E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 125°C (TA)
Security Features	-
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8377cvragd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

There are two I²C controllers. These synchronous, multi-master buses can be connected to additional devices for expansion and system development.

The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550 programming models. 16-byte FIFOs are supported for both the transmitter and the receiver.

The main component of the enhanced local bus controller (eLBC) is its memory controller, which provides a seamless interface to many types of memory devices and peripherals. The memory controller is responsible for controlling eight memory banks shared by a NAND Flash control machine (FCM), a general-purpose chip-select machine (GPCM), and up to three user-programmable machines (UPMs). As such, it supports a minimal glue logic interface to SRAM, EPROM, NOR Flash EPROM, NAND Flash, EPROM, burstable RAM, regular DRAM devices, extended data output DRAM devices, and other peripherals. The eLBC external address latch enable (LALE) signal allows multiplexing of addresses with data signals to reduce the device pin count.

The enhanced local bus controller also includes a number of data checking and protection features, such as data parity generation and checking, write protection, and a bus monitor to ensure that each bus cycle is terminated within a user-specified period. The local bus can operate at up to 133 MHz.

The system timers include the following features: periodic interrupt timer, real time clock, software watchdog timer, and two general-purpose timer blocks.

1.8 Security Engine

The optional security engine is optimized to handle all the algorithms associated with IPSec, IEEE 802.11i, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs). The execution units are as follows:

- Data encryption standard execution unit (DEU), supporting DES and 3DES
- Advanced encryption standard unit (AESU), supporting AES
- Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-256, and HMAC with any algorithm
- One crypto-channel supporting multi-command descriptor chains

1.9 PCI Controller

The PCI controller includes the following features:

- PCI Specification Revision 2.3 compatible
- Single 32-bit data PCI interface operates at up to 66 MHz
- PCI 3.3-V compatible (not 5-V compatible)
- Support for host and agent modes
- On-chip arbitration, supporting 5 external masters on PCI
- Selectable hardware-enforced coherency

8.2.1.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 27. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol ¹	Min	Typical	Мах	Unit
Input low voltage	V _{IL}	_	—	0.7	V
Input high voltage	V _{IH}	1.9	—	—	V
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise time (20%–80%)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF}	1.0	—	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

This figure provides the AC test load for eTSEC.

Figure 8. eTSEC AC Test Load

9.2 USB AC Electrical Specifications

This table describes the general timing parameters of the USB interface of the device.

Parameter	Symbol ¹	Min	Max	Unit	Note
USB clock cycle time	t _{USCK}	15	_	ns	2, 3, 4, 5
Input setup to USB clock—all inputs	t _{USIVKH}	4	_	ns	2, 3, 4, 5
Input hold to USB clock—all inputs	t _{USIXKH}	1	_	ns	2, 3, 4, 5
USB clock to output valid—all outputs	t _{USKHOV}		7	ns	2, 3, 4, 5
Output hold from USB clock—all outputs	t _{USKHOX}	2	—	ns	2, 3, 4, 5

Table 35. USB General Timing Parameters (ULPI Mode Only)

Notes:

 The symbols for timing specifications follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{USIXKH} symbolizes USB timing (US) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, t_{USKHOX} symbolizes USB timing (US) for the USB clock reference (K) to go high (H) with respect to the output (O) going invalid (X) or output hold time.
</sub>

- 2. All timings are in reference to the USB clock, USBDR_CLK.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of the USB clock to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For active/float timing measurements, the high impedance or off state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

These two figures provide the AC test load and signals for the USB, respectively.

This figures show the local bus signals.

Figure 20. Local Bus Signals, Non-special Signals Only (PLL Enable Mode)

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (PLL Enable Mode)

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (PLL Bypass Mode)

11 Enhanced Secure Digital Host Controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC (SD/MMC) interface of the chip.

The eSDHC controller always uses the falling edge of the SD_CLK in order to drive the SD_DAT[0:3]/CMD as outputs and sample the SD_DAT[0:3] as inputs. This behavior is true for both fulland high-speed modes.

Note that this is a non-standard implementation, as the SD card specification assumes that in high-speed mode, data is driven at the rising edge of the clock.

Table 42. eSDHC AC Timing Specifications for Full-Speed Mode (continued)

At recommended operating conditions $OV_{DD} = 3.3 V \pm 165 mV$.

Parameter	Symbol ¹	Min	Max	Unit	Note
Input hold times: SD_CMD, SD_DAT <i>x</i> , SD_CD to SD_CLK	t _{SFSIXKH}	0	_	ns	2
SD_CLK delay within device	t _{INT_CLK_DLY}	1.5	_	ns	4
Output valid: SD_CLK to SD_CMD, SD_DAT <i>x</i> valid	t _{SFSKHOV}		4	ns	2
Output hold: SD_CLK to SD_CMD, SD_DAT <i>x</i> valid	t _{SFSKHOX}	0	_		
SD card input setup	t _{ISU}	5	_	ns	3
SD card input hold	t _{IH}	5	_	ns	3
SD card output valid	t _{ODLY}		14	ns	3
SD card output hold	t _{ОН}	0		ns	3

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first three letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first three letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{SFSIXKH} symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) going to high (H). Also t_{SFSKHOV} symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- 2. Measured at capacitive load of 40 pF.
- 3. For reference only, according to the SD card specifications.
- 4. Average, for reference only.

This figure provides the eSDHC clock input timing diagram.

Figure 26. eSDHC Clock Input Timing Diagram

Parameter	Symbol ²	Min	Мах	Unit	Note
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5

 Table 45. JTAG AC Timing Specifications (Independent of CLKIN) ¹ (continued)

Notes:

- 1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 17). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.

This figure provides the AC test load for TDO and the boundary-scan outputs of the device.

Figure 32. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OVDD/2)

Figure 33. JTAG Clock Input Timing Diagram

This figure provides the $\overline{\text{TRST}}$ timing diagram.

This figure provides the boundary-scan timing diagram.

Figure 35. Boundary-Scan Timing Diagram

This figure provides the test access port timing diagram.

VM = Midpoint Voltage (OVDD/2)

Table 49. PCI AC Timing Specifications at 66 MHz (continued)

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, VIH = $0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Input hold from cock	t _{PCIXKH}	0.25	—	ns	2, 4, 6
Output clock skew	t _{PCKOSK}	—	0.5	ns	5

Notes:

Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 1 ns skew for 66 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

This table shows the PCI AC timing specifications at 33 MHz.

Table 50. PCI AC Timing Specifications at 33 MHz

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, $V_{IH} = 0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Clock to output valid	t _{PCKHOV}	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.25	—	ns	2, 4, 6
Output clock skew	t _{PCKOSK}	_	0.5	ns	5

Notes:

- Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 2 ns skew for 33 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

15.4.1 Differential Transmitter (Tx) Output

This table defines the specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Parameter	Conditions	Symbol	Min	Typical	Мах	Units	Note
Unit interval	Each U_{PETX} is 400 ps ± 300 ppm. U_{PETX} does not account for Spread Spectrum Clock dictated variations.	UI	399.88	400	400.12	ps	1
Differential peak-to-peak output voltage	$V_{PEDPPTX} = 2 \times IV_{TX-D+} - V_{TX-D-I}$	V _{TX-DIFFp-p}	0.8	_	1.2	V	2
De-emphasized differential output voltage (ratio)	Ratio of the $V_{PEDPPTX}$ of the second and following bits after a transition divided by the $V_{PEDPPTX}$ of the first bit after a transition.	V _{TX-DE-RATIO}	-3.0	-3.5	-4.0	dB	2
Minimum Tx eye width	The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 -$ $U_{PEEWTX} = 0.3 UI.$	T _{TX-EYE}	0.70		_	UI	2, 3
Maximum time between the jitter median and maximum deviation from the median	Jitter is defined as the measurement variation of the crossing points ($V_{PEDPPTX} = 0$ V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.	T _{TX-EYE-MEDIAN-to-} MAX-JITTER			0.15	U	2, 3
D+/D– Tx output rise/fall time	—	T _{TX-RISE} , T _{TX-FALL}	0.125	_	—	UI	2, 5
RMS AC peak common mode output voltage	$\label{eq:VPEACPCMTX} \begin{split} &V_{\text{PEACPCMTX}} = \text{RMS}(\text{IV}_{\text{TXD+}} - \text{V}_{\text{TXD-}}\text{I}/2 - \text{V}_{\text{TX-CM-DC}}) \\ &V_{\text{TX-CM-DC}} = \text{DC}_{(\text{avg})} \text{ of } \\ &V_{\text{TX-CM-}} - \text{V}_{\text{TX-D-}}\text{I}/2 \end{split}$	V _{TX-CM-ACp}	_		20	mV	2
Absolute delta of DC common mode voltage during LO and electrical idle	$eq:linear_line$	V _{TX-CM-DC-} ACTIVE- IDLE-DELTA	0	_	100	mV	2

Table 52. Differential Transmitter (Tx) Output Specifications

Parameter	Comments	Symbol	Min	Typical	Max	Units	Note
Minimum receiver eye width	The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 -$ $U_{PEEWRX} = 0.6$ UI.	T _{RX-EYE}	0.4			UI	2, 3
Maximum time between the jitter median and maximum deviation from the median.	Jitter is defined as the measurement variation of the crossing points ($V_{PEDPPRX} = 0$ V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.	T _{RX-EYE-MEDIAN-to} -MAX-JITTER			0.3	UI	2, 3, 7
AC peak common mode input voltage	$V_{PEACPCMRX} = V_{RXD+} - V_{RXD-l/2} - V_{RX-CM-DC} \\V_{RX-CM-DC} = DC_{(avg)} \text{ of } V_{RX-D+} - V_{RX-D-l/2} /2$	V _{RX-CM-ACp}	—	_	150	mV	2
Differential return loss	Measured over 50 MHz to 1.25 GHz with the D+ and D– lines biased at +300 mV and –300 mV, respectively.	RL _{RX-DIFF}	10	_	—	dB	4
Common mode return loss	Measured over 50 MHz to 1.25 GHz with the D+ and D- lines biased at 0 V.	RL _{RX-CM}	6	_	_	dB	4
DC differential input impedance	RX DC differential mode impedance.	Z _{RX-DIFF-DC}	80	100	120	Ω	5
DC Input Impedance	Required RX D+ as well as D- DC impedance (50 \pm 20% tolerance).	Z _{RX-DC}	40	50	60	Ω	2, 5
Powered down DC input impedance	Required RX D+ as well as D– DC impedance when the receiver terminations do not have power.	Z _{RX-HIGH-IMP-DC}	200 k	_	_	Ω	6
Electrical idle detect threshold	$V_{PEEIDT} = 2 \times V_{RX-D+} - V_{RX-D-} $ Measured at the package pins of the receiver	V _{RX-IDLE-DET-DIFF} p-p	65	—	175	mV	—

Parameter	Comments	Symbol	Min	Typical	Max	Units	Note
Unexpected Electrical Idle Enter Detect Threshold Integration Time	An unexpected electrical idle (Vrx-diffp-p < Vrx-idle-det-diffp-p) must be recognized no longer than Trx-idle-det-diff-entertime to signal an unexpected idle condition.	T _{RX-IDLE-DET-DIFF-} ENTERTIME	_	_	10	ms	_
Total Skew	Skew across all lanes on a link. This includes variation in the length of SKP ordered set (e.g. COM and one to five SKP Symbols) at the Rx as well as any delay differences arising from the interconnect itself.	L _{RX-SKEW}			20	ns	

Table 53. Differential Receiver (Rx) Input Specifications (continued)

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 44 should be used as the Rx device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 43). If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- 3. A T_{Rx-EYE} = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect collected any 250 consecutive UIs. The TRx-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 4. The receiver input impedance will result in a differential return loss greater than or equal to 10 dB with the D+ line biased to 300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D- line (that is, as measured by a vector network analyzer with 50- Ω probes, see Figure 44). Note that the series capacitors, C_{Tx}, is optional for the return loss measurement.
- 5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
- 6. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.
- 7. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

15.5 Receiver Compliance Eye Diagrams

The Rx eye diagram in Figure 43 is specified using the passive compliance/test measurement load (see Figure 44) in place of any real PCI Express Rx component. In general, the minimum receiver eye diagram measured with the compliance/test measurement load (see Figure 44) is larger than the minimum receiver eye diagram measured over a range of systems at the input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due to traces internal to the package as well as silicon parasitic characteristics that cause the real PCI Express component to vary in impedance from the

NOTE

Figure 56 to Figure 59 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by the clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the device SerDes reference clock receiver requirement provided in this document.

This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with device SerDes reference clock input's DC requirement.

Figure 56. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common-mode voltage is higher than the device SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS

Signal	Package Pin Number	Pin Type	Power Supply	Note
MDQ2	C7	I/O	GVDD	11
MDQ3	D8	I/O	GVDD	11
MDQ4	Α7	I/O	GVDD	11
MDQ5	A5	I/O	GVDD	11
MDQ6	A3	I/O	GVDD	11
MDQ7	C6	I/O	GVDD	11
MDQ8	D7	I/O	GVDD	11
MDQ9	E8	I/O	GVDD	11
MDQ10	B1	I/O	GVDD	11
MDQ11	D5	I/O	GVDD	11
MDQ12	B3	I/O	GVDD	11
MDQ13	D6	I/O	GVDD	11
MDQ14	C3	I/O	GVDD	11
MDQ15	C2	I/O	GVDD	11
MDQ16	D4	I/O	GVDD	11
MDQ17	E6	I/O	GVDD	11
MDQ18	F6	I/O	GVDD	11
MDQ19	G4	I/O	GVDD	11
MDQ20	F8	I/O	GVDD	11
MDQ21	E4	I/O	GVDD	11
MDQ22	C1	I/O	GVDD	11
MDQ23	G6	I/O	GVDD	11
MDQ24	F2	I/O	GVDD	11
MDQ25	G5	I/O	GVDD	11
MDQ26	H6	I/O	GVDD	11
MDQ27	H4	I/O	GVDD	11
MDQ28	D1	I/O	GVDD	11
MDQ29	G3	I/O	GVDD	11
MDQ30	H5	I/O	GVDD	11
MDQ31	F1	I/O	GVDD	11
MDQ32	W6	I/O	GVDD	11
MDQ33	AC1	I/O	GVDD	11
MDQ34	AC3	I/O	GVDD	11

Table 72. TePBGA II Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note			
MDQS4	AB5	I/O	GVDD	11			
MDQS5	AD1	I/O	GVDD	11			
MDQS6	AH1	I/O	GVDD	11			
MDQS7	AJ3	I/O	GVDD	11			
MDQS8	G1	I/O	GVDD	11			
MECC0/MSRCID0	J6	I/O	GVDD	_			
MECC1/MSRCID1	J3	I/O	GVDD				
MECC2/MSRCID2	K2	I/O	GVDD				
MECC3/MSRCID3	К3	I/O	GVDD				
MECC4/MSRCID4	J5	I/O	GVDD				
MECC5/MDVAL	J2	I/O	GVDD	_			
MECC6	L5	I/O	GVDD				
MECC7	L2	I/O	GVDD	_			
MODT0	N5	0	GVDD	6			
MODT1	U6	0	GVDD	6			
MODT2	M6	0	GVDD	6			
MODT3	P6	0	GVDD	6			
MRAS_B	AA3	0	GVDD	_			
MVREF1	К4	I	GVDD	11			
MVREF2	W4	I	GVDD	11			
MWE_B	Y2	0	GVDD	—			
	DUART Interface						
UART_SIN1/ MSRCID2/LSRCID2	L28	I/O	OVDD	_			
UART_SOUT1/ MSRCID0/LSRCID0	L27	0	OVDD	—			
UART_CTS_B[1]/ MSRCID4/LSRCID4	K26	I/O	OVDD	_			
UART_RTS_B1	N27	0	OVDD	_			
UART_SIN2/ MSRCID3/LSRCID3	K27	I/O	OVDD	—			
UART_SOUT2/ MSRCID1/LSRCID1	K28	0	OVDD	_			
UART_CTS_B[2]/ MDVAL/LDVAL	K29	I/O	OVDD	—			

Table 72. TePBGA II Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note			
eTSEC1/GPIO1/GPIO2/CFG_RESET Interface							
TSEC1_COL/GPIO2[20]	AF22	I/O	LVDD1	16			
TSEC1_CRS/GPIO2[21]	AE20	I/O	LVDD1	16			
TSEC1_GTX_CLK	AJ25	0	LVDD1	16			
TSEC1_RX_CLK	AG22	I	LVDD1	16			
TSEC1_RX_DV	AD19	I	LVDD1	16			
TSEC1_RX_ER/GPIO2[25]	AD20	I/O	LVDD1	16			
TSEC1_RXD0	AD22	I	LVDD1	16			
TSEC1_RXD1	AE21	I	LVDD1	16			
TSEC1_RXD2	AE22	I	LVDD1	16			
TSEC1_RXD3	AD21	I	LVDD1	16			
TSEC1_TX_CLK	AJ22	I	LVDD1	16			
TSEC1_TX_EN	AG23	0	LVDD1	16			
TSEC1_TX_ER/CFG_LBMUX	AH22	I/O	LVDD1	16			
TSEC1_TXD0/ CFG_RESET_SOURCE[0]	AD23	I/O	LVDD1	16			
TSEC1_TXD1/ CFG_RESET_SOURCE[1]	AE23	I/O	LVDD1	16			
TSEC1_TXD2/ CFG_RESET_SOURCE[2]	AF23	I/O	LVDD1	16			
TSEC1_TXD3/ CFG_RESET_SOURCE[3]	AJ24	I/O	LVDD1	16			
EC_GTX_CLK125	AH24	I	LVDD1	16			
EC_MDC/CFG_CLKIN_DIV	AJ21	I/O	LVDD1	16			
EC_MDIO	AH21	I/O	LVDD1	16			
eTSEC2/GPIO1 Interface							
TSEC2_COL/GPIO1[21]/ TSEC1_TMR_TRIG1	AJ27	I/O	LVDD2	16			
TSEC2_CRS/GPIO1[22]/ TSEC1_TMR_TRIG2	AG29	I/O	LVDD2	16			
TSEC2_GTX_CLK	AF28	0	LVDD2	16			
TSEC2_RX_CLK/ TSEC1_TMR_CLK	AF25	I	LVDD2	16			
TSEC2_RX_DV/GPIO1[23]	AF26	I/O	LVDD2	16			
TSEC2_RX_ER/GPIO1[25]	AG25	I/O	LVDD2	16			

Table 72. TePBGA II Pinout Listing (continued)

	5	<i>\ \</i>
Unit	Default Frequency	Options
PCI Express1, 2	csb_clk/3	Off, c <i>sb_clk, csb_clk/2, csb_clk/3</i>
SATA1, 2	csb_clk/3	Off, <i>csb_clk</i>

Table 73. Configurable Clock Units (continued)

¹ This only applies to I^2C1 (I^2C2 clock is not configurable).

This table provides the operating frequencies for the TePBGA II package under recommended operating conditions (see Table 3).

Parameter ¹	Minimum Operating Frequency (MHz)	Maximum Operating Frequency (MHz)
e300 core frequency (<i>core_clk</i>)	333	800
Coherent system bus frequency (<i>csb_clk</i>)	133	400
DDR2 memory bus frequency (MCK) ¹	250	400
DDR1 memory bus frequency (MCK) ²	167	333
Local bus frequency (LCLKn) ¹	_	133
Local bus controller frequency (<i>lbc_clk</i>)	—	400
PCI input frequency (CLKIN or PCI_CLK)	25	66
eTSEC frequency	133	400
Security encryption controller frequency	—	200
USB controller frequency	—	200
eSDHC controller frequency	—	200
PCI Express controller frequency	-	400
SATA controller frequency	-	200

Table 74. Operating Frequencies for TePBGA II

Notes:

 The CLKIN frequency, RCWLR[SPMF], and RCWLR[COREPLL] settings must be chosen such that the resulting *csb_clk*, MCK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[xCM] must be programmed such that the maximum internal operating frequency of the Security core, USB modules, SATA, and eSDHC will not exceed their respective value listed in this table.

2. The DDR data rate is $2 \times$ the DDR memory bus frequency.

3. The local bus frequency is ½, ¼, or 1/8 of the *lbiu_clk* frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2× the *csb_clk* frequency (depending on RCWLR[LBCM]).

23.1 System PLL Configuration

The system PLL is controlled by the RCWLR[SPMF] parameter. The system PLL VCO frequency depends on RCWLR[DDRCM] and RCWLR[LBCM]. Table 75 shows the multiplication factor encodings for the system PLL.

NOTE

If RCWLR[DDRCM] and RCWLR[LBCM] are both cleared, the system PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).

If either RCWLR[DDRCM] or RCWLR[LBCM] are set, the system PLL VCO frequency = $2 \times (CSB$ frequency) $\times (System PLL VCO Divider)$.

The VCO divider needs to be set properly so that the System PLL VCO frequency is in the range of 400–800 MHz.

RCWLR[SPMF]	System PLL Multiplication Factor		
0000	Reserved		
0001	Reserved		
0010	× 2		
0011	× 3		
0100	× 4		
0101	× 5		
0110	× 6		
0111–1111	\times 7 to \times 15		

Table 75. System PLL Multiplication Factors

As described in Section 23, "Clocking," The LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 77 and Table 78 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

The RCWLR[SVCOD] denotes the system PLL VCO internal frequency as shown in Table 76.

Table 76. System PLL VCO Divider

RCWLR[SVCOD]	VCO Division Factor
00	4
01	8
10	2
11	1

			Input Clock Frequency (MHz) ²		
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ¹	25	33.33	66.67
			<i>csb_clk</i> Frequency (MHz)		MHz)
High	0010	2 : 1			133
High	0011	3 : 1			200
High	0100	4 : 1		133	267
High	0101	5 : 1		167	333
High	0110	6 : 1	150	200	400
High	0111	7 : 1	175	233	
High	1000	8 : 1	200	267	
High	1001	9 : 1	225	300	
High	1010	10 : 1	250	333	
High	1011	11 : 1	275	367	
High	1100	12 : 1	300	400	
High	1101	13 : 1	325		
High	1110	14 : 1	350		
High	1111	15 : 1	375		

Table 77. CSB Frequency Options for Host Mode

Notes:

1. CFG_CLKIN_DIV select the ratio between CLKIN and PCI_SYNC_OUT.

2. CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

Table 78	CSB	Frequenc	v Ontions	for A	aont l	ApoM
Table / o	. СЭР	riequenc	y options	IOI A	genti	vioue

		<i>csb_clk</i> : Input Clock Ratio ¹	Input Clock Frequency (MHz) ²		
CFG_CLKIN_DIV at reset ¹	SPMF		25	33.33	66.67
			csb_clk Frequency (MHz)		
Low	0010	2 : 1			133
Low	0011	3 : 1			200
Low	0100	4 : 1		133	267
Low	0101	5 : 1		167	333
Low	0110	6 : 1	150	200	400