

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	47
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x10/12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3sd8ba-mu

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Block Diagram

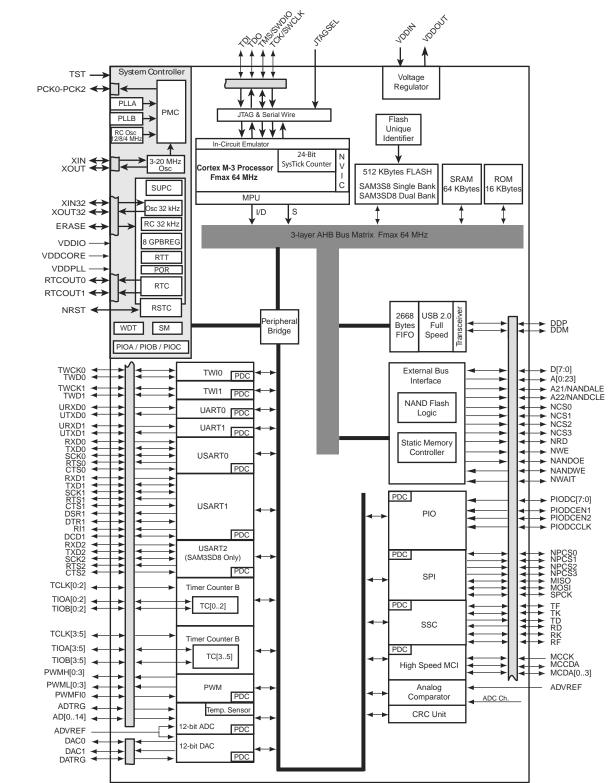
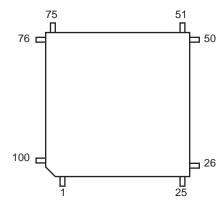


Figure 2-1. SAM3S8/SD8 100-pin version Block Diagram

SAM3S8/SD8 Summary

Signal Nama	Function	Tumo	Active	Voltage	Commente
Signal Name	Universal Synchronous Asynchron	Туре	Level		Comments
	USARTx Serial Clock				
SCKx		I/O			
TXDx	USARTx Transmit Data	I/O			
RXDx	USARTx Receive Data	Input			
RTSx	USARTx Request To Send	Output			
CTSx	USARTx Clear To Send	Input			
DTR1	USART1 Data Terminal Ready	I/O			
DSR1	USART1 Data Set Ready	Input			
DCD1	USART1 Data Carrier Detect	Output			
RI1	USART1 Ring Indicator	Input			
	Synchronous Seria	al Controller	- SSC		
TD	SSC Transmit Data	Output			
RD	SSC Receive Data	Input			
ТК	SSC Transmit Clock	I/O			
RK	SSC Receive Clock	I/O			
TF	SSC Transmit Frame Sync	I/O			
RF	SSC Receive Frame Sync	I/O			
	Timer/Cou	unter - TC	1	1	
TCLKx	TC Channel x External Clock Input	Input			
TIOAx	TC Channel x I/O Line A	I/O			
TIOBx	TC Channel x I/O Line B	I/O			
	Pulse Width Modulati	on Controlle	er- PWMC		
PWMHx	PWM Waveform Output High for channel x	Output			
PWMLx PWM Waveform Output Low for channel x Output Output only output complement when deal		only output in complementary mode when dead time insertion is enabled.			
PWMFI0	PWM Fault Input	Input			
	Serial Periphera	I Interface -	SPI		
MISO	Master In Slave Out	I/O			
MOSI	Master Out Slave In	I/O			
SPCK	SPI Serial Clock	I/O			
SPI_NPCS0	SPI Peripheral Chip Select 0	I/O	Low		
SPI_NPCS1 - SPI_NPCS3	SPI Peripheral Chip Select	Output	Low		

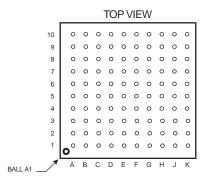
Table 3-1. Signal Description List (Continued)


4. Package and Pinout

SAM3S8/SD8 devices are pin-to-pin compatible with AT91SAM7S legacy products for 64-pin version. Furthermore, SAM3S8/SD8 products have new functionalities referenced in italic in Table 4-1, Table 4-3.

4.1 SAM3S8C/8DC Package and Pinout

4.1.1 100-Lead LQFP Package Outline


Figure 4-1. Orientation of the 100-lead LQFP Package

4.1.2 100-ball TFBGA Package Outline

The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are $9 \times 9 \times 1.1$ mm. Figure 4-2 shows the orientation of the 100-ball TFBGA Package.

Figure 4-2. Orientation of the 100-ball TFBGA Package

4.1.3 100-Lead LQFP Pinout

1	ADVREF	
2	GND	
3	PB0/AD4	
4	PC29/AD13	
5	PB1/AD5	
6	PC30/AD14	
7	PB2/AD6	
8	PC31	
9	PB3/AD7	
10	VDDIN	
11	VDDOUT	
12	PA17/PGMD5/AD0	
13	PC26	
14	PA18/PGMD6/AD1	
15	PA21/PGMD9/AD8	
16	VDDCORE	
17	PC27	
18	PA19/PGMD7/AD2	
19	PC15/AD11	
20	PA22/PGMD10/AD 9	
21	PC13/AD10	
22	PA23/PGMD11	
23	PC12/AD12	
24	PA20/PGMD8/AD3	
25	PC0	

Table 4-1.	SAM3S8C/SD8C 100-lead LQFP pinout

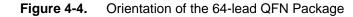
100-1	
26	GND
27	VDDIO
28	PA16/PGMD4
29	PC7
30	PA15/PGMD3
31	PA14/PGMD2
32	PC6
33	PA13/PGMD1
34	PA24/PGMD12
35	PC5
36	VDDCORE
37	PC4
38	PA25/PGMD13
39	PA26/PGMD14
40	PC3
41	PA12/PGMD0
42	PA11/PGMM3
43	PC2
44	PA10/PGMM2
45	GND
46	PA9/PGMM1
47	PC1
48	PA8/XOUT32/ PGMM0
49	PA7/XIN32/ PGMNVALID
50	VDDIO

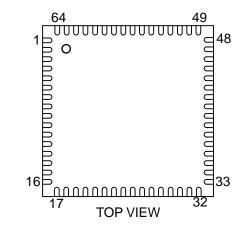
51	TDI/PB4	
52	PA6/PGMNOE	
53	PA5/PGMRDY	
54	PC28	
55	PA4/PGMNCMD	
56	VDDCORE	
57	PA27/PGMD15	
58	PC8	
59	PA28	
60	NRST	
61	TST	
62	PC9	
63	PA29	
64	PA30	
65	PC10	
66	PA3	
67	PA2/PGMEN2	
68	PC11	
69	VDDIO	
70	GND	
71	PC14	
72	PA1/PGMEN1	
73	PC16	
74	PA0/PGMEN0	
75	PC17	

76	TDO/TRACESWO/ PB5
77	JTAGSEL
78	PC18
79	TMS/SWDIO/PB6
80	PC19
81	PA31
82	PC20
83	TCK/SWCLK/PB7
84	PC21
85	VDDCORE
86	PC22
87	ERASE/PB12
88	DDM/PB10
89	DDP/PB11
90	PC23
91	VDDIO
92	PC24
93	PB13/DAC0
94	PC25
95	GND
96	PB8/XOUT
97	PB9/PGMCK/XIN
98	VDDIO
99	PB14/DAC1
100	VDDPLL

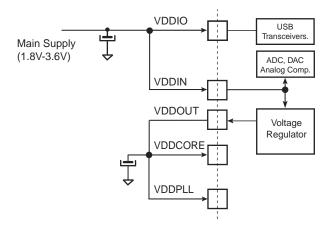
Т

4.2 SAM3S8B/D8B Package and Pinout

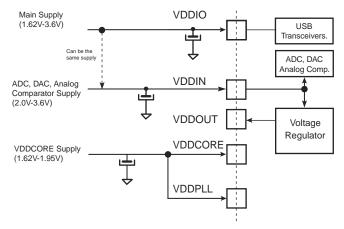

4.2.1 64-Lead LQFP Package Outline


Figure 4-3. Orientation of the 64-lead LQFP Package

1


4.2.2 64-lead QFN Package Outline

12 SAM3S8/SD8 Summary


Figure 5-1. Single Supply

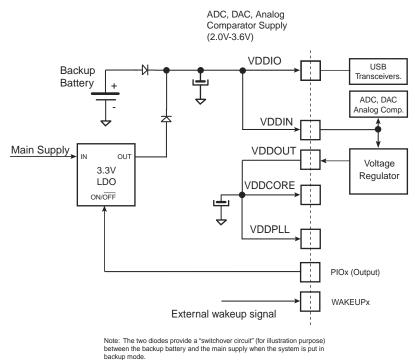
Note: Restrictions

With Main Supply < 2.0 V, USB and ADC/DAC and Analog comparator are not usable. With Main Supply \ge 2.0V and < 3V, USB is not usable. With Main Supply \ge 3V, all peripherals are usable.

Figure 5-2. Core Externally Supplied

Note: Restrictions

With Main Supply < 2.0V, USB is not usable.


With VDDIN < 2.0V, ADC, DAC and Analog comparator are not usable.

With Main Supply \geq 2.0V and < 3V, USB is not usable.

With Main Supply and VDDIN \ge 3V, all peripherals are usable.

Figure 5-3 below provides an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from a push button or any signal. See Section 5.6 "Wake-up Sources" for further details.

Figure 5-3. Backup Battery

5.4 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.

5.5 Low-power Modes

The various low-power modes of the SAM3S8/SD8 are described below:

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time (<0.1ms). Total current consumption is 1.5μ A typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are off.

Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.

The SAM3S8/SD8 can be awakened from this mode through WUP0-15 pins, the supply monitor (SM), the RTT or RTC wake-up event.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the Cortex-M3 System Control Register set to 1. (See the Power management description in The ARM Cortex-M3 Processor section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake up events occurs:

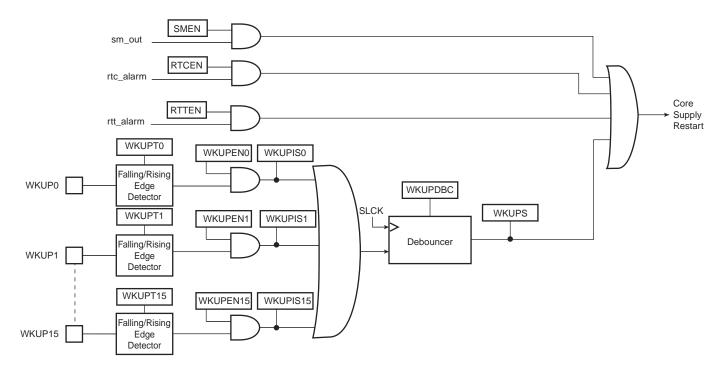
• WKUPEN0-15 pins (level transition, configurable debouncing)

16 SAM3S8/SD8 Summary

5.5.4 Low Power Mode Summary Table

The modes detailed above are the main low-power modes. Each part can be set to on or off separately and wake up sources can be individually configured. Table 5-1 below shows a summary of the configurations of the low-power modes.

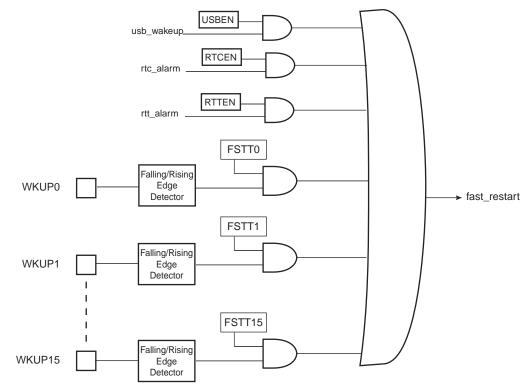
Mode	SUPC, 32 kHz Oscillator, RTC, RTT Backup Registers, POR (Backup Region)	Regulator	Core Memory Peripherals	Mode Entry	Potential Wake Up Sources	Core at Wake Up	PIO State while in Low Power Mode	PIO State at Wake Up	Consumption	Wake-up Time ⁽¹⁾
Backup Mode	ON	OFF	OFF (Not powered)	WFE +SLEEPDEEP bit = 1	WUP0-15 pins SM alarm RTC alarm RTT alarm	Reset	Previous	PIOA & PIOB & PIOC Inputs with pull ups	1.5 µА typ ⁽⁴⁾	< 0.1 ms
Wait Mode	ON	ON	Powered (Not clocked)	WFE +SLEEPDEEP bit = 0 +LPM bit = 1	Any Event from: Fast startup through WUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	5 μΑ/15 μΑ ⁽⁵⁾	< 10 µs
Sleep Mode	ON	ON	Powered ⁽⁷⁾ (Not clocked)	WFE or WFI +SLEEPDEEP bit = 0 +LPM bit = 0	Entry mode =WFI Interrupt Only; Entry mode =WFE Any Enabled Interrupt and/or Any Event from: Fast start-up through WUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	(6)	(6)


Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.

- 2. The external loads on PIOs are not taken into account in the calculation.
- 3. Supply Monitor current consumption is not included.
- 4. Total Current consumption.
- 5 μA on VDDCORE, 15 μA for total current consumption (using internal voltage regulator), 8 μA for total current consumption (without using internal voltage regulator).
- 6. Depends on MCK frequency.
- 7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply and the SRAM power supply, if they are not already enabled.


Figure 5-4. Wake-up Source



5.7 Fast Startup

The SAM3S8/SD8 allows the processor to restart in a few microseconds while the processor is in wait mode or in sleep mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast startup signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4 MHz Fast RC oscillator, switches the master clock on this 4MHz clock and reenables the processor clock.

SYSTEM_IO bit number	Default function after reset	Other function	Constraints for normal start	Configuration
12	ERASE	PB12	Low Level at startup ⁽¹⁾	
10	DDM	PB10	-	
11	DDP	PB11	-	In Matrix User Interface Registers
7	TCK/SWCLK	PB7	-	(Refer to the System I/O Configuration Register in the "Bus
6	TMS/SWDIO	PB6	-	Matrix" section of the datasheet.)
5	TDO/TRACESWO	PB5	-	
4	TDI	PB4	-	
-	PA7	XIN32	-	See footnote ⁽²⁾ below
-	PA8	XOUT32	-	See loothote - below
-	PB9	XIN	-	See footnote ⁽³⁾ below
-	PB8	XOUT	-	See loothote (*) below

Table 6-1. System I/O Configuration Pin List.

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode,

2. In the product Datasheet Refer to: "Slow Clock Generator" of the "Supply Controller" section.

3. In the product Datasheet Refer to: "3 to 20 MHZ Crystal Oscillator" information in the "PMC" section.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 on page 5.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the "Debug and Test" Section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the "Debug and Test" Section.

7.5 **Master to Slave Access**

All the Masters can normally access all the Slaves. However, some paths do not make sense, for example allowing access from the Cortex-M3 S Bus to the Internal ROM. Thus, these paths are forbidden or simply not wired, and shown as "-" in the following table.

	Masters	0	1	2	3
Slaves		Cortex-M3 I/D Bus	Cortex-M3 S Bus	PDC	CRCCU
0	Internal SRAM	-	Х	х	х
1	Internal ROM	Х	-	Х	х
2	Internal Flash	х	-	-	Х
3	External Bus Interface	-	Х	Х	Х
4	Peripheral Bridge	-	Х	Х	-

Table 7-3. SAM3S8 SD8 Master to Slave Access

7.6 **Peripheral DMA Controller**

- · Handles data transfer between peripherals and memories
- · Low bus arbitration overhead
 - One Master Clock cycle needed for a transfer from memory to peripheral
 - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirement

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities):

Table 7 4 Peripheral DMA Controller

Table 7-4.	Peripheral DMA Controlle
Instance nam	ne Channel T/R
USART2	Transmit
USART2	Receive
PWM	Transmit
TWI1	Transmit
TWI0	Transmit
UART1	Transmit
UART0	Transmit
USART1	Transmit
USART0	Transmit
DACC	Transmit
SPI	Transmit

SAM3S8/SD8 Summary

10.1 System Controller and Peripherals Mapping

Please refer to Section 8-1 "SAM3S8/SD8 Product Mapping" on page 27.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3S8/SD8 embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset on VDDIO
- Brownout Detector on VDDCORE
- Supply Monitor on VDDIO

10.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to the Electrical Characteristics section of the datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the datasheet.

10.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more information, refer to the SUPC and Electrical Characteristics sections of the datasheet.

10.3 Reset Controller

The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor and the peripherals (via Voltage regulator control)

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock generator.

SAM3S8/SD8 Summary

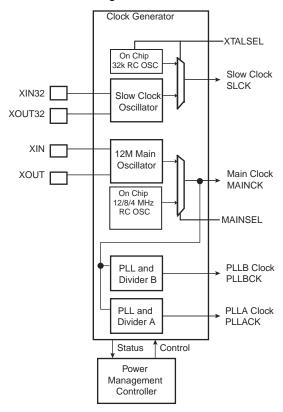


Figure 10-2. Clock Generator Block Diagram

10.6 Power Management Controller

The Power Management Controller provides all the clock signals to the system. It provides:

- the Processor Clock, HCLK
- the Free running processor clock, FCLK
- the Cortex SysTick external clock
- the Master Clock, MCK, in particular to the Matrix and the memory interfaces
- the USB Clock, UDPCK
- independent peripheral clocks, typically at the frequency of MCK
- three programmable clock outputs: PCK0, PCK1 and PCK2

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the fast RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequency by software.

- Lock of the configuration by the connected peripheral
- Synchronous output, provides set and clear of several I/O lines in a single write
- Write Protect Registers
- Programmable Schmitt trigger inputs
- Parallel capture mode
 - Can be used to interface a CMOS digital image sensor, an ADC....
 - One clock, 8-bit parallel data and two data enable on I/O lines
 - Data can be sampled one time out of two (for chrominance sampling only)
 - Supports connection of one Peripheral DMA Controller channel (PDC) which offers buffer reception without processor intervention

10.16 Peripheral Identifiers

Table 10-3 defines the Peripheral Identifiers of the SAM3S8/SD8. A peripheral identifier is required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the Power Management Controller.

			PMC		
Instance ID	Instance Name	NVIC Interrupt	Clock Control	Instance Description	
0	SUPC	X		Supply Controller	
1	RSTC	X		Reset Controller	
2	RTC	x		Real Time Clock	
3	RTT	x		Real Time Timer	
4	WDT	X		Watchdog Timer	
5	PMC	X		Power Management Controller	
6	EEFC	X		Enhanced Embedded Flash Controller	
7	-	-		Reserved	
8	UART0	X	x	UART 0	
9	UART1	X	X	UART 1	
10	SMC	X	X	Static Memory Controller	
11	PIOA	X	x	Parallel I/O Controller A	
12	PIOB	X	x	Parallel I/O Controller B	
13	PIOC	x	x	Parallel I/O Controller C	
14	USART0	X	x	USART 0	
15	USART1	X	x	USART 1	
16	USART2	X	x	USART 2 (SAM3SD8 100 pins only)	
17	-	-	-	Reserved	
18	HSMCI	X	X	Multimedia Card Interface	
19	TWIO	X	X	Two Wire Interface 0	
20	TWI1	X	X	Two Wire Interface 1	
21	SPI	X	X	Serial Peripheral Interface	

Table 10-3. Peripheral Identifiers

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Instance Description	
22	SSC	X	X	Synchronous Serial Controller	
23	TC0	X	X	Timer/Counter 0	
24	TC1	X	X	Timer/Counter 1	
25	TC2	X	X	Timer/Counter 2	
26	TC3	X	X	Timer/Counter 3	
27	TC4	X	X	Timer/Counter 4	
28	TC5	X	X	Timer/Counter 5	
29	ADC	X	X	Analog To Digital Converter	
30	DACC	X	X	Digital To Analog Converter	
31	PWM	X	X	Pulse Width Modulation	
32	CRCCU	X	X	CRC Calculation Unit	
33	ACC	X	X	Analog Comparator	
34	UDP	X	X	USB Device Port	

 Table 10-3.
 Peripheral Identifiers (Continued)

10.17 Peripheral Signal Multiplexing on I/O Lines

The SAM3S8/SD8 features 2 PIO controllers on 64-pin versions (PIOA and PIOB) or 3 PIO controllers on the 100-pin version (PIOA, PIOB and PIOC), that multiplex the I/O lines of the peripheral set.

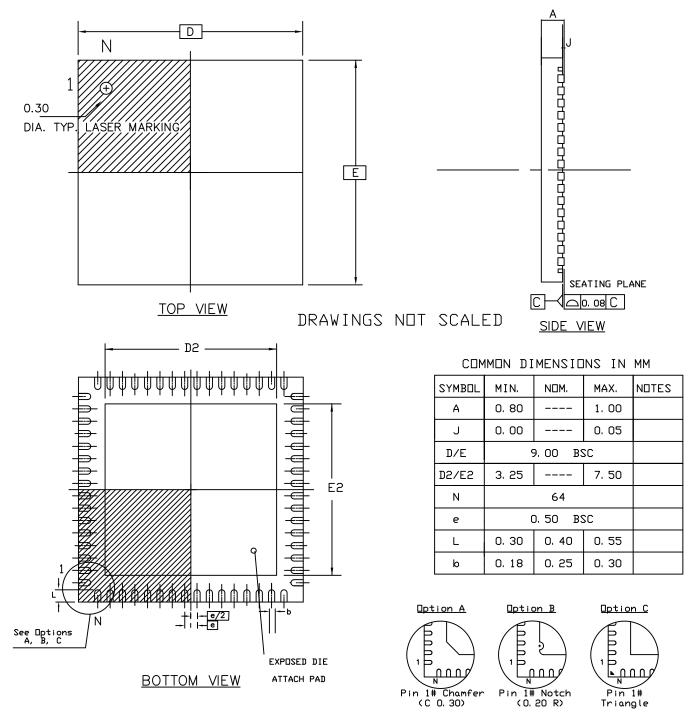
The SAM3S8/SD8 64-pin and 100-pin PIO Controllers control up to 32 lines. Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

Inch

SAM3S8/SD8 Summary 52

Symbol


Symbol	Min	Nom	Max	Min	Nom	Мах
А	-	-	1.60	-	-	0.063
A1	0.05	-	0.15	0.002	-	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
D	12.00 BSC			0.472 BSC		
D1	10.00 BSC			0.383 BSC		
Е	12.00 BSC			0.472 BSC		
E1	10.00 BSC			0.383 BSC		
R2	0.08	-	0.20	0.003	-	0.008
R1	0.08	-	_	0.003	-	-
q	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	_
θ2	11°	12°	13°	11°	12°	13°
θ3	11°	12°	13°	11°	12°	13°
С	0.09	-	0.20	0.004	-	0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00 REF			0.039 REF	

64-lead LQFP Package Dimensions (in mm) Table 12-1.

Millimeter

Figure 12-3. 64-lead LQFP Package Mechanical Drawing

Figure 12-4. 64-lead QFN Package Mechanical Drawing

Revision History

In the information that follows, the most recent version of the document is referenced first.

Doc. Rev	Comments	Change Request Ref.
11090BS	Corrected Figure 12-3 "64-lead LQFP Package Mechanical Drawing" and inserted Table 12-1 "64-lead LQFP Package Dimensions (in mm)".	9389

Doc. Rev	Comments	Change Request Ref.
11090AS	First issue	

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA **Tel:** (+1) (408) 441-0311 **Fax:** (+1) (408) 487-2600 www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku Tokyo 141-0032 JAPAN **Tel:** (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERCUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not sintended of uservations in applications intended to support or sustain life.

© 2013 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof, QTouch[®], DataFlash[®], SAM-BA[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.Windows[®] and others, are registered trademarks or trademarks of Microsoft Corporation in the US and/or other countries. ARM[®], Cortex[®], Thumb[®]-2 and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.