2 20. M-RA	AM Row Interface Unit S	signals	
Unit Interface Blo	ock In şigh als	Output Signals	
LO		Le.	P (F
L1		Ē	Ĩ
L2			
L3		2	
L4			
L5	Ĺŝ	2	đ
RO	Ĩ Ĩ	L.	PLP
R1		L.F	Ĩ
R2	CAUTION CAUTION		
R3	€ 100 F	2	
R4			
R5	L.	P	P

f

Refer to theTriMatrix Embedded Memory Blocks Stratix II & Stratix II GX Deviceschapter in volume of the Stratix II GX Device Handbook or more information on TriMatrix memory.

PLLS and Clock Networks Stratix II GX devices provide a hierarchical clock structure and multiple phase-locked loops (PLLs) with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fastPLLs provides a complete clock management solution.

Global and Hierarchical Clocking

Stratix II GX devices provide de dicated global cbck networks and regional clock networks (eight per device uadrant). These clocks are organied into a hierarchical clock structure that allows for up to clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to uniue cloc k domains in Stratix II GX devices.

There are dedicated clock pins to dr ive either the global or regional clock networks. our clock pins drive each side of the device as shown in igures and . Internal logicand enhanced and fast PLL outputs can also drive the global and regional clock networks. Each global and regional clock has a clock control blockwhich controls the selection of the clock source and dynamically enable or disables the clock to reduce power consumption. Table shows global and regional clock features.

Table 2 24. Global ar	nd Regional Clock Feat	ures
Feature	Global Clocks	Regional Clocks
Number per device	16	32
Number available per quadrant	16	8
Sources	Clock pins, PLL outputs, core routings, inter-transceiver clocks	Clock pins, PLL outputs, core routings, inter-transceiver clocks
Dynamic clock source selection	v	
Dynamic enable/disable	V	V

Global Clock Network

These clocks drive throughout the entire device feeding all device uadrants. The global clock networks can be used as clock sources for all resources in the device IOEs ALMs DSP blocks and all memory blocks. These resources can also be used for control signals such as clock enables and synchronous or asynchronous clears fed from the external pin. The global clock networks can also be driven by internal logic for internally IOE clocks have row and column blok regions that are clocked by I/O clock signals chosenfrom the uadrant clock resources. igures and show the uadrant relation ship to the I/O clock regions.

f

These dedicated circuits combined with enhanced PLL clocking and phase-shift ability provide a complete hardware solution for interfacing to high-speed memory.

or more information on external memory interfaces refer to the External Memory Interfaces in Stratix II & Stratix II GX Device chapter in volume of the Stratix II GX Device Handbook

Programmable Drive Strength

The output buffer for each Straix II GX device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL LVCMOS SSTL and HSTL standards have several levels of drive strength that you can control. The deault setting used in the uartus II software is the maximum current strength setting that is used to achieve maximum I/O performance. or all I/ O standards the minimum setting is the lowest drive strength that guarantees the J_H/I_{OL} of the standard. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot.

Figure 2 87. StratlixGX I/O Banks Notes (1)(2)

Notes toFigure 2 87

- 0 igure is a top view of the silicon die that corresponds to a reverse view for flip-chip packages. It is a graphical representation only.
- Depending on the sie of the device different t device members have different numbers of Y_E groups. Refer to the 0 pin list and the uartus II so ftware for exact locations.
- PLL external clock output banks. 0 Banks through are enhanced
- Horiontal I/O banks feature SERDES and DPA circuitr y for high-speed differential/O standards. See the High-Speed Differential I/O Interfaces with DPA in Stratix II & Stratix II GX Devicesapter in volume of the Stratix II Device Handbook for more information on differential I/O standards.

Each I/O bank has its own pins. A single device can support .-.- and .-V interfaces each bank can support a different V_{CCIO} level independently. Each bank also has dedicated pins to support the voltage-referenced standards (such as SSTL-).

Each I/O bank can support multiple standards with the same V_{CIO} for input and output pins. Each bank can support one V_E voltage level. or example when V_{CCIO} is . Va bank can support LVTTL LVCMOS and .-V PCI for inputs and outputs.

Table 2 42. Doc	ument Revision History (Part 5 of 6)					
Date and Document Version	Changes Made	Summary of Changes				
Previous Chapter 02 changes: June 2006, v1.2	Updated notes 1 and 2 in Figure 2–1. Updated Byte Serializer section. Updated Tables 2–4, 2–7, and 2–16. Updated Programmable Output Driver section. Updated Figure 2–12. Updated Programmable Pre-Emphasis section. Added Table 2–11. Added Dynamic Reconfiguration section. Added Calibration Block section. Updated Programmable Equalizer section, including addition of Figure 2–18.	Updated input frequency range in Table 2–4.				
Previous Chapter 02 changes: April 2006, v1.1	Updated Figure 2–3. Updated Figure 2–7. Updated Table 2–4. Updated Transmit Buffer section.	Updated input frequency range in Table 2–4.				
Previous Chapter 02 changes: October 2005 v1.0	Added chapter to the Stratix II GX Device Handbook.					
Previous Chapter 03 changes: August 2006, v1.4	Updated Table 3–18 with note.					
Previous Chapter 03 changes: June 2006, v1.3	Updated note 2 in Figure 3–41. Updated column title in Table 3–21.					
Previous Chapter 03 changes: April 2006, v1.2	Updated note 1 in Table 3–9. Updated note 1 in Figure 3–40. Updated note 2 in Figure 3–41. Updated Table 3–16. Updated Figure 3–56. Updated Tables 3–19 through 3–22. Updated Tables 3–25 and 3–26. Updated Fast PLL & Channel Layout section.	Added 1,152-pin FineLine BGA package information for EP2SGX60 device in Table 3–16.				

The pin is a dedicated inputthat chooses whether the internal pull-up resistors on theuser I/O pins and dual-purpose configuration I/O pins (

are on or off before and during configration. A logic high (. . . . V) turns off the weak internal pull -up resistors while a logic low turns them on.

Stratix II GX devices also offer a new power supply V_{CPD} which must
be connected to . V in order to power the .-V/.-V buffer available
on the configuration input pins and TAG pins. V_{CPD} applies to all the
TAG input pins (
and
and
the following
configuration pinsand) and the following
(when used as an input)
and

. The pin allows the V_{CCIO} setting (of the banks where the configuration inputs reside) to be independent of the voltage reuired by the configuration inputs. Therefore when selecting the V_{CCIO} voltage you do not have to take the V_{IL} and V_{IH} levels driven to the configuration inputs into consideration. The configuration input pins (when used as an input) and have a dual buffer design a .-V/.-V input buffer and a .-V/.-V input buffer. The V CCSEL input pin selects which input buffer is used. The .-V/.-V input to the configuration the configuration input selects which input buffer design a select s

V/.-V input buffer is powered by V _{CCIO}.

 $V_{\rm CCSEL}$ is sampled during power-up. Therefore the $V_{\rm CCSEL}$ setting cannot change on-the-fly or during reconfiguration. The $V_{\rm CCSEL}$ input buffer is powered by $V_{\rm CCINT}$ and must be hardwired to $V_{\rm CCPD}$ or ground. A logic high $V_{\rm CCSEL}$ connection selects the .-V/. -V input buffer a logic low selects the .-V/.-V input buffer. V $_{\rm CCSEL}$ should be set to comply with the logic levels drivenout of the configuration device or the MAX II microprocessor.

If the design must support configuratin input voltages of . V/. Vset V_{CCSEL} to a logic low. ou can set the V $_{CCIO}$ voltage of the I/O bank that contains the configuration inputs to any supported voltage. If the design must support configuration input voltages of . V/. V set V $_{CCSEL}$ to a logic high and the V_{CCIO} of the bank that contains the configuration inputs to . V/. V.

or more information on multi-volt support including information on using and in multi-volt systems refer to the Stratix II GX Architecturechapter in volume of the Stratix II GX Device Handbook

f

)

Table	shows the Stratix II GX transeiver block AC specifications.
-------	---

Table 4 19. Stratix II GX Transee Bolock AC Specification tes (1)(2) (3) (Part 1 of 19)											
Symbol/ Description	Conditions	-3 Speed Commercial Spee Grade			-4 Speed Commercial and Industrial Speed Grade			-5 Speed Commercial Spee Grade			d Unit
		Min	Тур	Max	Mi	n Ty	p Ma	ax N	/lin [·]	Тур М	lax
SONET/SDH Transmi	t Jitter Generation	(7)									
Peak-to-peak itter at 622.08 Mbps	= 77.76 MHz Pattern = PRBS23 V _{0D} = 800 mV No Pre-emphasis	-	-	0.1	-	-	0.1	-	-	0.1	UI
RMS itter at 622.08 Mbps	= 77.76 MHz Pattern = PRBS23 V _{0D} = 800 mV No Pre-emphasis	-	-	0.01	-	-	0.01	-	-	0.01	UI
Peak-to-peak itter at 2488.32 Mbps	= 155.52 MHz Pattern = PRBS23 V _{OD} = 800 mV No Pre-emphasis	-	-	0.1	-	-	0.1	-	-	0.1	UI
RMS itter at 2488.32 Mbps	= 155.52 MHz Pattern = PRBS23 V _{0D} = 800 mV No Pre-emphasis			0.01		-	0.01			0.01	U

Table 4 19. Stratix II GX Transcenee Nock AC Specificativortes (1)(2) (3) (Part 6 of 19)											
Symbol/ Description	Conditions	-3 Speed Commercial Speed Grade			-4 Speed Commercial and Industrial Speed Grade			Com	ed Unit		
		Min	Тур	Max	Mir	п Тур	Ma	ax N	1in	Тур	Max
Serial RapidIO Recei	iver Jitter Tolerance	(11)									
Deterministic Jitter Tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps = 125 MHz Pattern = CJPAT Equalizer Setting = 0 for 1.25 Gbps Equalizer Setting = 6 for 2.5 Gbps Equalizer Setting = 6 for 3.125 Gbps		0.37		ſ).37		0.	37		IJ
Combined Deterministic and Random Jitter Tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps = 125 MHz Pattern = CJPAT Equalizer Setting = 0 for 1.25 Gbps Equalizer Setting = 6 for 2.5 Gbps Equalizer Setting = 6 for 3.125 Gbps		0.55		().55		0.	55		IJ

Table 4 19. Stra	atix II GX Transee®	lock A	C Spe	cificat	ilontes	(1)(2)	(3) (P	art 1	3 of	19)	
Symbol/ Description	Conditions	-3 Speed Commercial Speed Grade			-4 Speed Commercial and Industrial Speed Grade			-5 Speed Commercial Spe Grade			ed Unit
		Min	Тур	Max	Mir	п Тур	Ma	ax I	Min	Тур	Vlax
CPRI Receiver Jitter	Tolerance (15)										
Deterministic Jitter Tolerance (peak-to-peak)	Data Rate = 614.4 Mbps, 1.2288 Gbps, 2.4576 Gbps = 61.44 MHz for 614.4 Mbps = 122.88 MHz for 1.2288 Gbps and 2.4576 Gbps Pattern = CJPAT Equalizer Setting = 6 DC Gain = 0 dB		0.4			0.4			N/A		UI
Combined Deterministic and Random Jitter Tolerance (peak-to-peak)	Data Rate = 614.4 Mbps, 1.2288 Gbps, 2.4576 Gbps = 61.44 MHz for 614.4 Mbps = 122.88 MHz for 1.2288 Gbps and 2.4576 Gbps Pattern = CJPAT Equalizer Setting = 6 DC Gain = 0 dB		0.66		().66			N/A		ψı

Table 4 21. PCS	Latency (Par	t 2 Nov6122)	(1)								
		Transmitter PCS Latency									
Functional Mod	e Configura	tion TX PIPE	TX Phase Comp FIFO	Byte Serializer	TX State Machine	8B/10B Encoder	Sum(2)				
Serial RapidlO	1.25 Gbps, 2.5 Gbps, 3.125 Gbps	-	2-3	1	-	0.5	4-5				
SDI	HD 10-bit channel width	-	2-3	1	-	1	4-5				
	HD, 3G 20-bit channel width	-	2-3	1	-	0.5	4-5				
BASIC Single	8-bit/10-bit channel width	-	2-3	1	-	1	4-5				
Width	16-bit/20-bit channel width	-	2-3	1	-	0.5	4-5				
	16-bit/20-bit channel width	-	2-3	1	-	1	4-5				
BASIC Double Width	32-bit/40-bit channel width	-	2-3	1	-	0.5	4-5				
	Parallel Loopback/ BIST	-	2-3	1	-	1	4-5				

Notes toTable 4 21:

- () The latency numbers are with respect to the PLD-transceiver interface clock cycles.
- 0 The total latency number is rounded off in the Sum column.
- () or CPRI Mbps and . Gbps data rates the uartus II software customies the PLD-transceiver interface clocking to achieve ero clock cycle uncertainty in the transmitter phase compensation IO latency. or more details refer to the CPRI Modesection in theStratix II GX Transceiver Architecture Overview chapter in volume of the Stratix II GX Device Handbook

Table 4 2	Table 4 27. 1.8-V I/O Specifications											
Symbol	Parameter	Conditions	Minim	ım Maxir	num							
V_{CCIO} (1)	Output supply voltage		1.71	1.89	V							
V _{IH}	High-level input voltage		0.65 × V _{ccio}	2.25	V							
V _{IL}	Low-level input voltage		-0.3	0.35 × V _{ccio}	V							
V _{oh}	High-level output voltage	_{OH} = -2 mA (2)	V _{cci0} – 0.45		V							
V _{OL}	Low-level output voltage	_{ol} = 2 mA (2)		0.45	V							

Notes toTable 4 27.

() The Stratix II GX device V_{CCIO} voltage level support of . to is narrower than defined in the Normal Range of the EIA/EDEC standard.

() This specification is supported across all the programmable drive settings available fothis I/O standard as shown in Stratix II GX Architecturechapter in volume of the Stratix II GX Device Handbook

Table 4 28. 1.5-V I/O Specifications						
Symbol	Parameter	Conditions	Minim	ım Maxiı	num	Unit
V_{ccio} (1)	Output supply voltage		1.425	1.575	V	
V _{IH}	High-level input voltage		0.65 V _{ccio}	V _{CCI0} + 0.3	V	
V _{IL}	Low-level input voltage		-0.3	0.35 V _{ccio}	V	
V _{OH}	High-level output voltage	он = -2 mA (2)	0.75 V _{ccio}		V	
V _{OL}	Low-level output voltage	_{ol} = 2 mA (2)		0.25 V _{ccio}	V	

Notes toTable 4 28

() The Stratix II GX device V_{CCIO} voltage level support of . to is narrower than defined in the Normal Range of the EIA/EDEC standard.

() This specification is supported across all the programmable drive settings available for this I/O standard as shown in Stratix II GX Architecture chapter in volume of the Stratix II GX Device Handbook

Unit

Table specifies the input tining measurement setup.

Table 4 54. Timing Measurement Metogy for Input Pins (Part 1 of 120) tes (1)(2) (3) (4)					
	Measurement Conditions			Measuremeni	t Point
1/O Standard	V _{CCIO} (V)	V _{REF} (V)	Edge Rate (n	s) VMEAS (V)	
LVTTL (5)	3.135		3.135	1.5675	
LVCMOS (5)	3.135		3.135	1.5675	
2.5 V (5)	2.375		2.375	1.1875	
1.8 V (5)	1.710		1.710	0.855	
1.5 V (5)	1.425		1.425	0.7125	
PCI (6)	2.970		2.970	1.485	
PCI-X (6)	2.970		2.970	1.485	
SSTL-2 Class I	2.325	1.163	2.325	1.1625	
SSTL-2 Class II	2.325	1.163	2.325	1.1625	
SSTL-18 Class I	1.660	0.830	1.660	0.83	
SSTL-18 Class II	1.660	0.830	1.660	0.83	
1.8-V HSTL Class I	1.660	0.830	1.660	0.83	

4–64 Stratix II GX Device Handbook, Volume 1

Table 4 86. Stratix II GX I/O Outplay Der Column Pins (Part 6 of 7)								
I/O Standard	Drive Strength	Paramete	Fast Corne r Industrial/ Commercia	^r -3 Speed Grade(3)	-3 Speed Grade(4)	-4 Speec Grade	-5 Speed Grade	Unit
Differential	8 mA	t _{OP}	925	1597	1675	1782	1904 p	s
(2)		t _{DIP}	947	1663	1745	1856	1994 p	s
(-)	16 mA	t _{OP}	937	1578	1655	1761	1882 p	s
		t _{DIP}	959	1644	1725	1835	1972 p	s
	18 mA	t _{OP}	933	1585	1663	1768	1890 p	s
		t _{DIP}	955	1651	1733	1842	1980 p	s
	20 mA	t _{OP}	933	1583	1661	1766	1888 p	s
		t _{DIP}	955	1649	1731	1840	1978 p	s
1.8-V differential	4 mA	t _{OP}	956	1608	1687	1794	1943 p	s
HSTL Class I (2)		t _{DIP}	978	1674	1757	1868	2033 p	s
	6 mA	t _{OP}	962	1595	1673	1779	1928 p	s
		t _{DIP}	984	1661	1743	1853	2018 p	s
	8 mA	t _{OP}	940	1586	1664	1769	1917 p	S
		t _{DIP}	962	1652	1734	1843	2007 p	s
	10 mA	t _{OP}	944	1591	1669	1775	1923 p	S
		t _{DIP}	966	1657	1739	1849	2013 p	s
	12 mA	t _{OP}	936	1585	1663	1768	1916 p	S
		t _{DIP}	958	1651	1733	1842	2006 p	S
1.8-V differential	16 mA	t _{OP}	919	1385	1453	1545	1680 p	s
HSTL Class II (2)		t _{DIP}	941	1451	1523	1619	1770 p	s
	18 mA	t _{OP}	921	1394	1462	1555	1691 p	S
		t _{DIP}	943	1460	1532	1629	1781 p	s
	20 mA	t _{OP}	921	1402	1471	1564	1700 p	S
		t _{DIP}	943	1468	1541	1638	1790 p	s