E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 125°C (TA)
Security Features	-
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8377cvrajf
USB Voltage - I/O Operating Temperature Security Features Package / Case Supplier Device Package Purchase URL	USB 2.0 + PHY (1) 1.8V, 2.5V, 3.3V -40°C ~ 125°C (TA) - 689-BBGA Exposed Pad 689-TEPBGA II (31x31) https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8377cvrajf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

In addition to the security engine, new high-speed interfaces, such as PCI Express and SATA are included. This table compares the differences between MPC837xE derivatives and provides the number of ports available for each interface.

 Table 1. High-Speed Interfaces on the MPC8377E, MPC8378E, and MPC8379E

Descriptions	MPC8377E	MPC8378E	MPC8379E
SGMII	0	2	0
PCI Express®	2	2	0
SATA	2	0	4

1.1 DDR Memory Controller

The DDR1/DDR2 memory controller includes the following features:

- Single 32- or 64-bit interface supporting both DDR1 and DDR2 SDRAM
- Support for up to 400-MHz data rate
- Support up to 4 chip selects
- 64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with ×8/×16/×32 data ports (no direct ×4 support)
- Support for up to 32 simultaneous open pages
- Supports auto refresh
- On-the-fly power management using CKE
- 1.8-/2.5-V SSTL2 compatible I/O

1.2 USB Dual-Role Controller

The USB controller includes the following features:

- Supports USB on-the-go mode, including both device and host functionality, when using an external ULPI (UTMI + low-pin interface) PHY
- Complies with USB Specification, Rev. 2.0
- Supports operation as a stand-alone USB device
 - Supports one upstream facing port
 - Supports three programmable USB endpoints
- Supports operation as a stand-alone USB host controller
 - Supports USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
- Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation; low-speed operation is supported only in host mode
- Supports UTMI + low pin interface (ULPI)

2.1.3 chipOutput Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type ¹	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	45	LBV _{DD} = 2.5 V, 3.3 V
	40	LBV _{DD} = 1.8 V
PCI signals	25	OV _{DD} = 3.3 V
DDR1 signal	18	GV _{DD} = 2.5 V
DDR2 signal	18	GV _{DD} = 1.8 V
eTSEC 10/100/1000 signals	45	LV _{DD} = 2.5 V, 3.3 V
DUART, system control, I ² C, JTAG, SPI, and USB	45	OV _{DD} = 3.3 V
GPIO signals	45	OV _{DD} = 3.3 V

Table 4. Output	Drive	Capability
-----------------	-------	------------

Note:

1. Specialized SerDes output capabilities are described in the relevant sections of these specifications (such as PCI Express and SATA)

2.2 Power Sequencing

The device requires its power rails to be applied in a specific sequence in order to ensure proper device operation. During the power ramp up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there may be a period of time that all input and output pins will actively be driven and cause contention and excessive current. To avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltages (V_{DD} and AV_{DD}) before the I/O voltages and assert PORESET before the power supplies fully ramp up. V_{DD} and AV_{DD} must reach 90% of their nominal value before GV_{DD} , LV_{DD} , and OV_{DD} reach 10% of their value, see the following figure. I/O

Core Frequency (MHz)	CSB/DDR Frequency (MHz)	Sleep Power at T _j = 65°C (W) ²	Typical Application at $T_j = 65^{\circ}C$ (W) ²	Typical Application at $T_j = 125^{\circ}C$ (W) ³	Max Application at $T_j = 125$ °C (W) ⁴
600	400	1.45	2.1	3.4	4.1
600	300	1.45	2.0	3.3	4.0
667	333	1.45	2.1	3.3	4.1
667	266	1.45	2.0	3.3	3.9
800	400	1.45	2.5	3.8	4.3

Table 5. Power Dissipation ¹ (continued)

Notes:

1. The values do not include I/O supply power (OV_{DD}, LV_{DD} , GV_{DD}) or AV_{DD} . For I/O power values, see Table 6.

2. Typical power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, and running a Dhrystone benchmark application.

3. Typical power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, and running a Dhrystone benchmark application.

4. Maximum power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, worst case process, and running an artificial smoke test.

This table shows the estimated typical I/O power dissipation for the device.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} /LBV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	L[1,2]_ <i>n</i> V _{DD} (1.0 V)	Unit	Comments
	200 MHz data rate, 32-bit	0.28	0.35	—	—	—	_	W	—
	200 MHz data rate, 64-bit	0.41	0.49	—	—	—	_	W	
	266 MHz data rate, 32-bit	0.31	0.4	—	—	_	_	W	
	266 MHz data rate, 64-bit	0.46	0.56	—	—	_	_	W	
DDR I/O 65% utilization 2 pair of clocks	300 MHz data rate, 32-bit	0.33	0.43	_	_	—	_	W	
	300 MHz data rate, 64-bit	0.48	0.6	—	—	_	_	W	
	333 MHz data rate, 32-bit	0.35	0.45	_	_	—	_	W	
	333 MHz data rate, 64-bit	0.51	0.64	_	_	_	_	W	
	400 MHz data rate, 32-bit	0.38	—	_	—	—	_	W	
	400 MHz data rate, 64-bit	0.56	—	—	—	—	_	W	

 Table 6. Typical I/O Power Dissipation

6.2 DDR1 and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR1 and DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM when GVDD(typ) = 1.8 V.

Table 18. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

Parameter	Symbol	Min	Мах	Unit
AC input low voltage	V _{IL}	—	MV _{REF} – 0.25	V
AC input high voltage	V _{IH}	MV _{REF} + 0.25	—	V

This table provides the input AC timing specifications for the DDR1 SDRAM when $GV_{DD}(typ) = 2.5 V$.

Table 19. DDR1 SDRAM Input AC Timing Specifications for 2.5-V Interface

Parameter	Symbol	Min	Мах	Unit
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V
AC input high voltage	V _{IH}	MV _{REF} + 0.31	—	V

This table provides the input AC timing specifications for the DDR1 and DDR2 SDRAM interface.

Table 20. DDR1 and DDR2 SDRAM Input AC Timing Specifications

Parameter	Symbol	Min	Мах	Unit	Note
Controller skew for MDQS-MDQ/MECC/MDM 400 MHz data rate 333 MHz data rate 266 MHz data rate	^t CISKEW	-500 -750 -750	500 750 750	ps	1, 2 3 —

Note:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS*n* and any corresponding bit that will be captured with MDQS*n*. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ±[T/4 - It_{CISKEW}] where T is the MCK clock period and It_{CISKEW} is the absolute value of t_{CISKEW}.

3. This specification applies only to DDR2 interface.

Figure 24. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (PLL Enable Mode)

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the chip.

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.5	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	—	±30	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 44. JTAG interface DC Electrical Characteristics

12.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device. This table provides the JTAG AC timing specifications as defined in Figure 33 through Figure 36.

_		a 2				
Para	meter	Symbol ²	Min	Max	Unit	Note
JTAG external clock frequen	cy of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle tir	ne	t _{JTG}	30	—	ns	—
JTAG external clock pulse w	idth measured at 1.4 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and	d fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time		t _{TRST}	25	—	ns	3
Input setup times:	Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	-	ns	4
Input hold times:	Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times:	Boundary-scan data TDO	tjtkldv tjtklov	2 2	11 11	ns	_
Output hold times:	Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2		ns	_

Table 45. JTAG AC Timing Specifications (Independent of CLKIN)¹

Table 47. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 46).

Parameter	Symbol ¹	Min	Max	Unit	Note
Data hold time CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0	 0.9	μs	2, 3
Setup time for STOP condition	t _{I2PVKH}	0.6	-	μs	_
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs	—
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	_	V	_
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V	

Notes:

- 1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the t_{I2C} clock reference (K) going to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. This chip provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.

This figure provides the AC test load for the I^2C .

Figure 37. I²C AC Test Load

This figure shows the AC timing diagram for the I^2C bus.

Figure 38. I²C Bus AC Timing Diagram

NOTE

Figure 56 to Figure 59 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by the clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the device SerDes reference clock receiver requirement provided in this document.

This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with device SerDes reference clock input's DC requirement.

Figure 56. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common-mode voltage is higher than the device SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS

This figure shows the mechanical dimensions and bottom surface nomenclature of the TEPBGA II package.

Figure 63. Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II

Note:

- ¹ All dimensions are in millimeters.
- ² Dimensioning and tolerancing per ASME Y14. 5M-1994.
- ³ Maximum solder ball diameter measured parallel to Datum A.
- ⁴ Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Signal	Package Pin Number	Pin Number Pin Type Power Supply		Note
MDQ2	C7	I/O	GVDD	11
MDQ3	D8	I/O	GVDD	11
MDQ4	Α7	I/O	GVDD	11
MDQ5	A5	I/O	GVDD	11
MDQ6	A3	I/O	GVDD	11
MDQ7	C6	I/O	GVDD	11
MDQ8	D7	I/O	GVDD	11
MDQ9	E8	I/O	GVDD	11
MDQ10	B1	I/O	GVDD	11
MDQ11	D5	I/O	GVDD	11
MDQ12	B3	I/O	GVDD	11
MDQ13	D6	I/O	GVDD	11
MDQ14	C3	I/O	GVDD	11
MDQ15	C2	I/O	GVDD	11
MDQ16	D4	I/O	GVDD	11
MDQ17	E6	I/O	GVDD	11
MDQ18	F6	I/O	GVDD	11
MDQ19	G4	I/O	GVDD	11
MDQ20	F8	I/O	GVDD	11
MDQ21	E4	I/O	GVDD	11
MDQ22	C1	I/O	GVDD	11
MDQ23	G6	I/O	GVDD	11
MDQ24	F2	I/O	GVDD	11
MDQ25	G5	I/O	GVDD	11
MDQ26	H6	I/O	GVDD	11
MDQ27	H4	I/O	GVDD	11
MDQ28	D1	I/O	GVDD	11
MDQ29	G3	I/O	GVDD	11
MDQ30	H5	I/O	GVDD	11
MDQ31	F1	I/O	GVDD	11
MDQ32	W6	I/O	GVDD	11
MDQ33	AC1	I/O	GVDD	11
MDQ34	AC3	I/O	GVDD	11

Signal	Package Pin Number	Pin Type	Power Supply	Note			
UART_RTS_B[2]	L29	0	OVDD				
Enhanced Local Bus Controller (eLBC) Interface							
LAD0	E24	I/O	LBVDD				
LAD1	G28	I/O	LBVDD	_			
LAD2	H25	I/O	LBVDD	_			
LAD3	F26	I/O	LBVDD	_			
LAD4	C26	I/O	LBVDD	_			
LAD5	J28	I/O	LBVDD	_			
LAD6	F21	I/O	LBVDD	_			
LAD7	F23	I/O	LBVDD	_			
LAD8	E25	I/O	LBVDD	_			
LAD9	E26	I/O	LBVDD	_			
LAD10	A23	I/O	LBVDD	_			
LAD11	F24	I/O	LBVDD	_			
LAD12	G24	I/O	LBVDD	_			
LAD13	F25	I/O	LBVDD	_			
LAD14	H28	I/O	LBVDD	_			
LAD15	G25	I/O	LBVDD	_			
LA11/LAD16	F27	I/O	LBVDD				
LA12/LAD17	B21	I/O	LBVDD				
LA13/LAD18	A25	I/O	LBVDD				
LA14/LAD19	C28	I/O	LBVDD				
LA15/LAD20	H24	I/O	LBVDD	_			
LA16/LAD21	E23	I/O	LBVDD				
LA17/LAD22	B28	I/O	LBVDD				
LA18/LAD23	D28	I/O	LBVDD				
LA19/LAD24	A27	I/O	LBVDD	_			
LA20/LAD25	C25	I/O	LBVDD	_			
LA21/LAD26	B27	I/O	LBVDD				
LA22/LAD27	H27	I/O	LBVDD	_			
LA23/LAD28	E21	I/O	LBVDD	_			
LA24/LAD29	F20	I/O	LBVDD				

Signal	Package Pin Number	Pin Type	Power Supply	Note
LA25/LAD30	D29	I/O	LBVDD	
LA26/LAD31	E20	I/O	LBVDD	_
LA27	H26	0	LBVDD	_
LA28	C29	0	LBVDD	_
LA29	E28	0	LBVDD	—
LA30	B26	0	LBVDD	—
LA31	J25	0	LBVDD	—
LA10/LALE	H29	0	LBVDD	—
LBCTL	A22	0	LBVDD	—
LCLK0	B22	0	LBVDD	—
LCLK1	C23	0	LBVDD	—
LCLK2	B23	0	LBVDD	—
LCS_B0	D25	0	LBVDD	—
LCS_B1	F19	0	LBVDD	—
LCS_B2	C27	0	LBVDD	—
LCS_B3	D24	0	LBVDD	—
LCS_B4/LDP0	C24	I/O	LBVDD	—
LCS_B5/LDP1	B29	I/O	LBVDD	—
LA7/LCS_B6/LDP2	E29	I/O	LBVDD	—
LA8/LCS_B7/LDP3	F29	I/O	LBVDD	—
LFCLE/LGPL0	D21	0	LBVDD	—
LFALE/LGPL1	A26	0	LBVDD	—
LFRE_B/LGPL2/LOE_B	F22	0	LBVDD	—
LFWP_B/LGPL3	C21	0	LBVDD	—
LGPL4/LFRB_B/LGTA_B/ LUPWAIT/LPBSE	J29	I/O	LBVDD	16
LA9/LGPL5	G29	0	LBVDD	_
LSYNC_IN	A21	I	LBVDD	—
LSYNC_OUT	D23	0	LBVDD	—
LWE_B0/LFWE0/LBS_B0	E22	0	LBVDD	—
LWE_B1/LFWE1/LBS_B1	B25	0	LBVDD	—
LWE_B2/LFWE2/LBS_B2	E27	0	LBVDD	—
LWE_B3/LFWE3/LBS_B3	F28	0	LBVDD	_

Signal	Package Pin Number	Pin Type	Power Supply	Note			
SPIMISO/SD_DAT0	AD11	I/O	OVDD				
SPIMOSI/SD_CMD	AJ9	I/O	OVDD	_			
SPISEL_B/SD_CD	AE11	I	OVDD	_			
	System Control Interface						
SRESET_B	AD12	I/O	OVDD	2			
HRESET_B	AE12	I/O	OVDD	1			
PORESET_B	AE14	I	OVDD	_			
	Test Interface	•					
TEST	E10	I	OVDD	10			
TEST_SEL0	D10	I	OVDD	13			
TEST_SEL1	D12	I	OVDD	13			
	Thermal Management						
Reserved	F15	I	_	14			
	Power Supply Signals						
LVDD1	AC21, AG21, AH23	Power for eTSEC 1 I/O (2.5 V, 3.3 V)	LVDD1	_			
LVDD2	AG24, AH27, AH29	Power for eTSEC 2 I/O (2.5 V, 3.3 V)	LVDD2	_			
LBVDD	G20, D22, A24, G26, D27, A28	Power for eLBC (3.3, 2.5, or 1.8 V)	LBVDD	_			
VDD	K10, L10, M10, N10, P10, R10, T10, U10, V10, W10, Y10, K11, R11, Y11, K12, Y12, K13, Y13, K14, Y14, K15, L15, W15, Y15, K16, Y16, K17, Y17, K18, Y18, K19, R19, Y19, K20, L20, M20, N20, P20, R20, T20, U20, V20, W20, Y20	Power for Core (1.0 V or 1.5 V)	VDD				

Signal	Package Pin Number	Pin Type	Power Supply	Note
GND (VSS)	 A1, AJ1, H2, N2, AA2, AD2, D3, R3, AF3, A4, F4, J4, L4, V4, Y4, AB4, B5, E5, P5, AH5, K6, T6, AA6, AD6, AG6, F7, J7, Y7, AJ7, B8, AE8, AG8, G9, AC9,B11, D11, F11, L11, M11, N11, P11, T11, U11, V11, W11,L12, M12, N12, P12, R12, T12, U12, V12, W12, E12, E13, L13, M13, N13, P13, R13, T13, U13, V13, W13, AE13, AJ13, F14, L14, M14, N14, P14, R14, T14, U14, V14, W14, M15, N15, P15, R15, T15, U15, V15, L16, M16, N16, P16, R16, T16, U16, V16, W16, L17, M17, N17, P17, R17, T17, U17, V17, W17, L18, M18, N18, P18, R18, T18, U18, V18, W18, L19, M19, N19, P19, T19, U19, V19, W19, AC20, G21, AF21, C22, J23, AA23, AJ23, B24, W24, AF24, K25, R25, AD25, D26, G27, M27, T27, Y27, AB27, AG27, A29, AJ29 			
AVDD_C	AD13	Power for e300 core PLL (1.0 V or 1.05 V)	_	15
AVDD_L	F13	Power for eLBC PLL (1.0 V or 1.05 V)	_	15
AVDD_P	F12	Power for system PLL (1.0 V or 1.05 V)	_	15
GVDD	A2, D2, R2, U2, AC2, AF2, AJ2, F3, H3, L3, N3, Y3, AB3, B4, P4, AF4, AH4, C5, F5, K5, V5, AA5, AD5, N6, R6, AJ6, B7, E7, K7, AA7, AE7, AG7, AD8	Power for DDR SDRAM I/O Voltage (2.5 or 1.8 V)	GVDD	_
OVDD	AC10, AF12, AJ12, K23, Y23, R24, AD24, L25, W25, AB26, U27, M28, Y28, G10, A11, C11	PCI, USB, and other Standard (3.3 V)	OVDD	
	No Connect			
NC	F16, F17, AD16, AD17	_	—	8

Pull Down

Signal	Package Pin Number	Pin Type	Power Supply	Note
Pull Down	B16, AH18	_	_	7

Notes:

1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OVDD.

2. This pin is an open drain signal. A weak pull-up resistor (2-10 kΩ) should be placed on this pin to OVDD.

3. This output is actively driven during reset rather than being released to high impedance during reset.

4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.

- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI Specification recommendation and see AN3665, "MPC837xE Design Checklist," for more details.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND using a 0 Ω resistor.
- 8. This pin must always be left not connected.
- 9. For DDR2 operation, it is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor.
- 10. This pin must always be tied low. If it is left floating it may cause the device to malfunction.
- 11.See AN3665, "MPC837xE Design Checklist," for proper DDR termination.

12. This pin must not be pulled down during PORESET.

13. This pin must always be tied to OVDD.

14.Open or tie to GND.

- 15. Voltage settings are dependent on the frequency used; see Table 3.
- 16.See AN3665, "MPC837xE Design Checklist," for proper termination.

23 Clocking

This figure shows the internal distribution of clocks within this chip.

Figure 64. Clock Subsystem

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the device is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICOEn] parameters select whether CFG_CLKIN_DIV is driven out on the PCI_CLK_OUT*n* signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the device to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured as a PCI agent device the CLKIN signal should be tied to GND.

	5	<i>\ \</i>
Unit	Default Frequency	Options
PCI Express1, 2	csb_clk/3	Off, c <i>sb_clk, csb_clk/2, csb_clk/3</i>
SATA1, 2	csb_clk/3	Off, <i>csb_clk</i>

Table 73. Configurable Clock Units (continued)

¹ This only applies to I^2C1 (I^2C2 clock is not configurable).

This table provides the operating frequencies for the TePBGA II package under recommended operating conditions (see Table 3).

Parameter ¹	Minimum Operating Frequency (MHz)	Maximum Operating Frequency (MHz)
e300 core frequency (<i>core_clk</i>)	333	800
Coherent system bus frequency (<i>csb_clk</i>)	133	400
DDR2 memory bus frequency (MCK) ¹	250	400
DDR1 memory bus frequency (MCK) ²	167	333
Local bus frequency (LCLKn) ¹	_	133
Local bus controller frequency (<i>lbc_clk</i>)	—	400
PCI input frequency (CLKIN or PCI_CLK)	25	66
eTSEC frequency	133	400
Security encryption controller frequency	—	200
USB controller frequency	—	200
eSDHC controller frequency	—	200
PCI Express controller frequency	-	400
SATA controller frequency	-	200

Table 74. Operating Frequencies for TePBGA II

Notes:

 The CLKIN frequency, RCWLR[SPMF], and RCWLR[COREPLL] settings must be chosen such that the resulting *csb_clk*, MCK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[xCM] must be programmed such that the maximum internal operating frequency of the Security core, USB modules, SATA, and eSDHC will not exceed their respective value listed in this table.

2. The DDR data rate is $2 \times$ the DDR memory bus frequency.

3. The local bus frequency is ½, ¼, or 1/8 of the *lbiu_clk* frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2× the *csb_clk* frequency (depending on RCWLR[LBCM]).

Table 81. Package Thermal Characteristics for T	[ePBGA II (continued)
---	-----------------------

Parameter	Symbol	Value	Unit	Note
Junction-to-package natural convection on top	ΨJT	6	°C/W	6

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

24.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers.

24.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C) T_A = ambient temperature for the package (°C) $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W) P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single layer board is appropriate for a tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

24.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

NOTE

The heat sink cannot be mounted on the package.

 $R_{\theta JC}$ = junction to case thermal resistance (°C/W)

 P_D = power dissipation (W)

25 System Design Information

This section provides electrical and thermal design recommendations for successful application of this chip.

25.1 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins. The AV_{DD} level should always be equivalent to V_{DD} , and preferably these voltages will be derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide five independent filter circuits as illustrated in Figure 65, one to each of the five AV_{DD} pins. By providing independent filters to each PLL, the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

This figure shows the PLL power supply filter circuit.

25.2 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the device system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each VDD, OVDD, GVDD, and LVDD pins of the device. These decoupling capacitors should receive their power from separate VDD, OVDD, GVDD, LVDD, and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (not including PCI output clocks)	PCI Output Clocks (including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	NA	Z _{DIFF}	W

Table 83. Impedance Characteristics

Note: Nominal supply voltages. See Table 2, $T_i = 105^{\circ}C$.

25.5 Configuration Pin Muxing

The device provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

25.6 Pull-Up Resistor Requirements

The device requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see AN3665, "MPC837xE Design Checklist."

26 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 26.1, "Part Numbers Fully Addressed by This Document."