

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details			
Product Status	Active		
Core Processor	ARM® Cortex®-M3		
Core Size	32-Bit Single-Core		
Speed	64MHz		
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB		
Peripherals	Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT		
Number of I/O	47		
Program Memory Size	512KB (512K x 8)		
Program Memory Type	FLASH		
EEPROM Size	-		
RAM Size	64K x 8		
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V		
Data Converters	A/D 10x10/12b; D/A 2x12b		
Oscillator Type	Internal		
Operating Temperature	-40°C ~ 85°C (TA)		
Mounting Type	Surface Mount		
Package / Case	64-LQFP		
Supplier Device Package	64-LQFP (10x10)		
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3sd8ba-au		

2. Block Diagram

Figure 2-1. SAM3S8/SD8 100-pin version Block Diagram

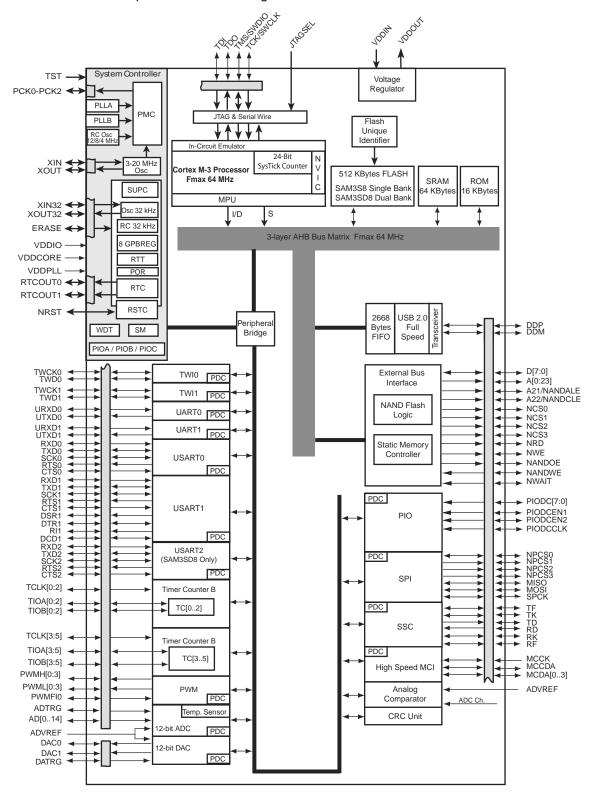


 Table 3-1.
 Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Voltage reference	Comments	
	Flash Memory					
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	Reset State: - Erase Input - Internal pull-down enabled - Schmitt Trigger enabled ⁽¹⁾	
	Rese	t/Test				
NRST	Synchronous Microcontroller Reset	I/O	Low	VDDIO	Permanent Internal pull-up	
TST	Test Select Input		Permanent Internal pull-down			
	Universal Asynchronous Ro	eceiver Trans	sceiver - U	ARTx		
URXDx	UART Receive Data	Input				
UTXDx	UART Transmit Data	Output				
	PIO Controller - P	IOA - PIOB -	PIOC			
PA0 - PA31	Parallel IO Controller A	I/O			Reset State:	
PB0 - PB14	Parallel IO Controller B	I/O		VDDIO - PIO or System IOs ⁽²⁾		
PC0 - PC31	Parallel IO Controller C	I/O			 Internal pull-up enabled Schmitt Trigger enabled⁽¹⁾ 	
	PIO Controller - Pa	rallel Capture	e Mode			
PIODC0-PIODC7	Parallel Capture Mode Data	Input		VDDIO		
PIODCCLK	Parallel Capture Mode Clock	Input				
PIODCEN1-2	Parallel Capture Mode Enable	Input				
	External B	us Interface				
D0 - D7	Data Bus	I/O				
A0 - A23	Address Bus	Output				
NWAIT	External Wait Signal	Input	Low			
	Static Memory	Controller - S	MC			
NCS0 - NCS3	Chip Select Lines	Output	Low			
NRD	Read Signal	Output	Low			
NWE	Write Enable	Output	Low			
NAND Flash Logic						
NANDOE	NAND Flash Output Enable	Output	Low			
NANDWE	NAND Flash Write Enable	Output	Low			
	High Speed Multimedia	Card Interfa	ce - HSMC			
MCCK	Multimedia Card Clock	I/O				
MCCDA	Multimedia Card Slot A Command	I/O				
MCDA0 - MCDA3	Multimedia Card Slot A Data	I/O				

4.1.3 100-Lead LQFP Pinout

Table 4-1. SAM3S8C/SD8C 100-lead LQFP pinout

1	ADVREF		
2	GND		
3	PB0/AD4		
4	PC29/AD13		
5	PB1/AD5		
6	PC30/AD14		
7	PB2/AD6		
8	PC31		
9	PB3/AD7		
10	VDDIN		
11	VDDOUT		
12	PA17/PGMD5/AD0		
13	PC26		
14	PA18/PGMD6/AD1		
15	PA21/PGMD9/AD8		
16	VDDCORE		
17	PC27		
18	PA19/PGMD7/AD2		
19	PC15/AD11		
20	PA22/PGMD10/AD 9		
21	PC13/AD10		
22	PA23/PGMD11		
23	PC12/AD12		
24	PA20/PGMD8/AD3		
25	PC0		
	·		

26	GND		
27	VDDIO		
28	PA16/PGMD4		
29	PC7		
30	PA15/PGMD3		
31	PA14/PGMD2		
32	PC6		
33	PA13/PGMD1		
34	PA24/PGMD12		
35	PC5		
36	VDDCORE		
37	PC4		
38	PA25/PGMD13		
39	PA26/PGMD14		
40	PC3		
41	PA12/PGMD0		
42	PA11/PGMM3		
43	PC2		
44	PA10/PGMM2		
45	GND		
46	PA9/PGMM1		
47	PC1		
48	PA8/XOUT32/ PGMM0		
49	PA7/XIN32/ PGMNVALID		
50	VDDIO		

51	TDI/PB4		
52	PA6/PGMNOE		
53	PA5/PGMRDY		
54	PC28		
55	PA4/PGMNCMD		
56	VDDCORE		
57	PA27/PGMD15		
58	PC8		
59	PA28		
60	NRST		
61	TST		
62	PC9		
63	PA29		
64	PA30		
65	PC10		
66	PA3		
67	PA2/PGMEN2		
68	PC11		
69	VDDIO		
70	GND		
71	PC14		
72	PA1/PGMEN1		
73	PC16		
74	PA0/PGMEN0		
75	PC17		

76	TDO/TRACESWO/ PB5		
77	JTAGSEL		
78	PC18		
79	TMS/SWDIO/PB6		
80	PC19		
81	PA31		
82	PC20		
83	TCK/SWCLK/PB7		
84	PC21		
85	VDDCORE		
86	PC22		
87	ERASE/PB12		
88	DDM/PB10		
89	DDP/PB11		
90	PC23		
91	VDDIO		
92	PC24		
93	PB13/DAC0		
94	PC25		
95	GND		
96	PB8/XOUT		
97	PB9/PGMCK/XIN		
98	VDDIO		
99	PB14/DAC1		
100	VDDPLL		

4.1.4 100-Ball TFBGA Pinout

Table 4-2.SAM3S8C/SD8C 100-ball TFBGA pinout

A1	PB1/AD5	
A2	PC29	
А3	VDDIO	
A4	PB9/PGMCK/XIN	
A5	PB8/XOUT	
A6	PB13/DAC0	
A7	DDP/PB11	
A8	DDM/PB10	
A9	TMS/SWDIO/PB6	
A10	JTAGSEL	
B1	PC30	
B2	ADVREF	
В3	GNDANA	
B4	PB14/DAC1	
B5	PC21	
В6	PC20	
В7	PA31	
B8	PC19	
В9	PC18	
B10	TDO/TRACESWO/ PB5	
C1	PB2/AD6	
C2	VDDPLL	
C3	PC25	
C4	PC23	
C5	ERASE/PB12	

C6	TCK/SWCLK/PB7		
C7	PC16		
C8	PA1/PGMEN1		
C9	PC17		
C10	PA0/PGMEN0		
D1	PB3/AD7		
D2	PB0/AD4		
D3	PC24		
D4	PC22		
D5	GND		
D6	GND		
D7	VDDCORE		
D8	PA2/PGMEN2		
D9	PC11		
D10	PC14		
E1	PA17/PGMD5/AD 0		
E2	PC31		
E3	VDDIN		
E4	GND		
E5	GND		
E6	NRST		
E7	PA29/AD13		
E8	PA30/AD14		
E9	PC10		
E10	PA3		

F1	PA18/PGMD6/AD1		
F2	PC26		
F3	VDDOUT		
F4	GND		
F5	VDDIO		
F6	PA27/PGMD15		
F7	PC8		
F8	PA28		
F9	TST		
F10	PC9		
G1	PA21/PGMD9/AD8		
G2	PC27		
G3	PA15/PGMD3		
G4	VDDCORE		
G5	VDDCORE		
G6	PA26/PGMD14		
G7	PA12/PGMD0		
G8	PC28		
G9	PA4/PGMNCMD		
G10	PA5/PGMRDY		
H1	PA19/PGMD7/AD2		
H2	PA23/PGMD11		
НЗ	PC7		
H4	PA14/PGMD2		
H5	PA13/PGMD1		

H6	PC4	
H7	PA11/PGMM3	
H8	PC1	
H9	PA6/PGMNOE	
H10	TDI/PB4	
J1	PC15/AD11	
J2	PC0	
J3	PA16/PGMD4	
J4	PC6	
J5	PA24/PGMD12	
J6	PA25/PGMD13	
J7	PA10/PGMM2	
J8	GND	
J9	VDDCORE	
J10	VDDIO	
K1	PA22/PGMD10/AD 9	
K2	PC13/AD10	
K3	PC12/AD12	
K4	PA20/PGMD8/AD3	
K5	PC5	
K6	PC3	
K7	PC2	
K8	PA9/PGMM1	
K9	PA8/XOUT32/PGM M0	
K10	PA7/XIN32/ PGMNVALID	

5. Power Considerations

5.1 Power Supplies

The SAM3S8/SD8 has several types of power supply pins:

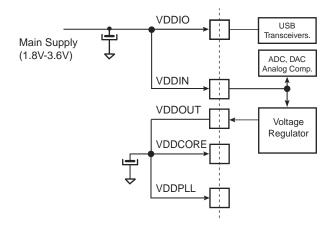
- VDDCORE pins: Power the core, the embedded memories and the peripherals. Voltage ranges from 1.62V to 1.95V.
- VDDIO pins: Power the Peripherals I/O lines (Input/Output Buffers), USB transceiver, Backup part, 32 kHz crystal oscillator and oscillator pads. Voltage ranges from 1.62V to 3.6V.
- VDDIN pin: Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply. Voltage ranges from 1.8V to 3.6V.
- VDDPLL pin: Powers the PLLA, PLLB, the Fast RC and the 3 to 20 MHz oscillator. Voltage ranges from 1.62V to 1.95V.

5.2 Voltage Regulator

The SAM3S8/SD8 embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the internal core of SAM3S8/SD8. It features two operating modes:

- In Normal mode, the voltage regulator consumes less than 700 µA static current and draws 80 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current. In Wait Mode quiescent current is only 7 µA.
- In Backup mode, the voltage regulator consumes less than 1 μA while its output (VDDOUT) is driven internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal mode is less than 100 μs.

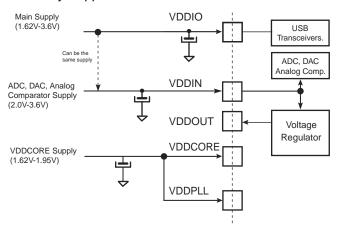

For adequate input and output power supply decoupling/bypassing, refer to the "Voltage Regulator" section in the "Electrical Characteristics" section of the datasheet.

5.3 Typical Powering Schematics

The SAM3S8/SD8 supports a 1.62V-3.6V single supply mode. The internal regulator input connected to the source and its output feeds VDDCORE. Figure 5-1 below shows the power schematics.

As VDDIN powers the voltage regulator, the ADC, DAC and the analog comparator, when the user does not want to use the embedded voltage regulator, it can be disabled by software via the SUPC (note that this is different from Backup mode).

Figure 5-1. Single Supply



Note: Restrictions

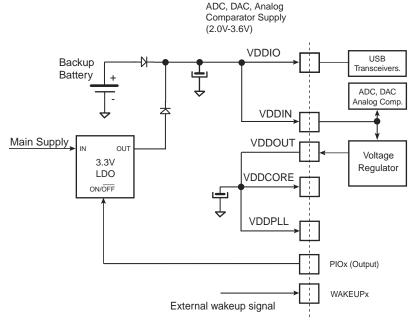
With Main Supply < 2.0 V, USB and ADC/DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable. With Main Supply \geq 3V, all peripherals are usable.

Figure 5-2. Core Externally Supplied

Note: Restrictions

With Main Supply < 2.0V, USB is not usable.


With VDDIN < 2.0V, ADC, DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable.

With Main Supply and VDDIN ≥ 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.

Figure 5-3. Backup Battery

Note: The two diodes provide a "switchover circuit" (for illustration purpose; between the backup battery and the main supply when the system is put in backup mode.

5.4 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.

5.5 Low-power Modes

The various low-power modes of the SAM3S8/SD8 are described below:

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time (<0.1ms). Total current consumption is 1.5 µA typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are off.

Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.

The SAM3S8/SD8 can be awakened from this mode through WUP0-15 pins, the supply monitor (SM), the RTT or RTC wake-up event.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the Cortex-M3 System Control Register set to 1. (See the Power management description in The ARM Cortex-M3 Processor section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake up events occurs:

WKUPEN0-15 pins (level transition, configurable debouncing)

- Supply Monitor alarm
- RTC alarm
- RTT alarm

5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than 10 μ s. Current Consumption in Wait mode is typically 15 μ A (total current consumption) if the internal voltage regulator is used or 8 μ A if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to wake-up the core (WFE). This is done by configuring the external lines WUP0-15 as fast startup wake-up pins (refer to Section 5.7 "Fast Startup"). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU (exit from WFE).

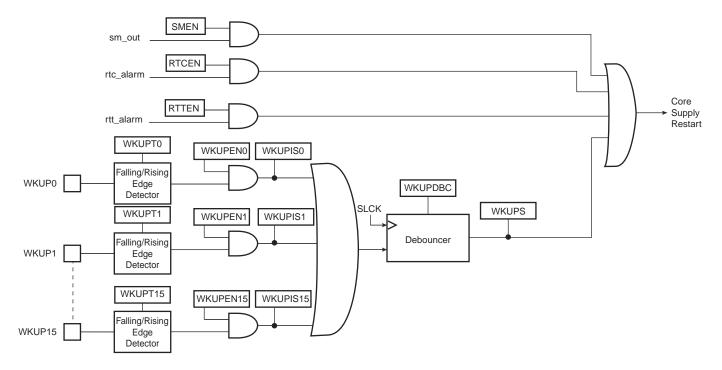
Entering Wait Mode:

- Select the 4/8/12 MHz fast RC oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
- Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

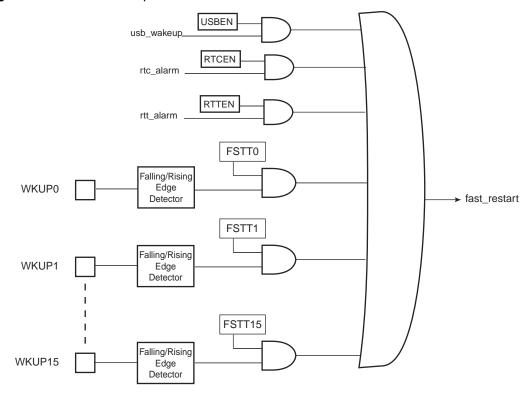

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in PMC FSMR.

The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Source



5.7 Fast Startup

The SAM3S8/SD8 allows the processor to restart in a few microseconds while the processor is in wait mode or in sleep mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4 MHz Fast RC oscillator, switches the master clock on this 4MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM3S8/SD8 series. The TST pin integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations. To enter fast programming mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing and test mode, refer to the "Debug and Test" section of the product datasheet.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 k Ω . By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 k Ω to GND, so that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted erasing. Refer to Section 10.17 "Peripheral Signal Multiplexing on I/O Lines" on page 40. Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

9.1.3.10 SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

9.1.3.11 GPNVM Bits

The SAM3S8 features two GPNVM bits, whereas SAM3SD8 features three GPNVM bits. These bits can be cleared or set respectively through the commands "Clear GPNVM Bit" and "Set GPNVM Bit" of the EEFC User Interface.

The Flash of the SAM3S8 is composed of 512 Kbytes in a single bank, while the SAM3SD8 Flash is composed of dual banks, each containing 256 Kbytes. The dual-bank function enables programming one bank while the other one is read (typically while the application code is running). Only one EEFC (Flash controller) controls the two banks. Note that it is not possible to program simultaneously, or read simultaneously, the dual banks of the Flash.

The first bank of 256 Kbytes is called Bank 0 and the second bank of 256 Kbytes, Bank 1.

The SAM3SD8 embeds an additional GPNVM bit: GPNVM2.

Table 9-2. General-purpose Non volatile Memory Bits

GPNVMBit[#]	Function	
0	Security bit	
1	Boot mode selection	
2	Bank selection (Bank 0 or Bank 1) Only on SAM3SD8	

9.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

Setting the GPNVM Bit 2 selects bank 1, clearing it selects the boot from bank 0. Asserting ERASE clears the GPNVM Bit 2 and thus selects the boot from bank 0 by default.

10.1 System Controller and Peripherals Mapping

Please refer to Section 8-1 "SAM3S8/SD8 Product Mapping" on page 27.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3S8/SD8 embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset on VDDIO
- Brownout Detector on VDDCORE
- Supply Monitor on VDDIO

10.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to the Electrical Characteristics section of the datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the datasheet.

10.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more information, refer to the SUPC and Electrical Characteristics sections of the datasheet.

10.3 Reset Controller

The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor and the peripherals (via Voltage regulator control)

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock generator.

Table 10-3. Peripheral Identifiers (Continued)

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Instance Description
22	SSC	х	Х	Synchronous Serial Controller
23	TC0	Х	Х	Timer/Counter 0
24	TC1	х	Х	Timer/Counter 1
25	TC2	х	Х	Timer/Counter 2
26	TC3	х	Х	Timer/Counter 3
27	TC4	х	Х	Timer/Counter 4
28	TC5	х	х	Timer/Counter 5
29	ADC	х	Х	Analog To Digital Converter
30	DACC	х	х	Digital To Analog Converter
31	PWM	х	х	Pulse Width Modulation
32	CRCCU	х	Х	CRC Calculation Unit
33	ACC	х	Х	Analog Comparator
34	UDP	х	Х	USB Device Port

10.17 Peripheral Signal Multiplexing on I/O Lines

The SAM3S8/SD8 features 2 PIO controllers on 64-pin versions (PIOA and PIOB) or 3 PIO controllers on the 100-pin version (PIOA, PIOB and PIOC), that multiplex the I/O lines of the peripheral set.

The SAM3S8/SD8 64-pin and 100-pin PIO Controllers control up to 32 lines. Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

10.17.2 PIO Controller B Multiplexing

 Table 10-5.
 Multiplexing on PIO Controller B (PIOB)

I/O Line	Peripheral A	Peripheral B	Peripheral C	Extra Function	System Function	Comments
PB0	PWMH0			AD4/RTCOUT0		
PB1	PWMH1			AD5/RTCOUT1		
PB2	URXD1	NPCS2		AD6/WKUP12		
PB3	UTXD1	PCK2		AD7		
PB4	TWD1	PWMH2			TDI	
PB5	TWCK1	PWML0		WKUP13	TDO/TRACESWO	
PB6					TMS/SWDIO	
PB7					TCK/SWCLK	
PB8					XOUT	
PB9					XIN	
PB10					DDM	
PB11					DDP	
PB12	PWML1				ERASE	
PB13	PWML2	PCK0		DAC0		64/00 pins versions
PB14	NPCS1	PWMH3		DAC1		64/100 pins versions

- Interval Measurement
- Pulse Generation
- Delay Timing
- Pulse Width Modulation
- Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- · Quadrature decoder
 - Advanced line filtering
 - Position / revolution / speed
- 2-bit Gray Up/Down Counter for Stepper Motor

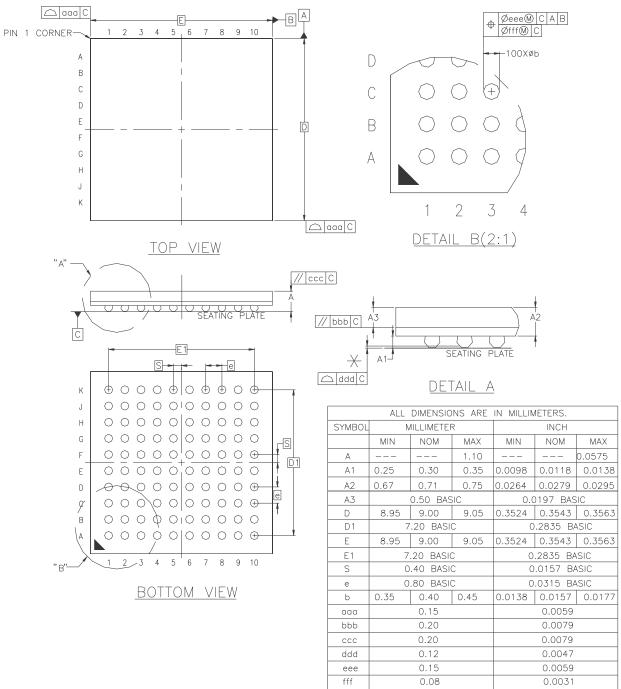
11.7 Pulse Width Modulation Controller (PWM)

- One Four-channel 16-bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
 - High Frequency Asynchronous clocking mode
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform
 - Independent Output Override for each channel
 - Independent complementary Outputs with 12-bit dead time generator for each channel
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
- Synchronous Channel mode
 - Synchronous Channels share the same counter
 - Mode to update the synchronous channels registers after a programmable number of periods
- Connection to one PDC channel
 - Provides Buffer transfer without processor intervention, to update duty cycle of synchronous channels
- Two independent event lines which can send up to 4 triggers on ADC within a period

- One programmable Fault Input providing an asynchronous protection of outputs
- Stepper motor control (2 Channels)

11.8 High Speed Multimedia Card Interface (HSMCI)

- 4-bit or 1-bit Interface
- Compatibility with MultiMedia Card Specification Version 4.3
- Compatibility with SD and SDHC Memory Card Specification Version 2.0
- Compatibility with SDIO Specification Version V1.1.
- Compatibility with CE-ATA Specification 1.1
- Cards clock rate up to Master Clock divided by 2
- Boot Operation Mode support
- High Speed mode support
- Embedded power management to slow down clock rate when not used
- · MCI has one slot supporting
 - One MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
 - One SDIO Card
- Support for stream, block and multi-block data read and write

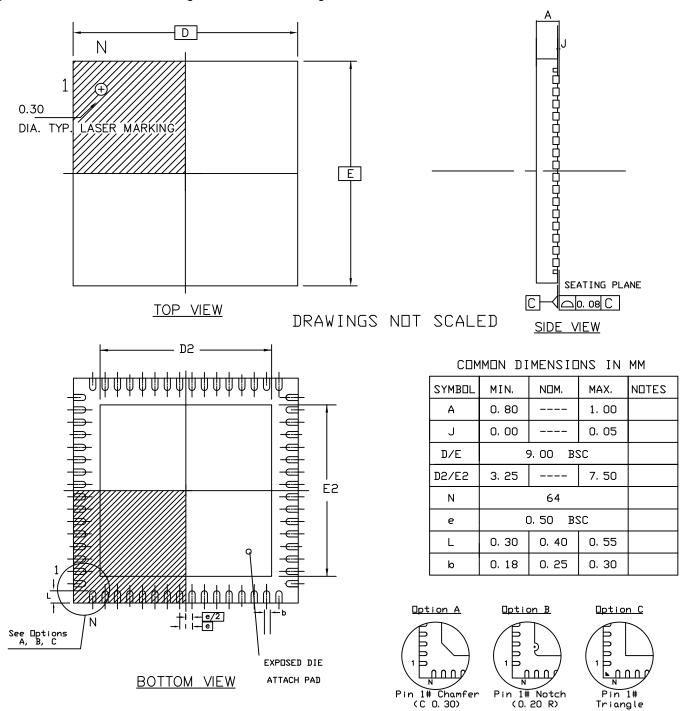

11.9 USB Device Port (UDP)

- USB V2.0 full-speed compliant,12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- · Eight endpoints
 - Endpoint 0: 64bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Endpoint 4 and 5: 512 bytes ping-pong
 - Endpoint 6 and 7: 64 bytes ping-pong
 - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP
- Pull-down resistor on DDM and DDP when disabled

11.10 Analog-to-Digital Converter (ADC12B)

- up to 16 Channels, 12-bit ADC
- 10/12-bit resolution
- up to 1 MSample/s
- Programmable conversion sequence conversion on each channel
- Integrated temperature sensor
- Automatic calibration mode

Figure 12-2. 100-ball TFBGA Package Mechanical Drawing



SAM3S8/SD8 Summary

Table 12-1. 64-lead LQFP Package Dimensions (in mm) (Continued)

Symbol		Millimeter		Inch						
Symbol	Min Nom		Max	Min	Nom	Max				
S	0.20	_	_	0.008	_	_				
b	0.17	0.20	0.27	0.007	0.008	0.011				
е		0.50 BSC.		0.020 BSC.						
D2		7.50		0.285						
E2		7.50		0.285						
Tolerances of Form and Position										
aaa	0.20			0.008						
bbb	0.20			0.008						
ccc	0.08			0.003						
ddd	ddd 0.08			0.003						

Figure 12-4. 64-lead QFN Package Mechanical Drawing

