

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	47
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x10/12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3s8ba-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The Atmel SAM3S8/SD8 series is a member of a family of Flash microcontrollers based on the high performance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 64 MHz and features up to 512 Kbytes of Flash (dual plane on SAM3SD8) and up to 64 Kbytes of SRAM. The peripheral set includes a Full Speed USB Device port with embedded transceiver, a High Speed MCI for SDIO/SD/MMC, an External Bus Interface featuring a Static Memory Controller providing connection to SRAM, PSRAM, NOR Flash, LCD Module and NAND Flash, 2(3)x USARTs, (3 on SAM3SD8C) 2x UARTs, 2x TWIs, 3x SPI, an I2S, as well as 1 PWM timer, 6x general-purpose 16-bit timers (with stepper motor and quadrature decoder logic support), an RTC, a 12-bit ADC, a 12-bit DAC and an analog comparator.

The SAM3S8/SD8 series is ready for capacitive touch thanks to the QTouch[®] library, offering an easy way to implement buttons, wheels and sliders.

The SAM3S8/SD8 device is a medium range general purpose microcontroller with the best ratio in terms of reduced power consumption, processing power and peripheral set. This enables the SAM3S8/SD8 to sustain a wide range of applications including consumer, industrial control, and PC peripherals.

It operates from 1.62V to 3.6V and is available in 64- and 100-pin QFP, 64-pin QFN, and 100-pin BGA packages.

The SAM3S8/SD8 series is the ideal migration path from the SAM7S series for applications that require more performance. The SAM3S8/SD8 series is pin-to-pin compatible with the SAM7S series.

1.1 Configuration Summary

The SAM3S8/SD8 series devices differ in memory size, package and features. Table 1-1 summarizes the configurations of the device family.

Feature	SAM3S8B	SAM3S8C	SAM3SD8B	SAM3SD8C	
Flash	512 Kbytes	512 Kbytes	512 Kbytes	512 Kbytes	
SRAM	64 Kbytes	64 Kbytes	64 Kbytes	64 Kbytes	
Package	LQFP64 QFN64	LQFP100 BGA100	LQFP64 QFN64	LQFP100 BGA100	
Number of PIOs	47	79	47	79	
12-bit ADC	11 channels ⁽²⁾	16 channels ⁽²⁾	11 channels ⁽²⁾	16 channels ⁽²⁾	
12-bit DAC	2 channels	2 channels	2 channels	2 channels	
Timer Counter Channels	6	6	6	6	
PDC Channels	22	22	24	24	
USART/UART	2/2 ⁽¹⁾	2/2 ⁽¹⁾	2/2 ⁽¹⁾	3/2 ⁽¹⁾	
HSMCI	1 port/4 bits	1 port/4 bits	1 port/4 bits	1 port/4 bits	
External Bus Interface	-	8-bit data, 4 chip selects, 24-bit address	-	8-bit data, 4 chip selects, 24-bit address	

Table 1-1.Configuration Summary

Notes: 1. Full Modem support on USART1.

2. One channel is reserved for internal temperature sensor.

² SAM3S8/SD8 Summary

3. Signal Description

Table 3-1 gives details on signal names classified by peripheral.

Signal Name	Function	Туре	Active Level	Voltage reference	Comments			
Power Supplies								
VDDIO	DIO Peripherals I/O Lines and USB transceiver Power Supply Power			1.62V to 3.6V				
VDDIN	Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply	Power			1.8V to 3.6V ⁽⁴⁾			
VDDOUT	Voltage Regulator Output	Power			1.8V Output			
VDDPLL	Oscillator and PLL Power Supply	Power			1.62 V to 1.95V			
VDDCORE	Power the core, the embedded memories and the peripherals Power			1.62V to 1.95V				
GND	Ground	Ground						
	Clocks, Oscilla	tors and PLI	Ls					
XIN	Main Oscillator Input	Input			Reset State:			
XOUT	Main Oscillator Output	Output			- PIO Input			
XIN32	Slow Clock Oscillator Input	Input			- Internal Pull-up disabled			
XOUT32	Slow Clock Oscillator Output	Output		VDDIO	- Schmitt Trigger enabled ⁽			
PCK0 - PCK2	Programmable Clock Output	Output			Reset State: - PIO Input - Internal Pull-up enabled - Schmitt Trigger enabled ⁽¹⁾			
	Real Tin	ne Clock	1	1				
RTCOUT0	Programmable RTC waveform output	Output			Reset State:			
RTCOUT1	Programmable RTC waveform output	Output		VDDIO	 PIO Input Internal Pull-up disabled Schmitt Trigger enabled⁽¹⁾ 			
	Serial Wire/JTAG Do	ebug Port - S	WJ-DP					
TCK/SWCLK	Test Clock/Serial Wire Clock	Input						
TDI	Test Data In	Input]	Reset State: - SWJ-DP Mode			
TDO/TRACESWO	Test Data Out / Trace Asynchronous Data Out	Output		VDDIO	 SWJ-DP Mode Internal pull-up disabled⁽⁵⁾ Schmitt Trigger enabled⁽¹⁾ 			
TMS/SWDIO	Test Mode Select /Serial Wire Input/Output	Input / I/O						
JTAGSEL	JTAG Selection	Input	High		Permanent Internal pull-down			

SAM3S8/SD8 Summary

Signal Nama	Function	Tumo	Active	Voltage	Commente
Signal Name	Universal Synchronous Asynchron	Туре	Level		Comments
	USARTx Serial Clock				
SCKx		I/O			
TXDx	USARTx Transmit Data	I/O			
RXDx	USARTx Receive Data	Input			
RTSx	USARTx Request To Send	Output			
CTSx	USARTx Clear To Send	Input			
DTR1	USART1 Data Terminal Ready	I/O			
DSR1	USART1 Data Set Ready	Input			
DCD1	USART1 Data Carrier Detect	Output			
RI1	USART1 Ring Indicator	Input			
	Synchronous Seria	al Controller	- SSC		
TD	SSC Transmit Data	Output			
RD	SSC Receive Data	Input			
ТК	SSC Transmit Clock	I/O			
RK	SSC Receive Clock	I/O			
TF	SSC Transmit Frame Sync	I/O			
RF	SSC Receive Frame Sync	I/O			
	Timer/Cou	unter - TC	1	1	
TCLKx	TC Channel x External Clock Input	Input			
TIOAx	TC Channel x I/O Line A	I/O			
TIOBx	TC Channel x I/O Line B	I/O			
	Pulse Width Modulati	on Controlle	er- PWMC		
PWMHx	PWM Waveform Output High for channel x	Output			
PWMLx	PWM Waveform Output Low for channel x	Output			only output in complementary mode when dead time insertion is enabled.
PWMFI0	PWM Fault Input	Input			
	Serial Periphera	I Interface -	SPI		
MISO	Master In Slave Out	I/O			
MOSI	Master Out Slave In	I/O			
SPCK	SPI Serial Clock	I/O			
SPI_NPCS0	SPI Peripheral Chip Select 0	I/O	Low		
SPI_NPCS1 - SPI_NPCS3	SPI Peripheral Chip Select	Output	Low		

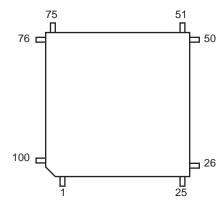
Table 3-1. Signal Description List (Continued)

Signal Name Function		Туре	Active Level	Voltage reference	Comments			
Two-Wire Interface- TWI								
TWDx	TWIx Two-wire Serial Data	I/O						
TWCKx	TWIx Two-wire Serial Clock	I/O						
Analog								
ADVREF	ADC, DAC and Analog Comparator Reference	Analog						
	12-bit Analog-to-E	Digital Converte	er - ADC					
AD0-AD14	Analog Inputs	Analog, Digital						
ADTRG	ADC Trigger	Input		VDDIO				
	12-bit Digital-to-A	nalog Converte	er - DAC					
DAC0 - DAC1	C0 - DAC1 Analog output Analog, Digital							
DACTRG DAC Trigger		Input		VDDIO				
	Fast Flash Progra	mming Interfac	e - FFPI					
PGMEN0- PGMEN2	Programming Enabling	Input		VDDIO				
PGMM0-PGMM3	Programming Mode	Input						
PGMD0-PGMD15	Programming Data	I/O						
PGMRDY	Programming Ready	Output	High					
PGMNVALID	Data Direction	Output	Low	VDDIO				
PGMNOE	Programming Read	Input	Low					
PGMCK	Programming Clock	Input						
PGMNCMD	Programming Command	Input	Input Low					
	USB Full	Speed Device						
DDM	USB Full Speed Data -	ed Data -			Reset State:			
DDP	DP USB Full Speed Data + Digital			VDDIO	- USB Mode - Internal Pull-down ⁽³⁾			

Table 3-1. Signal Description List (Continued)

Note: 1. Schmitt Triggers can be disabled through PIO registers.

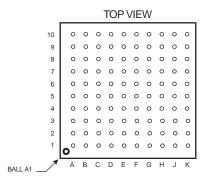
- 2. Some PIO lines are shared with System I/Os.
- 3. Refer to USB Section of the product Electrical Characteristics for information on Pull-down value in USB Mode.
- 4. See "Typical Powering Schematics" Section for restrictions on voltage range of Analog Cells.
- 5. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this PIO line must be enabled to avoid current consumption due to floating input.


4. Package and Pinout

SAM3S8/SD8 devices are pin-to-pin compatible with AT91SAM7S legacy products for 64-pin version. Furthermore, SAM3S8/SD8 products have new functionalities referenced in italic in Table 4-1, Table 4-3.

4.1 SAM3S8C/8DC Package and Pinout

4.1.1 100-Lead LQFP Package Outline


Figure 4-1. Orientation of the 100-lead LQFP Package

4.1.2 100-ball TFBGA Package Outline

The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are $9 \times 9 \times 1.1$ mm. Figure 4-2 shows the orientation of the 100-ball TFBGA Package.

Figure 4-2. Orientation of the 100-ball TFBGA Package

4.1.3 100-Lead LQFP Pinout

1	ADVREF		
2	GND		
3	PB0/AD4		
4	PC29/AD13		
5	PB1/AD5		
6	PC30/AD14		
7	PB2/AD6		
8	PC31		
9	PB3/AD7		
10	VDDIN		
11	VDDOUT		
12	PA17/PGMD5/AD0		
13	PC26		
14	PA18/PGMD6/AD1		
15	PA21/PGMD9/AD8		
16	VDDCORE		
17	PC27		
18	PA19/PGMD7/AD2		
19	PC15/AD11		
20	PA22/PGMD10/AD 9		
21	PC13/AD10		
22	PA23/PGMD11		
23	PC12/AD12		
24	PA20/PGMD8/AD3		
25	PC0		

Table 4-1.	SAM3S8C/SD8C 100-lead LQFP pinout

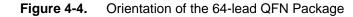
100-1	
26	GND
27	VDDIO
28	PA16/PGMD4
29	PC7
30	PA15/PGMD3
31	PA14/PGMD2
32	PC6
33	PA13/PGMD1
34	PA24/PGMD12
35	PC5
36	VDDCORE
37	PC4
38	PA25/PGMD13
39	PA26/PGMD14
40	PC3
41	PA12/PGMD0
42	PA11/PGMM3
43	PC2
44	PA10/PGMM2
45	GND
46	PA9/PGMM1
47	PC1
48	PA8/XOUT32/ PGMM0
49	PA7/XIN32/ PGMNVALID
50	VDDIO

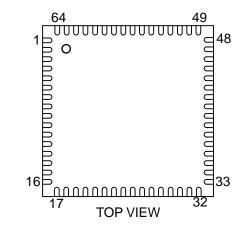
51	TDI/PB4					
52	PA6/PGMNOE					
53	PA5/PGMRDY					
54	PC28					
55	PA4/PGMNCMD					
56	VDDCORE					
57	PA27/PGMD15					
58	PC8					
59	PA28					
60	NRST					
61	TST					
62	PC9					
63	PA29					
64	PA30					
65	PC10					
66	PA3					
67	PA2/PGMEN2					
68	PC11					
69	VDDIO					
70	GND					
71	PC14					
72	PA1/PGMEN1					
73	PC16					
74	PA0/PGMEN0					
75	PC17					

76	TDO/TRACESWO/ PB5					
77	JTAGSEL					
78	PC18					
79	TMS/SWDIO/PB6					
80	PC19					
81	PA31					
82	PC20					
83	TCK/SWCLK/PB7					
84	PC21					
85	VDDCORE					
86	PC22					
87	ERASE/PB12					
88	DDM/PB10					
89	DDP/PB11					
90	PC23					
91	VDDIO					
92	PC24					
93	PB13/DAC0					
94	PC25					
95	GND					
96	PB8/XOUT					
97	PB9/PGMCK/XIN					
98	VDDIO					
99	PB14/DAC1					
100	VDDPLL					

Т

4.2 SAM3S8B/D8B Package and Pinout

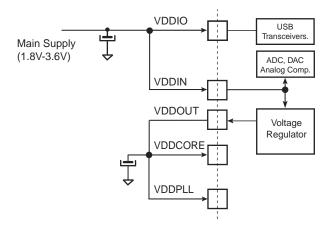

4.2.1 64-Lead LQFP Package Outline


Figure 4-3. Orientation of the 64-lead LQFP Package

1

4.2.2 64-lead QFN Package Outline

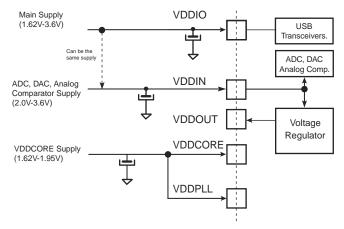
12 SAM3S8/SD8 Summary


4.2.3 64-Lead LQFP and QFN Pinout

	•								
1	ADVREF	17	GND		33	TDI/PB4		49	TDO/TRACESWO/ PB5
2	GND	18	VDDIO		34	PA6/PGMNOE		50	JTAGSEL
3	PB0/AD4	19	PA16/PGMD4		35	PA5/PGMRDY		51	TMS/SWDIO/PB6
4	PB1/AD5	20	PA15/PGMD3		36	PA4/PGMNCMD		52	PA31
5	PB2/AD6	21	PA14/PGMD2		37	PA27/PGMD15		53	TCK/SWCLK/PB7
6	PB3/AD7	22	PA13/PGMD1		38	PA28		54	VDDCORE
7	VDDIN	23	PA24/PGMD12		39	NRST		55	ERASE/PB12
8	VDDOUT	24	VDDCORE		40	TST		56	DDM/PB10
9	PA17/PGMD5/ AD <i>0</i>	25	PA25/PGMD13		41	PA29		57	DDP/PB11
10	PA18/PGMD6/ AD1	26	PA26/PGMD14		42	PA30		58	VDDIO
11	PA21/PGMD9/ AD8	27	PA12/PGMD0		43	PA3		59	PB13/DAC0
12	VDDCORE	28	PA11/PGMM3		44	PA2/PGMEN2		60	GND
13	PA19/PGMD7/ AD2	29	PA10/PGMM2		45	VDDIO		61	XOUT/PB8
14	PA22/PGMD10/ AD9	30	PA9/PGMM1		46	GND		62	XIN/PGMCK/PB9
15	PA23/PGMD11	31	PA8/XOUT32/ PGMM0		47	PA1/PGMEN1		63	PB14/DAC1
16	PA20/PGMD8/ AD3	32	PA7/ <i>XIN32/</i> PGMNVALID		48	PA0/PGMEN0		64	VDDPLL
Noto	The better ned of the		and managed has a service at a	-	and a strength of		-		

Table 4-3.64-pin SAM3S8B/D8B pinout

Note: The bottom pad of the QFN package must be connected to ground.


Figure 5-1. Single Supply

Note: Restrictions

With Main Supply < 2.0 V, USB and ADC/DAC and Analog comparator are not usable. With Main Supply \ge 2.0V and < 3V, USB is not usable. With Main Supply \ge 3V, all peripherals are usable.

Figure 5-2. Core Externally Supplied

Note: Restrictions

With Main Supply < 2.0V, USB is not usable.

With VDDIN < 2.0V, ADC, DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable.

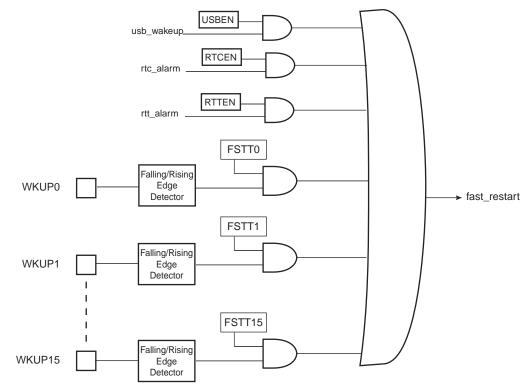

With Main Supply and VDDIN \ge 3V, all peripherals are usable.


Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.

5.7 Fast Startup

The SAM3S8/SD8 allows the processor to restart in a few microseconds while the processor is in wait mode or in sleep mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast startup signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4 MHz Fast RC oscillator, switches the master clock on this 4MHz clock and reenables the processor clock.

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM3S8/SD8 series. The TST pin integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations. To enter fast programming mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing and test mode, refer to the "Debug and Test" section of the product datasheet.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 k Ω . By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 k Ω to GND, so that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted erasing. Refer to Section 10.17 "Peripheral Signal Multiplexing on I/O Lines" on page 40. Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash.

9.1.3.4 Flash Speed

The user needs to set the number of wait states depending on the frequency used:

For more details, refer to the "AC Characteristics" sub-section of the product "Electrical Characteristics".

9.1.3.5 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several consecutive pages, and each lock region has its associated lock bit.

	Table 9-1.	Lock bit number
--	------------	-----------------

Product	Number of lock bits	Lock region size
SAM3S8/SD8	16	32 kbytes (128 pages)

If a locked-region's erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

9.1.3.6 Security Bit Feature

The SAM3S8/SD8 features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the security is enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command "Set General Purpose NVM Bit 0" of the EEFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal Peripherals are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

9.1.3.7 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

9.1.3.8 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

9.1.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial programmers.

SAM3S8/SD8 Summary

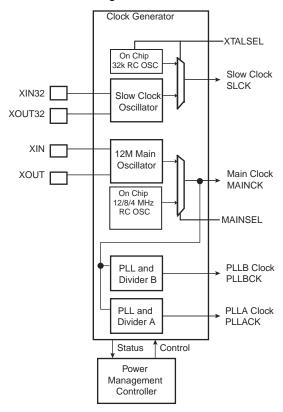


Figure 10-2. Clock Generator Block Diagram

10.6 Power Management Controller

The Power Management Controller provides all the clock signals to the system. It provides:

- the Processor Clock, HCLK
- the Free running processor clock, FCLK
- the Cortex SysTick external clock
- the Master Clock, MCK, in particular to the Matrix and the memory interfaces
- the USB Clock, UDPCK
- independent peripheral clocks, typically at the frequency of MCK
- three programmable clock outputs: PCK0, PCK1 and PCK2

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the fast RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequency by software.

10.13 Chip Identification

• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

Chip Name	Flash Size (KBytes)	Pin Count	CHIPID_CIDR	CHIPID_EXID
SAM3S8B (Rev A)	512	64	0x289B0A60	0x0
SAM3S8C (Rev A)	512	100	0x28AB0A60	0x0
SAM3SD8B (Rev A)	512	64	0x299B0A60	0x0
SAM3SD8C (Rev A)	512	100	0x29AB0A60	0x0

 Table 10-1.
 SAM3S8/SD8 Hip IDs Register

• JTAG ID: 0x05B2D03F

10.14 UART

- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter

10.15 PIO Controllers

- 3 PIO Controllers, PIOA, PIOB and PIOC (100-pin version only) controlling a maximum of 79 I/O Lines
- Each PIO Controller controls up to 32 programmable I/O Lines
- Fully programmable through Set/Clear Registers

Table 10-2. PIO available according to pin count

Version	64 pin	100 pin
PIOA	32	32
PIOB	15	15
PIOC	-	32

- Multiplexing of four peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
 - Input change interrupt
 - Programmable Glitch filter
 - Programmable debouncing filter
 - Multi-drive option enables driving in open drain
 - Programmable pull-up on each I/O line
 - Pin data status register, supplies visibility of the level on the pin at any time
 - Additional interrupt modes on a programmable event: rising edge, falling edge, low level or high level

38 SAM3S8/SD8 Summary

SAM3S8/SD8 Summary

10.17.1 PIO Controller A Multiplexing

I/O Line	Peripheral A	Peripheral B	Peripheral C	Peripheral D	Extra Function	System Function	Comments
PA0	PWMH0	TIOA0	A17		WKUP0		
PA1	PWMH1	TIOB0	A18		WKUP1		
PA2	PWMH2	SCK0	DATRG		WKUP2		
PA3	TWD0	NPCS3					
PA4	TWCK0	TCLK0			WKUP3		
PA5	RXD0	NPCS3			WKUP4		
PA6	TXD0	PCK0					
PA7	RTS0	PWMH3				XIN32	
PA8	CTS0	ADTRG			WKUP5	XOUT32	
PA9	URXD0	NPCS1	PWMFI0		WKUP6		
PA10	UTXD0	NPCS2					
PA11	NPCS0	PWMH0			WKUP7		
PA12	MISO	PWMH1					
PA13	MOSI	PWMH2					
PA14	SPCK	PWMH3			WKUP8		
PA15	TF	TIOA1	PWML3	PIODCEN1	WKUP14		
PA16	ТК	TIOB1	PWML2	PIODCEN2	WKUP15		
PA17	TD	PCK1	PWMH3		AD0		
PA18	RD	PCK2	A14		AD1		
PA19	RK	PWML0	A15		AD2/WKUP9		
PA20	RF	PWML1	A16		AD3/WKUP10		
PA21	RXD1	PCK1			AD8		64/100 pins versions
PA22	TXD1	NPCS3	NCS2		AD9		64/100 pins versions
PA23	SCK1	PWMH0	A19	PIODCCLK			64/100 pins versions
PA24	RTS1	PWMH1	A20	PIODC0			64/100 pins versions
PA25	CTS1	PWMH2	A23	PIODC1			64/100 pins versions
PA26	DCD1	TIOA2	MCDA2	PIODC2			64/100 pins versions
PA27	DTR1	TIOB2	MCDA3	PIODC3			64/100 pins versions
PA28	DSR1	TCLK1	MCCDA	PIODC4			64/100 pins versions
PA29	RI1	TCLK2	MCCK	PIODC5			64/100 pins versions
PA30	PWML2	NPCS2	MCDA0	PIODC6	WKUP11		64/100 pins versions
PA31	NPCS1	PCK2	MCDA1	PIODC7			64/100 pins versions

Table 10-4. Multiplexing on PIO Controller A (PIOA)

SAM3S8/SD8 Summary

10.17.3 PIO Controller C Multiplexing

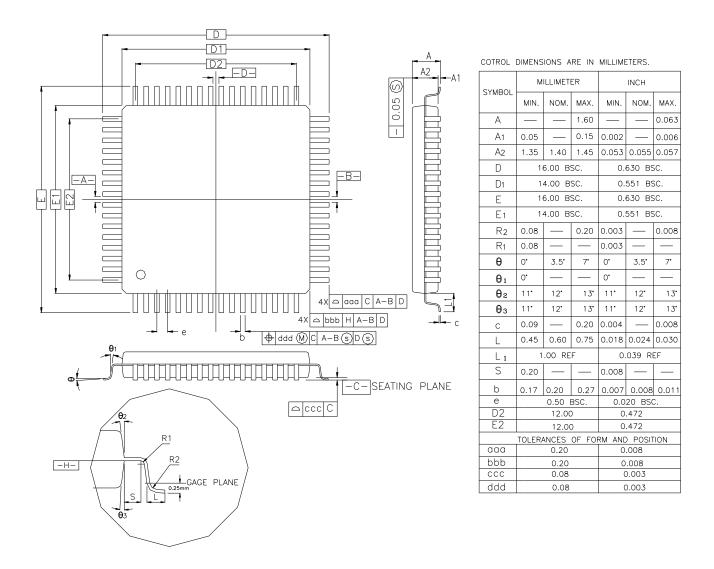
Table 10-6.	Multiplexing on PIO Controlle	er C	(PIOC))
-------------	-------------------------------	------	--------	---

I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PC0	D0	PWML0				100 pin version
PC1	D1	PWML1				100 pin version
PC2	D2	PWML2				100 pin version
PC3	D3	PWML3				100 pin version
PC4	D4	NPCS1				100 pin version
PC5	D5					100 pin version
PC6	D6					100 pin version
PC7	D7					100 pin version
PC8	NWE					100 pin version
PC9	NANDOE	RXD2 ⁽¹⁾				100 pin version
PC10	NANDWE	TXD2 ⁽¹⁾				100 pin version
PC11	NRD					100 pin version
PC12	NCS3			AD12		100 pin version
PC13	NWAIT	PWML0		AD10		100 pin version
PC14	NCS0	SCK2 ⁽¹⁾				100 pin version
PC15	NCS1	PWML1		AD11		100 pin version
PC16	A21/NANDALE	RTS2 ⁽¹⁾				100 pin version
PC17	A22/NANDCLE	CTS2 ⁽¹⁾				100 pin version
PC18	A0	PWMH0				100 pin version
PC19	A1	PWMH1				100 pin version
PC20	A2	PWMH2				100 pin version
PC21	A3	PWMH3				100 pin version
PC22	A4	PWML3				100 pin version
PC23	A5	TIOA3				100 pin version
PC24	A6	TIOB3				100 pin version
PC25	A7	TCLK3				100 pin version
PC26	A8	TIOA4				100 pin version
PC27	A9	TIOB4				100 pin version
PC28	A10	TCLK4				100 pin version
PC29	A11	TIOA5		AD13		100 pin version
PC30	A12	TIOB5		AD14		100 pin version
PC31	A13	TCLK5				100 pin version

Note: 1. USART2 only on SAM3SD8 in 100 pin package.

- Interval Measurement
- Pulse Generation
- Delay Timing
- Pulse Width Modulation
- Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- Quadrature decoder
 - Advanced line filtering
 - Position / revolution / speed
- 2-bit Gray Up/Down Counter for Stepper Motor

11.7 Pulse Width Modulation Controller (PWM)


- One Four-channel 16-bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
 - High Frequency Asynchronous clocking mode
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform
 - Independent Output Override for each channel
 - Independent complementary Outputs with 12-bit dead time generator for each channel
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
- Synchronous Channel mode
 - Synchronous Channels share the same counter
 - Mode to update the synchronous channels registers after a programmable number of periods
- Connection to one PDC channel
 - Provides Buffer transfer without processor intervention, to update duty cycle of synchronous channels
- Two independent event lines which can send up to 4 triggers on ADC within a period

46 SAM3S8/SD8 Summary

12. Package Drawings

The SAM3S8/SD8 series devices are available in LQFP, QFN and TFBGA packages.

Note: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.

Inch

SAM3S8/SD8 Summary 52

Symbol

Symbol						
	Min	Nom	Max	Min	Nom	Мах
А	-	-	1.60	-	-	0.063
A1	0.05	-	0.15	0.002	-	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
D		12.00 BSC			0.472 BSC	
D1		10.00 BSC			0.383 BSC	
Е	12.00 BSC				0.472 BSC	
E1	10.00 BSC			0.383 BSC		
R2	0.08	-	0.20	0.003	-	0.008
R1	0.08	-	_	0.003	-	-
q	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	_
θ2	11°	12°	13°	11°	12°	13°
θ3	11°	12°	13°	11°	12°	13°
С	0.09	-	0.20	0.004	-	0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L1	1.00 REF				0.039 REF	

64-lead LQFP Package Dimensions (in mm) Table 12-1.

Millimeter

Figure 12-3. 64-lead LQFP Package Mechanical Drawing

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA **Tel:** (+1) (408) 441-0311 **Fax:** (+1) (408) 487-2600 www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku Tokyo 141-0032 JAPAN **Tel:** (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERCUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not sintended of uservations in applications intended to support or sustain life.

© 2013 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof, QTouch[®], DataFlash[®], SAM-BA[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.Windows[®] and others, are registered trademarks or trademarks of Microsoft Corporation in the US and/or other countries. ARM[®], Cortex[®], Thumb[®]-2 and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.