# E·XFL

## Altera - EP2SGX90FF1508C5 Datasheet



Welcome to <u>E-XFL.COM</u>

## Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

## **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                               |
|--------------------------------|---------------------------------------------------------------|
| Product Status                 | Active                                                        |
| Number of LABs/CLBs            | -                                                             |
| Number of Logic Elements/Cells | -                                                             |
| Total RAM Bits                 | -                                                             |
| Number of I/O                  | 650                                                           |
| Number of Gates                | -                                                             |
| Voltage - Supply               | 1.15V ~ 1.25V                                                 |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                               |
| Package / Case                 | 1508-BBGA, FCBGA                                              |
| Supplier Device Package        | 1508-FBGA (30x30)                                             |
| Purchase URL                   | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2sgx90ff1508c5 |
|                                |                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2–4 shows the data path configurations for the Stratix II GX device in single-width and double-width modes.

P

Refer to the section "8B/10B Encoder" on page 2–8 for a description of the single- and double-width modes.

| Table 2–4. Data Path Configurations Note (1) |                                                   |                                                |                                                   |                                                |  |  |  |  |  |  |  |
|----------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
|                                              | Single-Wi                                         | dth Mode                                       | Double-Width Mode                                 |                                                |  |  |  |  |  |  |  |
| Parameter                                    | Without Byte<br>Serialization/<br>Deserialization | With Byte<br>Serialization/<br>Deserialization | Without Byte<br>Serialization/<br>Deserialization | With Byte<br>Serialization/<br>Deserialization |  |  |  |  |  |  |  |
| Fabric to PCS data path width (bits)         | 8 or 10                                           | 16 or 20                                       | 16 or 20                                          | 32 or 40                                       |  |  |  |  |  |  |  |
| Data rate range (Gbps)                       | 0.6 to 2.5                                        | 0.6 to 3.125                                   | 1 to 5.0                                          | 1 to 6.375                                     |  |  |  |  |  |  |  |
| PCS to PMA data path width (bits)            | 8 or 10                                           | 8 or 10                                        | 16 or 20                                          | 16 or 20                                       |  |  |  |  |  |  |  |
| Byte ordering (1)                            |                                                   | ~                                              |                                                   | ~                                              |  |  |  |  |  |  |  |
| Data symbol A (MSB)                          |                                                   |                                                |                                                   | ~                                              |  |  |  |  |  |  |  |
| Data symbol B                                |                                                   | ~                                              |                                                   | ~                                              |  |  |  |  |  |  |  |
| Data symbol C                                |                                                   |                                                | ~                                                 | $\checkmark$                                   |  |  |  |  |  |  |  |
| Data symbol D (LSB)                          | $\checkmark$                                      | $\checkmark$                                   | $\checkmark$                                      | $\checkmark$                                   |  |  |  |  |  |  |  |

#### Note to Table 2–4:

(1) Designs can use byte ordering when byte serialization and deserialization are used.

## 8B/10B Encoder

There are two different modes of operation for 8B/10B encoding. Single-width (8-bit) mode supports natural data rates from 622 Mbps to 3.125 Gbps. Double-width (16-bit cascaded) mode supports data rates above 3.125 Gbps. The encoded data has a maximum run length of five. The 8B/10B encoder can be bypassed. Figure 2–5 diagrams the 10-bit encoding process.

## Serializer (Parallel-to-Serial Converter)

The serializer converts the parallel 8, 10, 16, or 20-bit data into a serial data bit stream, transmitting the least significant bit (LSB) first. The serialized data stream is then fed to the high-speed differential transmit buffer. Figure 2–7 is a diagram of the serializer.





(1) This is a 10-bit serializer. The serializer can also convert 8, 16, and 20 bits of data.

## Transmit Buffer

The Stratix II GX transceiver buffers support the 1.2- and 1.5-V PCML I/O standard at rates up to 6.375 Gbps. The common mode voltage ( $V_{CM}$ ) of the output driver is programmable. The following  $V_{CM}$  values are available when the buffer is in 1.2- and 1.5-V PCML.

- $V_{CM} = 0.6 V$
- $V_{CM} = 0.7 V$



The 8B/10B decoder in single-width mode translates the 10-bit encoded data into the 8-bit equivalent data or control code. The 10-bit code received must be from the supported Dx.y or Kx.y list with the proper disparity or error flags asserted. All 8B/10B control signals, such as disparity error or control detect, are pipelined with the data and edge-aligned with the data. Figure 2–22 shows how the 10-bit symbol is decoded in the 8-bit data + 1-bit control indicator.





The 8B/10B decoder in double-width mode translates the 20-bit (2 × 10-bits) encoded code into the 16-bit (2 × 8-bits) equivalent data or control code. The 20-bit upper and lower symbols received must be from the supported Dx.y or Kx.y list with the proper disparity or error flags

# Adaptive Logic Modules

The basic building block of logic in the Stratix II GX architecture is the ALM. The ALM provides advanced features with efficient logic utilization. Each ALM contains a variety of look-up table (LUT)-based resources that can be divided between two adaptive LUTs (ALUTs). With up to eight inputs to the two ALUTs, one ALM can implement various combinations of two functions. This adaptability allows the ALM to be completely backward-compatible with four-input LUT architectures. One ALM can also implement any function of up to six inputs and certain seven-input functions.

In addition to the adaptive LUT-based resources, each ALM contains two programmable registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a register chain. Through these dedicated resources, the ALM can efficiently implement various arithmetic functions and shift registers. Each ALM drives all types of interconnects: local, row, column, carry chain, shared arithmetic chain, register chain, and direct link interconnects. Figure 2–35 shows a high-level block diagram of the Stratix II GX ALM while Figure 2–36 shows a detailed view of all the connections in the ALM.



Figure 2–35. High-Level Block Diagram of the Stratix II GX ALM

allowing fast horizontal connections to TriMatrix memory and DSP blocks. A shared arithmetic chain can continue as far as a full column. Similar to the carry chains, the shared arithmetic chains are also top- or bottom-half bypassable. This capability allows the shared arithmetic chain to cascade through half of the ALMs in a LAB while leaving the other half available for narrower fan-in functionality. Every other LAB column is top-half bypassable, while the other LAB columns are bottom-half bypassable. Refer to "MultiTrack Interconnect" on page 2–63 for more information on shared arithmetic chain interconnect.

# **Register Chain**

In addition to the general routing outputs, the ALMs in a LAB have register chain outputs. The register chain routing allows registers in the same LAB to be cascaded together. The register chain interconnect allows a LAB to use LUTs for a single combinational function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between ALMs while saving local interconnect resources (see Figure 2–45). The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. See "MultiTrack Interconnect" on page 2–63 for more information about register chain interconnect.



*Figure 2–71. Global and Regional Clock Connections from Center Clock Pins and Fast PLL Outputs Notes (1), (2)* 

### Notes to Figure 2–71:

- (1) EP2SGX30C/D and P2SGX60C/D devices only have two fast PLLs (1 and 2) and two Enhanced PLLs (5 and 6), but the connectivity from these PLLs to the global and regional clock networks remains the same as shown.
- (2) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. A dedicated clock input pin or other PLL must drive the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.

Figure 2–85. Output Timing Diagram in DDR Mode



The Stratix II GX IOE operates in bidirectional DDR mode by combining the DDR input and DDR output configurations. The negative-edge-clocked OE register holds the OE signal inactive until the falling edge of the clock to meet DDR SDRAM timing requirements.

# **External RAM Interfacing**

In addition to the six I/O registers in each IOE, Stratix II GX devices also have dedicated phase-shift circuitry for interfacing with external memory interfaces, including DDR and DDR2 SDRAM, QDR II SRAM, RLDRAM II, and SDR SDRAM. In every Stratix II GX device, the I/O banks at the top (banks 3 and 4) and bottom (banks 7 and 8) of the device support DQ and DQS signals with DQ bus modes of  $\times$ 4,  $\times$ 8/ $\times$ 9,  $\times$ 16/ $\times$ 18, or  $\times$ 32/ $\times$ 36. Table 2–31 shows the number of DQ and DQS buses that are supported per device.

| Table 2-31. DQS and DQ Bus Mode Support |                        |                        |                           |                                |                                |  |  |  |  |  |  |
|-----------------------------------------|------------------------|------------------------|---------------------------|--------------------------------|--------------------------------|--|--|--|--|--|--|
| Device                                  | Package                | Number of<br>×4 Groups | Number of<br>×8/×9 Groups | Number of<br>×16/×18<br>Groups | Number of<br>×32/×36<br>Groups |  |  |  |  |  |  |
| EP2SGX30                                | 780-pin FineLine BGA   | 18                     | 8                         | 4                              | 0                              |  |  |  |  |  |  |
| EP2SGX60                                | 780-pin FineLine BGA   | 18                     | 8                         | 4                              | 0                              |  |  |  |  |  |  |
|                                         | 1,152-pin FineLine BGA | 36                     | 18                        | 8                              | 4                              |  |  |  |  |  |  |
| EP2SGX90                                | 1,152-pin FineLine BGA | 36                     | 18                        | 8                              | 4                              |  |  |  |  |  |  |
|                                         | 1,508-pin FineLine BGA | 36                     | 18                        | 8                              | 4                              |  |  |  |  |  |  |
| EP2SGX130                               | 1,508-pin FineLine BGA | 36                     | 18                        | 8                              | 4                              |  |  |  |  |  |  |



Figure 2–89 shows the block diagram of the Stratix II GX receiver channel.

An external pin or global or regional clock can drive the fast PLLs, which can output up to three clocks: two multiplied high-speed clocks to drive the SERDES block and/or external pin, and a low-speed clock to drive the logic array. In addition, eight phase-shifted clocks from the VCO can feed to the DPA circuitry.

•••

For more information on the fast PLL, see the *PLLs in Stratix II GX Devices* chapter in volume 2 of the *Stratix II GX Handbook*.

The eight phase-shifted clocks from the fast PLL feed to the DPA block. The DPA block selects the closest phase to the center of the serial data eye to sample the incoming data. This allows the source-synchronous circuitry to capture incoming data correctly regardless of the channel-to-channel or clock-to-channel skew. The DPA block locks to a phase closest to the serial data phase. The phase-aligned DPA clock is used to write the data into the synchronizer.

The synchronizer sits between the DPA block and the data realignment and SERDES circuitry. Since every channel utilizing the DPA block can have a different phase selected to sample the data, the synchronizer is needed to synchronize the data to the high-speed clock domain of the data realignment and the SERDES circuitry. For high-speed source synchronous interfaces such as POS-PHY 4 and the Parallel RapidIO standard, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols because the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix II GX device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for user-controlled byte boundary shifting. This simplifies designs while saving ALM resources. You can use an ALM-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment.

# Fast PLL and Channel Layout

The receiver and transmitter channels are interleaved such that each I/O bank on the left side of the device has one receiver channel and one transmitter channel per LAB row. Figure 2–90 shows the fast PLL and channel layout in the EP2SGX30C/D and EP2SGX60C/D devices. Figure 2–91 shows the fast PLL and channel layout in EP2SGX60E, EP2SGX90E/F, and EP2SGX130G devices.





Note to Figure 2–90:

(1) See Table 2–38 for the number of channels each device supports.

| Table 2–42. Docu                                         | Table 2–42. Document Revision History (Part 6 of 6)        |                    |  |  |  |  |  |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|--|
| Date and<br>Document<br>Version                          | Changes Made                                               | Summary of Changes |  |  |  |  |  |  |  |  |
| Previous Chapter<br>03 changes:<br>December 2005<br>v1.1 | Updated Figure 3–56.                                       |                    |  |  |  |  |  |  |  |  |
| Previous Chapter<br>03 changes:<br>October 2005<br>v1.0  | Added chapter to the <i>Stratix II GX Device</i> Handbook. |                    |  |  |  |  |  |  |  |  |

| Table 4–6. Stratix II GX Transceiver Block AC Specification (Part 4 of 6) |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                    |                                                      |      |         |                                    |      |     |
|---------------------------------------------------------------------------|------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|------------------------------------------------------|------|---------|------------------------------------|------|-----|
| Symbol /<br>Description                                                   | Conditions | -3 Speed Commercial<br>Speed Grade |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | -4 Spee<br>and Inc | -4 Speed Commercial<br>and Industrial Speed<br>Grade |      |         | -5 Speed Commercial<br>Speed Grade |      |     |
|                                                                           |            | Min                                | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max  | Min                | Тур                                                  | Max  | Min     | Тур                                | Max  |     |
| Bandwidth at                                                              | BW = Low   | -                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | -                  | 30                                                   | -    | -       | 30                                 | -    | MHz |
| 3.125 Gbps                                                                | BW = Med   | -                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | -                  | 40                                                   | -    | -       | 40                                 | -    | MHz |
|                                                                           | BW = High  | -                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | -                  | 50                                                   | -    | -       | 50                                 | -    | MHz |
| Bandwidth at                                                              | BW = Low   | -                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | -                  | 35                                                   | -    | -       | 35                                 | -    | MHz |
| 2.5 Gbps                                                                  | BW = Med   | -                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | -                  | 50                                                   | -    | -       | 50                                 | -    | MHz |
|                                                                           | BW = High  | -                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | -                  | 60                                                   | -    | -       | 60                                 | -    | MHz |
| Return loss<br>differential<br>mode<br>Return loss<br>common mode         |            |                                    | 100 MHz to 2.5 GHz (XAUI): -10 dB   50 MHz to 1.25 GHz (PCI-E): -10 dB   100 MHz to 4.875 GHz (OIF/CEI): -8dB   4.875 GHz to 10 GHz (OIF/CEI): 16.6 dB/decade slope   100 MHz to 2.5 GHz (XAUI): -6 dB   50 MHz to 1.25 GHz (PCI-E): -6 dB   100 MHz to 4.875 GHz (OIF/CEI): -6 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                    |                                                      |      |         |                                    |      |     |
| Programmable<br>PPM detector<br>(2)                                       |            | ±62.5,<br>2<br>5                   | 4.875 GHz to 10 GHz (OIF/CEI): 16.6 dB/deca     ±62.5, 100, 125, 200,   ±62.5, 100, 125, 200,   ±62.5, 100, 125, 200,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, 300,   ±62.5, 250, |      |                    |                                                      |      |         | 100, 12<br>250, 300<br>500, 100    | ppm  |     |
| Run length (3),<br>(9)                                                    |            |                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 80                 |                                                      |      | 80      |                                    |      | UI  |
| Programmable equalization                                                 |            | -                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16   | -                  | -                                                    | 16   | -       | -                                  | 16   | dB  |
| Signal<br>detect/loss<br>threshold (4)                                    |            | 65                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 175  | 65                 | -                                                    | 175  | 65      | -                                  | 175  | mV  |
| CDR LTR TIme<br>(5), (9)                                                  |            | -                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75   | -                  | -                                                    | 75   | -       | -                                  | 75   | us  |
| CDR Minimum<br>T1b <i>(6)</i> , <i>(9)</i>                                |            | 15                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -    | 15                 | -                                                    | -    | 15      | -                                  | -    | us  |
| LTD lock time<br>(7), (9)                                                 |            | 0                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4000 | 0                  | 100                                                  | 4000 | 0       | 100                                | 4000 | ns  |
| Data lock time<br>from<br>rx_freqloc<br>ked (8), (9)                      |            | -                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4    | -                  | -                                                    | 4    | -       | -                                  | 4    | us  |
| Programmable<br>DC gain                                                   |            |                                    | 0, 3, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 0, 3, 6            |                                                      |      | 0, 3, 6 |                                    |      | dB  |
| Transmitter                                                               |            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                    |                                                      |      |         |                                    |      |     |

| Table 4–19. Stratix II GX Transceiver Block AC Specification Notes (1), (2), (3) (Part 8 of 19) |                                                                                                                      |       |                                       |       |        |                                                         |       |        |                                       |       |    |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------|--------|---------------------------------------------------------|-------|--------|---------------------------------------|-------|----|
| Symbol/<br>Description                                                                          | Conditions                                                                                                           | Comr  | -3 Speed<br>Commercial Speed<br>Grade |       |        | -4 Speed<br>Commercial and<br>Industrial Speed<br>Grade |       |        | -5 Speed<br>Commercial Speed<br>Grade |       |    |
|                                                                                                 |                                                                                                                      | Min   | Тур                                   | Max   | Min    | Тур                                                     | Max   | Min    | Тур                                   | Max   |    |
| GIGE Transmit Jit                                                                               | ter Generation (12)                                                                                                  |       |                                       |       |        |                                                         |       |        |                                       |       |    |
| Deterministic Jitter<br>(peak-to-peak)                                                          | Data Rate =<br>1.25 Gbps<br>REFCLK = 125 MHz<br>Pattern = CRPAT<br>V <sub>OD</sub> = 1400 mV<br>No Pre-emphasis      | -     | -                                     | 0.14  | -      | -                                                       | 0.14  | -      | -                                     | 0.14  | UI |
| Total Jitter<br>(peak-to-peak)                                                                  | Data Rate =<br>1.25 Gbps<br>REFCLK = 125 MHz<br>Pattern = CRPAT<br>V <sub>OD</sub> = 1400 mV<br>No Pre-emphasis      | -     | -                                     | 0.279 | -      | -                                                       | 0.279 | -      | -                                     | 0.279 | UI |
| <b>GIGE Receiver Jit</b>                                                                        | ter Tolerance (12)                                                                                                   |       |                                       |       |        |                                                         |       |        |                                       |       |    |
| Deterministic Jitter<br>Tolerance<br>(peak-to-peak)                                             | Data Rate =<br>1.25 Gbps<br>REFCLK = 125 MHz<br>Pattern = CJPAT<br>No Equalization                                   | > 0.4 |                                       |       | > 0.4  |                                                         |       | > 0.4  |                                       |       | UI |
| Combined<br>Deterministic and<br>Random Jitter<br>Tolerance<br>(peak-to-peak)                   | Data Rate =<br>1.25 Gbps<br>REFCLK = 125 MHz<br>Pattern = CJPAT<br>No Equalization                                   |       | > 0.66                                | 3     | > 0.66 |                                                         |       | > 0.66 |                                       |       | UI |
| HiGig Transmit Jit                                                                              | ter Generation (4), (1                                                                                               | 3)    |                                       |       |        |                                                         |       |        |                                       |       |    |
| Deterministic Jitter<br>(peak-to-peak)                                                          | Data Rate =<br>3.75 Gbps<br>REFCLK =<br>187.5 MHz<br>Pattern = CJPAT<br>V <sub>OD</sub> = 1200 mV<br>No Pre-emphasis | -     | -                                     | 0.17  |        |                                                         |       | -      |                                       |       | UI |
| Total Jitter<br>(peak-to-peak)                                                                  | Data Rate =<br>3.75 Gbps<br>REFCLK =<br>187.5 MHz<br>Pattern = CJPAT<br>V <sub>OD</sub> = 1200 mV<br>No Pre-emphasis | -     | -                                     | 0.35  |        |                                                         |       | -      |                                       |       | UI |

# **DC Electrical Characteristics**

Table 4–23 shows the Stratix II GX device family DC electrical characteristics.

| Table 4-            | Table 4–23. Stratix II GX Device DC Operating Conditions (Part 1 of 2) Note (1) |                                     |           |         |         |         |      |  |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------|-------------------------------------|-----------|---------|---------|---------|------|--|--|--|--|--|
| Symbol              | Parameter                                                                       | Conditions                          | Device    | Minimum | Typical | Maximum | Unit |  |  |  |  |  |
| I <sub>I</sub>      | Input pin leakage<br>current                                                    | $V_{I} = V_{CCIOmax}$ to<br>0 V (2) | All       | -10     |         | 10      | μA   |  |  |  |  |  |
| I <sub>oz</sub>     | Tri-stated I/O pin<br>leakage current                                           | $V_{O} = V_{CCIOmax}$ to<br>0 V (2) | All       | -10     |         | 10      | μA   |  |  |  |  |  |
| I <sub>CCINT0</sub> | V <sub>CCINT</sub> supply current                                               | $V_I = ground, no$                  | EP2SGX30  |         | 0.30    | (3)     | А    |  |  |  |  |  |
|                     | (standby)                                                                       | load, no toggling                   | EP2SGX60  |         | 0.50    | (3)     | А    |  |  |  |  |  |
|                     |                                                                                 | $T_J = 25 \ ^{\circ}C$              | EP2SGX90  |         | 0.62    | (3)     | Α    |  |  |  |  |  |
|                     |                                                                                 |                                     | EP2SGX130 |         | 0.82    | (3)     | А    |  |  |  |  |  |
| I <sub>CCPD0</sub>  | V <sub>CCPD</sub> supply current                                                | $V_I = ground, no$                  | EP2SGX30  |         | 2.7     | (3)     | mA   |  |  |  |  |  |
|                     | (standby)                                                                       | load, no toggling                   | EP2SGX60  |         | 3.6     | (3)     | mA   |  |  |  |  |  |
|                     |                                                                                 | $T_{J} = 25 \text{ °C},$            | EP2SGX90  |         | 4.3     | (3)     | mA   |  |  |  |  |  |
|                     |                                                                                 | $V_{CCPD} = 3.3V$                   | EP2SGX130 |         | 5.4     | (3)     | mA   |  |  |  |  |  |
| I <sub>CCI00</sub>  | V <sub>CCIO</sub> supply current                                                | $V_I = ground, no$                  | EP2SGX30  |         | 4.0     | (3)     | mA   |  |  |  |  |  |
|                     | (standby)                                                                       | load, no toggling                   | EP2SGX60  |         | 4.0     | (3)     | mA   |  |  |  |  |  |
|                     |                                                                                 | $T_{\rm J} = 25 \ ^{\circ}{\rm C}$  | EP2SGX90  |         | 4.0     | (3)     | mA   |  |  |  |  |  |
|                     |                                                                                 |                                     | EP2SGX130 |         | 4.0     | (3)     | mA   |  |  |  |  |  |

Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under worst-case voltage and junction temperature conditions.

| Table 4–52. Stratix II GX Device Timing Model Status |             |              |  |  |  |  |  |  |  |
|------------------------------------------------------|-------------|--------------|--|--|--|--|--|--|--|
| Device                                               | Preliminary | Final        |  |  |  |  |  |  |  |
| EP2SGX30                                             |             | $\checkmark$ |  |  |  |  |  |  |  |
| EP2SGX60                                             |             | $\checkmark$ |  |  |  |  |  |  |  |
| EP2SGX90                                             |             | $\checkmark$ |  |  |  |  |  |  |  |
| EP2SGX130                                            |             | $\checkmark$ |  |  |  |  |  |  |  |

# I/O Timing Measurement Methodology

Different I/O standards require different baseline loading techniques for reporting timing delays. Altera characterizes timing delays with the required termination for each I/O standard and with 0 pF (except for PCI and PCI-X which use 10 pF) loading and the timing is specified up to the output pin of the FPGA device. The Quartus II software calculates the I/O timing for each I/O standard with a default baseline loading as specified by the I/O standards.

The following measurements are made during device characterization. Altera measures clock-to-output delays ( $t_{CO}$ ) at worst-case process, minimum voltage, and maximum temperature (PVT) for default loading conditions shown in Table 4–53. Use the following equations to calculate clock pin to output pin timing for Stratix II GX devices.

- t<sub>CO</sub> from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay
- $t_{xz}/t_{zx} \text{ from clock pin to I/O pin = delay from clock pad to I/O } \\ \text{output register + IOE output register clock-to-output delay + } \\ \text{delay from output register to output pin + I/O output delay + } \\ \text{output enable pin delay }$

Simulation using IBIS models is required to determine the delays on the PCB traces in addition to the output pin delay timing reported by the Quartus II software and the timing model in the device handbook.

- 1. Simulate the output driver of choice into the generalized test setup, using values from Table 4–53.
- 2. Record the time to  $V_{MEAS}$ .

| Table 4–65. EP2SGX30 Column Pins Regional Clock Timing Parameters |            |            |          |          |          |        |  |  |  |  |
|-------------------------------------------------------------------|------------|------------|----------|----------|----------|--------|--|--|--|--|
| Parameter                                                         | Fast (     | Corner     | -3 Speed | -4 Speed | -5 Speed | Unite  |  |  |  |  |
|                                                                   | Industrial | Commercial | Grade    | Grade    | Grade    | UIIIIS |  |  |  |  |
| t <sub>CIN</sub>                                                  | 1.493      | 1.507      | 2.522    | 2.806    | 3.364    | ns     |  |  |  |  |
| t <sub>COUT</sub>                                                 | 1.353      | 1.372      | 2.525    | 2.809    | 3.364    | ns     |  |  |  |  |
| t <sub>PLLCIN</sub>                                               | 0.087      | 0.104      | 0.237    | 0.253    | 0.292    | ns     |  |  |  |  |
| t <sub>PLLCOUT</sub>                                              | -0.078     | -0.061     | 0.237    | 0.253    | 0.29     | ns     |  |  |  |  |

| Table 4–66. EP2SGX30 Row Pins Regional Clock Timing Parameters |            |            |          |          |          |        |  |  |  |  |
|----------------------------------------------------------------|------------|------------|----------|----------|----------|--------|--|--|--|--|
| Parameter                                                      | Fast (     | Corner     | -3 Speed | -4 Speed | -5 Speed | Unite  |  |  |  |  |
|                                                                | Industrial | Commercial | Grade    | Grade    | Grade    | UIIIIS |  |  |  |  |
| t <sub>CIN</sub>                                               | 1.246      | 1.262      | 2.437    | 2.712    | 3.246    | ns     |  |  |  |  |
| t <sub>COUT</sub>                                              | 1.251      | 1.267      | 2.437    | 2.712    | 3.246    | ns     |  |  |  |  |
| t <sub>PLLCIN</sub>                                            | -0.18      | -0.167     | 0.215    | 0.229    | 0.263    | ns     |  |  |  |  |
| t <sub>PLLCOUT</sub>                                           | -0.175     | -0.162     | 0.215    | 0.229    | 0.263    | ns     |  |  |  |  |

# EP2SGX60 Clock Timing Parameters

Tables 4–67 through 4–70 show the maximum clock timing parameters for EP2SGX60 devices.

| Table 4–67. EP2SGX60 Column Pins Global Clock Timing Parameters |            |            |          |          |          |       |  |  |  |  |
|-----------------------------------------------------------------|------------|------------|----------|----------|----------|-------|--|--|--|--|
| Parameter                                                       | Fast (     | Corner     | -3 Speed | -4 Speed | -5 Speed | Unite |  |  |  |  |
|                                                                 | Industrial | Commercial | Grade    | Grade    | Grade    | Units |  |  |  |  |
| t <sub>CIN</sub>                                                | 1.722      | 1.736      | 2.940    | 3.275    | 3.919    | ns    |  |  |  |  |
| t <sub>COUT</sub>                                               | 1.557      | 1.571      | 2.698    | 3.005    | 3.595    | ns    |  |  |  |  |
| t <sub>PLLCIN</sub>                                             | 0.037      | 0.051      | 0.474    | 0.521    | 0.613    | ns    |  |  |  |  |
| t <sub>pllcout</sub>                                            | -0.128     | -0.114     | 0.232    | 0.251    | 0.289    | ns    |  |  |  |  |

| Table 4–81                                        | Table 4–81. Stratix II GX IOE Programmable Delay on Row Pins Note (1) |          |               |               |               |               |               |               |               |               |               |               |             |             |             |             |             |      |
|---------------------------------------------------|-----------------------------------------------------------------------|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|------|
| Doromotor                                         | Paths<br>Affected                                                     | Paths    | Paths         | Paths         | Paths         | Paths         | Available     | Mini<br>Tin   | mum<br>1ing   | -3 S<br>Gra   | peed<br>ade   | -3 S<br>Gra   | peed<br>ade | -4 S<br>Gra | peed<br>ade | -5 S<br>Gra | peed<br>ade | Unit |
| Farailieler                                       |                                                                       | Settings | Min<br>Offset | Max<br>Offset | UIII        |             |             |             |             |      |
| Input delay<br>from pin to<br>internal<br>cells   | Pad to I/O<br>dataout to<br>logic array                               | 8        | 0             | 1782          | 0             | 2876          | 0             | 3020          | 0             | 3212          | 0             | 3853          | ps          |             |             |             |             |      |
| Input delay<br>from pin to<br>input<br>register   | Pad to I/O<br>input<br>register                                       | 64       | 0             | 2054          | 0             | 3270          | 0             | 3434          | 0             | 3652          | 0             | 4381          | ps          |             |             |             |             |      |
| Delay from<br>output<br>register to<br>output pin | I/O output<br>register to<br>pad                                      | 2        | 0             | 332           | 0             | 500           | 0             | 525           | 0             | 559           | 0             | 670           | ps          |             |             |             |             |      |
| Output<br>enable pin<br>delay                     | t <sub>XZ</sub> , t <sub>ZX</sub>                                     | 2        | 0             | 320           | 0             | 483           | 0             | 507           | 0             | 539           | 0             | 647           | ps          |             |             |             |             |      |

(1) The incremental values for the settings are generally linear. For the exact delay associated with each setting, use the latest version of the Quartus II software.

# Default Capacitive Loading of Different I/O Standards

See Table 4–82 for default capacitive loading of different I/O standards.

| Table 4–82. Default Loading of Different I/O Standards for Stratix II GX<br>Devices (Part 1 of 2) |                 |      |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------|------|--|--|--|
| I/O Standard                                                                                      | Capacitive Load | Unit |  |  |  |
| LVTTL                                                                                             | 0               | pF   |  |  |  |
| LVCMOS                                                                                            | 0               | pF   |  |  |  |
| 2.5 V                                                                                             | 0               | pF   |  |  |  |
| 1.8 V                                                                                             | 0               | pF   |  |  |  |
| 1.5 V                                                                                             | 0               | pF   |  |  |  |
| PCI                                                                                               | 10              | pF   |  |  |  |
| PCI-X                                                                                             | 10              | pF   |  |  |  |
| SSTL-2 Class I                                                                                    | 0               | pF   |  |  |  |
| SSTL-2 Class II                                                                                   | 0               | pF   |  |  |  |

| Table 4–87. Stratix II GX I/O Output Delay for Row Pins (Part 3 of 4) |                   |                  |                                          |                              |                              |                   |                   |      |
|-----------------------------------------------------------------------|-------------------|------------------|------------------------------------------|------------------------------|------------------------------|-------------------|-------------------|------|
| I/O Standard                                                          | Drive<br>Strength | Parameter        | Fast Corner<br>Industrial/<br>Commercial | -3 Speed<br>Grade <i>(3)</i> | -3 Speed<br>Grade <i>(4)</i> | -4 Speed<br>Grade | -5 Speed<br>Grade | Unit |
| SSTL-18                                                               | 4 mA              | t <sub>OP</sub>  | 1038                                     | 1709                         | 1793                         | 1906              | 2046              | ps   |
| Class I                                                               |                   | t <sub>DIP</sub> | 995                                      | 1654                         | 1736                         | 1846              | 1973              | ps   |
|                                                                       | 6 mA              | t <sub>OP</sub>  | 1042                                     | 1648                         | 1729                         | 1838              | 1975              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 999                                      | 1593                         | 1672                         | 1778              | 1902              | ps   |
|                                                                       | 8 mA              | t <sub>OP</sub>  | 1018                                     | 1633                         | 1713                         | 1821              | 1958              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 975                                      | 1578                         | 1656                         | 1761              | 1885              | ps   |
|                                                                       | 10 mA (1)         | t <sub>OP</sub>  | 1021                                     | 1615                         | 1694                         | 1801              | 1937              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 978                                      | 1560                         | 1637                         | 1741              | 1864              | ps   |
| 1.8-V HSTL                                                            | 4 mA              | t <sub>OP</sub>  | 1019                                     | 1610                         | 1689                         | 1795              | 1956              | ps   |
| Class I                                                               |                   | t <sub>DIP</sub> | 976                                      | 1555                         | 1632                         | 1735              | 1883              | ps   |
|                                                                       | 6 mA              | t <sub>OP</sub>  | 1022                                     | 1580                         | 1658                         | 1762              | 1920              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 979                                      | 1525                         | 1601                         | 1702              | 1847              | ps   |
|                                                                       | 8 mA              | t <sub>OP</sub>  | 1004                                     | 1576                         | 1653                         | 1757              | 1916              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 961                                      | 1521                         | 1596                         | 1697              | 1843              | ps   |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1008                                     | 1567                         | 1644                         | 1747              | 1905              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 965                                      | 1512                         | 1587                         | 1687              | 1832              | ps   |
|                                                                       | 12 mA <i>(1)</i>  | t <sub>OP</sub>  | 999                                      | 1566                         | 1643                         | 1746              | 1904              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 956                                      | 1511                         | 1586                         | 1686              | 1831              | ps   |
| 1.5-V HSTL                                                            | 4 mA              | t <sub>OP</sub>  | 1018                                     | 1591                         | 1669                         | 1774              | 1933              | ps   |
| Class I                                                               |                   | t <sub>DIP</sub> | 975                                      | 1536                         | 1612                         | 1714              | 1860              | ps   |
|                                                                       | 6 mA              | t <sub>OP</sub>  | 1021                                     | 1579                         | 1657                         | 1761              | 1919              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 978                                      | 1524                         | 1600                         | 1701              | 1846              | ps   |
|                                                                       | 8 mA (1)          | t <sub>OP</sub>  | 1006                                     | 1572                         | 1649                         | 1753              | 1911              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 963                                      | 1517                         | 1592                         | 1693              | 1838              | ps   |
| Differential                                                          | 8 mA              | t <sub>OP</sub>  | 1050                                     | 1759                         | 1846                         | 1962              | 2104              | ps   |
| SSTL-2 Class I                                                        |                   | t <sub>DIP</sub> | 1007                                     | 1704                         | 1789                         | 1902              | 2031              | ps   |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1026                                     | 1694                         | 1777                         | 1889              | 2028              | ps   |
|                                                                       |                   | t <sub>DIP</sub> | 983                                      | 1639                         | 1720                         | 1829              | 1955              | ps   |
| Differential                                                          | 16 mA             | t <sub>OP</sub>  | 992                                      | 1581                         | 1659                         | 1763              | 1897              | ps   |
| SSTL-2 Class II                                                       |                   | t <sub>DIP</sub> | 949                                      | 1526                         | 1602                         | 1703              | 1824              | ps   |

| Table 4–90. Stratix II GX Maximum Input Clock Rate for Dedicated Clock Pins (Part 2 of 2) |                |                |                |      |  |  |
|-------------------------------------------------------------------------------------------|----------------|----------------|----------------|------|--|--|
| I/O Standard                                                                              | -3 Speed Grade | -4 Speed Grade | -5 Speed Grade | Unit |  |  |
| 1.8-V HSTL CLass I                                                                        | 500            | 500            | 500            | MHz  |  |  |
| PCI                                                                                       | 500            | 500            | 400            | MHz  |  |  |
| PCI-X                                                                                     | 500            | 500            | 400            | MHz  |  |  |
| Differential SSTL-2<br>Class I                                                            | 500            | 500            | 500            | MHz  |  |  |
| Differential SSTL-2<br>Class II                                                           | 500            | 500            | 500            | MHz  |  |  |
| Differential SSTL-18<br>Class I                                                           | 500            | 500            | 500            | MHz  |  |  |
| Differential SSTL-18<br>Class II                                                          | 500            | 500            | 500            | MHz  |  |  |
| 1.8-V differential<br>HSTL Class I                                                        | 500            | 500            | 500            | MHz  |  |  |
| 1.8-V differential<br>HSTL Class II                                                       | 500            | 500            | 500            | MHz  |  |  |
| 1.5-V differential<br>HSTL Class I                                                        | 500            | 500            | 500            | MHz  |  |  |
| 1.5-V differential<br>HSTL Class I I                                                      | 500            | 500            | 500            | MHz  |  |  |
| HyperTransport (1)                                                                        | 717            | 717            | 640            | MHz  |  |  |
|                                                                                           | 450            | 450            | 400            | MHz  |  |  |
| LVPECL (1), (2)                                                                           | 717            | 717            | 640            | MHz  |  |  |
|                                                                                           | 450            | 450            | 400            | MHz  |  |  |
| LVDS (1)                                                                                  | 717            | 717            | 640            | MHz  |  |  |
|                                                                                           | 450            | 450            | 400            | MHz  |  |  |

(1) The first set of numbers refers to the HIO dedicated clock pins. The second set of numbers refers to the VIO dedicated clock pins.(2) LVPECL is only supported on column clock pins.

| Table 4–93. Stratix II GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 4 of 4) |                |                   |                   |                   |      |  |
|--------------------------------------------------------------------------------------------|----------------|-------------------|-------------------|-------------------|------|--|
| I/O Standard                                                                               | Drive Strength | -3 Speed<br>Grade | -4 Speed<br>Grade | -5 Speed<br>Grade | Unit |  |
| 1.8-V differential                                                                         | 16 mA          | 500               | 500               | 450               | MHz  |  |
| Class II                                                                                   | 18 mA          | 550               | 500               | 500               | MHz  |  |
|                                                                                            | 20 mA          | 550               | 550               | 550               | MHz  |  |
| 1.5-V differential Class I                                                                 | 4 mA           | 350               | 300               | 300               | MHz  |  |
|                                                                                            | 6 mA           | 500               | 500               | 450               | MHz  |  |
|                                                                                            | 8 mA           | 700               | 650               | 600               | MHz  |  |
|                                                                                            | 10 mA          | 700               | 700               | 650               | MHz  |  |
|                                                                                            | 12 mA          | 700               | 700               | 700               | MHz  |  |
| 1.5-V differential<br>Class II                                                             | 16 mA          | 600               | 600               | 550               | MHz  |  |
|                                                                                            | 18 mA          | 650               | 600               | 600               | MHz  |  |
|                                                                                            | 20 mA          | 700               | 650               | 600               | MHz  |  |
| HyperTransport                                                                             | -              | 300               | 250               | 125               | MHz  |  |
| LVPECL                                                                                     | -              | 450               | 400               | 300               | MHz  |  |

(1) This is the default setting in Quartus II software.

Table 4–94 shows the maximum output clock toggle rate for Stratix II GX device series-terminated column pins.

| Table 4–94. Stratix II GX Maximum Output Clock Rate for Column Pins (Series Termination) (Part 1 of 2) |                |                |                |                |      |  |
|--------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|------|--|
| I/O Standard                                                                                           | Drive Strength | -3 Speed Grade | -4 Speed Grade | -5 Speed Grade | Unit |  |
| LVTTL                                                                                                  | OCT_25_OHMS    | 400            | 400            | 350            | MHz  |  |
|                                                                                                        | OCT_50_OHMS    | 400            | 400            | 350            | MHz  |  |
| LVCMOS                                                                                                 | OCT_25_OHMS    | 350            | 350            | 300            | MHz  |  |
|                                                                                                        | OCT_50_OHMS    | 350            | 350            | 300            | MHz  |  |
| 2.5 V                                                                                                  | OCT_25_OHMS    | 350            | 350            | 300            | MHz  |  |
|                                                                                                        | OCT_50_OHMS    | 350            | 350            | 300            | MHz  |  |
| 1.8 V                                                                                                  | OCT_25_OHMS    | 700            | 550            | 450            | MHz  |  |
|                                                                                                        | OCT_50_OHMS    | 700            | 550            | 450            | MHz  |  |
| 1.5 V                                                                                                  | OCT_50_OHMS    | 550            | 450            | 400            | MHz  |  |
| SSTL-2 Class I                                                                                         | OCT_50_OHMS    | 600            | 500            | 500            | MHz  |  |
| SSTL-2 Class II                                                                                        | OCT_25_OHMS    | 600            | 550            | 500            | MHz  |  |

**Table 4–100.** Maximum DCD for DDIO Output on Row I/O Pins Without PLL in the Clock Path for -3 Devices Note (1)

| Maximum DCD (ps) for<br>Row DDIO Output I/O<br>Standard | Input I/O Standard (No PLL in Clock Path) |                  |        |                  |       |      |
|---------------------------------------------------------|-------------------------------------------|------------------|--------|------------------|-------|------|
|                                                         | TTL/CMOS                                  |                  | SSTL-2 | SSTL/HSTL        | LVDS  | Unit |
|                                                         | 3.3 and<br>2.5 V                          | 1.8 and<br>1.5 V | 2.5 V  | 1.8 and<br>1.5 V | 3.3 V |      |
| 3.3-V LVTTL                                             | 260                                       | 380              | 145    | 145              | 110   | ps   |
| 3.3-V LVCMOS                                            | 210                                       | 330              | 100    | 100              | 65    | ps   |
| 2.5 V                                                   | 195                                       | 315              | 85     | 85               | 75    | ps   |
| 1.8 V                                                   | 150                                       | 265              | 85     | 85               | 120   | ps   |
| 1.5-V LVCMOS                                            | 255                                       | 370              | 140    | 140              | 105   | ps   |
| SSTL-2 Class I                                          | 175                                       | 295              | 65     | 65               | 70    | ps   |
| SSTL-2 Class II                                         | 170                                       | 290              | 60     | 60               | 75    | ps   |
| SSTL-18 Class I                                         | 155                                       | 275              | 55     | 50               | 90    | ps   |
| 1.8-V HSTL Class I                                      | 150                                       | 270              | 60     | 60               | 95    | ps   |
| 1.5-V HSTL Class I                                      | 150                                       | 270              | 55     | 55               | 90    | ps   |
| LVDS                                                    | 180                                       | 180              | 180    | 180              | 180   | ps   |

(1) The information in Table 4–100 assumes the input clock has zero DCD.

Here is an example for calculating the DCD in percentage for a DDIO output on a row I/O on a -3 device:

If the input I/O standard is 2.5-V SSTL-2 and the DDIO output I/O standard is SSTL-2 Class= II, the maximum DCD is 60 ps (see Table 4–100). If the clock frequency is 267 MHz, the clock period T is:

T = 1/ f = 1 / 267 MHz = 3.745 ns = 3,745 ps

Calculate the DCD as a percentage:

(T/2 - DCD) / T = (3,745 ps/2 - 60 ps) / 3745 ps = 48.4% (for low boundary)

(T/2 + DCD) / T = (3,745 ps/2 + 60 ps) / 3745 ps = 51.6% (for high boundary)