E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Security; SEC 3.0
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 125°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8377ecvragda

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

controller, dual I²C controllers, a 4-channel DMA controller, an enhanced secured digital host controller, and a general-purpose I/O port. This figure shows the block diagram of the chip.

Figure 1. MPC8377E Block Diagram and Features

The following features are supported in the chip:

- e300c4s core built on Power Architecture® technology with 32 KB instruction cache and 32 KB data cache, a floating point unit, and two integer units
- DDR1/DDR2 memory controller supporting a 32/64-bit interface
- Peripheral interfaces, such as a 32-bit PCI interface with up to 66-MHz operation
- 32-bit local bus interface running up to 133-MHz
- USB 2.0 (full/high speed) support
- Power management controller for low-power consumption
- High degree of software compatibility with previous-generation PowerQUICC processor-based designs for backward compatibility and easier software migration
- Optional security engine provides acceleration for control and data plane security protocols

The optional security engine (SEC 3.0) is noted with the extension "E" at the end. It allows CPU-intensive cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.

1.12 Enhanced Secured Digital Host Controller (eSDHC)

The enhanced SD host controller (eSDHC) has the following features:

- Conforms to SD Host Controller Standard Specification, Rev 2.0 with Test Event register support.
- Compatible with the MMC System Specification, Rev 4.0
- Compatible with the *SD Memory Card Specification, Rev 2.0*, and supports High Capacity SD memory cards
- Compatible with the *SDIO Card Specification Rev, 1.2*
- Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC, MMC*plus*, MMC 4x, and RS-MMC cards
- SD bus clock frequency up to 50 MHz
- Supports 1-/4-bit SD and SDIO modes, 1-/4-bit MMC modes
- Supports internal DMA capabilities

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the chip. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 2. Absolute	Maximum	Ratings ¹
-------------------	---------	----------------------

Characteristic	Symbol	Max Value	Unit	Note
Core supply voltage	V _{DD}	-0.3 to 1.1	V	_
PLL supply voltage (e300 core, eLBC, and system)	AV _{DD}	-0.3 to 1.1	V	_
DDR1 and DDR2 DRAM I/O voltage	GV _{DD}	–0.3 to 2.75 –0.3 to 1.98	V	—
Three-speed Ethernet I/O, MII management voltage	LV _{DD} [1,2]	-0.3 to 3.63	V	—
PCI, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	-0.3 to 3.63	V	—
Local bus	LBV _{DD}	–0.3 to 3.63	V	—
SerDes	L[1,2]_ <i>n</i> V _{DD}	–0.3 to 1.1	V	6

voltage supplies— GV_{DD} , LV_{DD} , and OV_{DD} —do not have any ordering requirements with respect to one another.

Figure 3. Power-Up Sequencing Example

Note that the SerDes power supply $(L[1,2]_nV_{DD})$ should follow the same timing as the core supply (V_{DD}) .

The device does not require the core supply voltage and I/O supply voltages to be powered down in any particular order.

3 Power Characteristics

The estimated typical power dissipation for the chip device is shown in this table.

Core Frequency (MHz)	CSB/DDR Frequency (MHz)	Sleep Power at T _j = 65°C (W) ²	Typical Application at $T_j = 65^{\circ}C (W)^2$	Typical Application at $T_j = 125^{\circ}C$ (W) ³	Max Application at $T_j = 125$ °C (W) ⁴
222	333	1.45	1.9	3.2	3.8
	167	1.45	1.8	3.0	3.6
400	400	1.45	2.0	3.3	4.0
400	266	1.45	1.9	3.1	3.8
450	300	1.45	2.0	3.2	3.8
450	225	1.45	1.9	3.1	3.7
500	333	1.45	2.0	3.3	3.9
500	250	1.45	1.9	3.2	3.8
533	355	1.45	2.0	3.3	4.0
	266	1.45	2.0	3.2	3.9

Table 5. Power Dissipation ¹

This figure shows the MII management AC timing diagram.

Figure 16. MII Management Interface Timing Diagram

9 USB

This section provides the AC and DC electrical characteristics for the USB dual-role controllers.

9.1 USB DC Electrical Characteristics

This table provides the DC electrical characteristics for the ULPI interface at recommended $OV_{DD} = 3.3 \text{ V} \pm 165 \text{ mV}.$

Parameter	Symbol	Min	Мах	Unit	Note
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	1
Low-level input voltage	V _{IL}	-0.3	0.8	V	1
Input current	I _{IN}	—	±30	μA	2
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	—	V	—
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V	—

Table 34. USB DC Electrical Characteristics

Notes:

1. The minimum V_{IL} and maximum V_{IH} values are based on the respective minimum and maximum OV_{IN} values found in Table 3.

2. The symbol OV_{IN} represents the input voltage of the supply and is referenced in Table 3.

Table 38. Local Bus DC Electrical Characteristics (LBV_{DD} = 1.8 V)

At recommended operating conditions with $LBV_{DD} = 1.8$ V.

Parameter	Conditions		Symbol	Min	Мах	Unit
Supply voltage 1.8 V	—		LBV _{DD}	1.71	1.89	V
Output high voltage	I _{OH} = -1.0 mA	LBV _{DD} = Min	V _{OH}	LBV _{DD} - 0.45	—	V
Output low voltage	I _{OL} = 1.0 mA	LBV _{DD} = Min	V _{OL}	—	0.45	V
Input high voltage	_	LBV _{DD} = Min	V _{IH}	$0.65 imes LBV_{DD}$	LBV _{DD} + 0.3	V
Input low voltage	_	LBV _{DD} = Min	V _{IL}	-0.3	$0.35 imes LBV_{DD}$	V
Input high current	$V_{IN}^{1} = LBV_{DD}$		I _{IH}	—	10	μA
Input low current	V _{IN} ¹ = GND		١ _{IL}	-10	—	μA

10.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface of the device when in PLL enable mode.

Parameter	Symbol ¹	Min	Max	Unit	Note
Local bus cycle time	t _{LBK}	7.5	15	ns	2
Input setup to local bus clock (except LUPWAIT/LGTA)	t _{LBIVKH}	1.5	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LUPWAIT/LGTA input setup to local bus clock	t _{LBIVKH1}	1.5	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7
Local bus clock to LALE rise	t _{LBKHLR}	—	4.5	ns	—
Local bus clock to output valid (except LALE)	t _{LBKHOV}	—	4.5	ns	3

Table 39. Local Bus General Timing Parameters—PLL Enable Mode

This figures show the local bus signals.

Figure 20. Local Bus Signals, Non-special Signals Only (PLL Enable Mode)

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (PLL Enable Mode)

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (PLL Bypass Mode)

11 Enhanced Secure Digital Host Controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC (SD/MMC) interface of the chip.

The eSDHC controller always uses the falling edge of the SD_CLK in order to drive the SD_DAT[0:3]/CMD as outputs and sample the SD_DAT[0:3] as inputs. This behavior is true for both fulland high-speed modes.

Note that this is a non-standard implementation, as the SD card specification assumes that in high-speed mode, data is driven at the rising edge of the clock.

11.2.1 Full-Speed Output Path (Write)

This figure provides the data and command output timing diagram.

Figure 27. Full Speed Output Path

11.2.1.1 Full-Speed Write Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

No clock delay:

With clock delay:

$$t_{SFSKHOV} + t_{DATA_DELAY} + t_{ISU} < t_{SFSCKL} + t_{CLK_DELAY}$$
 Eqn. 2

$$t_{DATA_DELAY} + t_{SFSCKL} < t_{SFSCK} + t_{CLK_DELAY} - t_{ISU} - t_{SFSKHOV}$$
 Eqn. 3

This means that data can be delayed versus clock up to 11 ns in ideal case of $t_{SFSCKL} = 20$ ns:

$$t_{DATA_DELAY} + 20 < 40 + t_{CLK_DELAY} - 5 - 4$$

 $t_{DATA_DELAY} < 11 + t_{CLK_DELAY}$

11.2.1.2 Full-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

$$t_{CLK_DELAY} < t_{SFSCKL} + t_{SFSKHOX} + t_{DATA_DELAY} - t_{IH}$$
 Eqn. 4

Parameter	Symbol ²	Min	Мах	Unit	Note
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5

 Table 45. JTAG AC Timing Specifications (Independent of CLKIN) ¹ (continued)

Notes:

- 1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 17). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.

This figure provides the AC test load for TDO and the boundary-scan outputs of the device.

Figure 32. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OVDD/2)

Figure 33. JTAG Clock Input Timing Diagram

This figure provides the $\overline{\text{TRST}}$ timing diagram.

Table 49. PCI AC Timing Specifications at 66 MHz (continued)

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, VIH = $0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Input hold from cock	t _{PCIXKH}	0.25	—	ns	2, 4, 6
Output clock skew	t _{PCKOSK}	—	0.5	ns	5

Notes:

Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 1 ns skew for 66 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

This table shows the PCI AC timing specifications at 33 MHz.

Table 50. PCI AC Timing Specifications at 33 MHz

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, $V_{IH} = 0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Clock to output valid	t _{PCKHOV}	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.25	—	ns	2, 4, 6
Output clock skew	t _{PCKOSK}	_	0.5	ns	5

Notes:

- Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 2 ns skew for 33 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

15.4.1 Differential Transmitter (Tx) Output

This table defines the specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Parameter	Conditions	Symbol	Min	Typical	Мах	Units	Note
Unit interval	Each U_{PETX} is 400 ps ± 300 ppm. U_{PETX} does not account for Spread Spectrum Clock dictated variations.	UI	399.88	400	400.12	ps	1
Differential peak-to-peak output voltage	$V_{PEDPPTX} = 2 \times IV_{TX-D+} - V_{TX-D-}$	V _{TX-DIFFp-p}	0.8	—	1.2	V	2
De-emphasized differential output voltage (ratio)	Ratio of the $V_{PEDPPTX}$ of the second and following bits after a transition divided by the $V_{PEDPPTX}$ of the first bit after a transition.	V _{TX-DE-RATIO}	-3.0	-3.5	-4.0	dB	2
Minimum Tx eye width	The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 -$ $U_{PEEWTX} = 0.3 UI.$	T _{TX-EYE}	0.70	_		UI	2, 3
Maximum time between the jitter median and maximum deviation from the median	Jitter is defined as the measurement variation of the crossing points ($V_{PEDPPTX} = 0$ V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.	T _{TX-EYE-MEDIAN-to-} MAX-JITTER			0.15	UI	2, 3
D+/D– Tx output rise/fall time		T _{TX-RISE} , T _{TX-FALL}	0.125	_	_	UI	2, 5
RMS AC peak common mode output voltage	$ \begin{array}{l} V_{PEACPCMTX} = RMS(IV_{TXD+} - \\ V_{TXD-}I/2 - V_{TX-CM-DC}) \\ V_{TX-CM-DC} = DC_{(avg)} \text{ of } \\ IV_{TX-D+} - V_{TX-D-}I/2 \end{array} $	V _{TX-CM-ACp}	_	—	20	mV	2
Absolute delta of DC common mode voltage during LO and electrical idle	$eq:linear_line$	VTX-CM-DC- ACTIVE- IDLE-DELTA	0	_	100	mV	2

Table 52. Differential Transmitter (Tx) Output Specifications

17 Timers

This section describes the DC and AC electrical specifications for the timers of the chip.

17.1 Timers DC Electrical Characteristics

This table provides the DC electrical characteristics for the device timers pins, including TIN, $\overline{\text{TOUT}}$, $\overline{\text{TGATE}}$, and RTC_CLK.

Parameter	Condition	Symbol	Min	Мах	Unit
Output high voltage	I _{OH} = -6.0 mA	V _{OH}	2.4	—	V
Output low voltage	I _{OL} = 6.0 mA	V _{OL}	—	0.5	V
Output low voltage	I _{OL} = 3.2 mA	V _{OL}	—	0.4	V
Input high voltage	—	V _{IH}	2.0	OV _{DD} + 0.3	V
Input low voltage	—	V _{IL}	-0.3	0.8	V
Input current	$0 \ V \leq V_{IN} \leq OV_{DD}$	I _{IN}	—	± 30	μA

Table 63. Timers DC Electrical Characteristics

17.2 Timers AC Timing Specifications

This table provides the timers input and output AC timing specifications.

Table 64. Timers Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any external synchronous logic. Timers inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation

This figure provides the AC test load for the timers.

Figure 46. Timers AC Test Load

Figure 55. Single-Ended Reference Clock Input DC Requirements

21.2.3 Interfacing With Other Differential Signaling Levels

The following list provides information about interfacing with other differential signaling levels.

- With on-chip termination to SGND_SRDS*n* (xcorevss), the differential reference clocks inputs are HCSL (high-speed current steering logic) compatible DC-coupled.
- Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can be used but may need to be AC-coupled due to the limited common mode input range allowed (100 mV to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to AC-coupling.

NOTE

Figure 56 to Figure 59 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by the clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the device SerDes reference clock receiver requirement provided in this document.

This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with device SerDes reference clock input's DC requirement.

Figure 56. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common-mode voltage is higher than the device SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS

This figure shows the mechanical dimensions and bottom surface nomenclature of the TEPBGA II package.

Figure 63. Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II

Note:

- ¹ All dimensions are in millimeters.
- ² Dimensioning and tolerancing per ASME Y14. 5M-1994.
- ³ Maximum solder ball diameter measured parallel to Datum A.
- ⁴ Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Signal	Package Pin Number	Pin Type	Power Supply	Note	
MBA2	МЗ	0	GVDD	_	
MCAS_B	W5	0	GVDD	_	
MCK_B0	H1	0	GVDD	—	
MCK_B1	К1	0	GVDD	—	
MCK_B2	V1	0	GVDD)	
MCK_B3	W2	0	GVDD	—	
MCK_B4	AA1	0	GVDD	—	
MCK_B5	AB2	0	GVDD)	
МСКО	J1	0	GVDD	—	
MCK1	L1	0	GVDD	—	
MCK2	V2	0	GVDD	—	
МСКЗ	W1	0	GVDD	—	
MCK4	Y1	0	GVDD	—	
MCK5	AB1	0	GVDD	—	
MCKE0	M4	0	GVDD	3	
MCKE1	R5	0	GVDD	3	
MCS_B0	W3	0	GVDD	—	
MCS_B1	P3	0	GVDD	—	
MCS_B2	T4	0	GVDD	—	
MCS_B3	R4	0	GVDD	—	
MDIC0	AH8	AH8 I/O GVDD		9	
MDIC1	AJ8	I/O	GVDD	9	
MDM0	B6	0	GVDD	—	
MDM1	B2	0	GVDD	—	
MDM2	E2	0	GVDD	—	
MDM3	E1	0	GVDD	—	
MDM4	Y6 O		GVDD	—	
MDM5	AC6	0	GVDD —		
MDM6	AE6	0	GVDD	_	
MDM7	AJ4	0	GVDD	DD —	
MDM8	L6	0	GVDD		
MDQ0	A8	I/O	GVDD	11	
MDQ1	A6	I/O	GVDD	11	

Table 72. TePBGA II Pinout Listing (continued)

Signal Package Pin Number		Pin Type	Power Supply	Note
MDQS4	AB5	I/O GVDD		11
MDQS5	AD1	I/O	/O GVDD	
MDQS6	AH1	I/O	GVDD	11
MDQS7	AJ3	I/O	GVDD	11
MDQS8	G1	I/O	GVDD	11
MECC0/MSRCID0	J6	I/O	GVDD	_
MECC1/MSRCID1	J3	I/O	GVDD	_
MECC2/MSRCID2	K2	I/O	GVDD	
MECC3/MSRCID3	K3	I/O	GVDD	_
MECC4/MSRCID4	J5	I/O	GVDD	
MECC5/MDVAL	J2	I/O	GVDD	_
MECC6	L5	I/O	GVDD	_
MECC7	L2	I/O	GVDD	_
MODT0	MODT0 N5		GVDD	6
MODT1	DT1 U6		GVDD	6
MODT2	M6	0	GVDD	6
MODT3	P6	0	GVDD	6
MRAS_B	AA3	0	GVDD	_
MVREF1	К4	I	GVDD	11
MVREF2	W4	I	GVDD	11
MWE_B	Y2	0	GVDD	—
	DUART Interface			
UART_SIN1/ MSRCID2/LSRCID2	L28	I/O	OVDD	_
UART_SOUT1/ MSRCID0/LSRCID0	L27	0	OVDD	—
UART_CTS_B[1]/ MSRCID4/LSRCID4	K26	I/O	OVDD	_
UART_RTS_B1	N27	0	OVDD	_
UART_SIN2/ MSRCID3/LSRCID3	K27	I/O	OVDD	—
UART_SOUT2/ MSRCID1/LSRCID1	K28	0	OVDD	_
UART_CTS_B[2]/ MDVAL/LDVAL	K29	I/O	OVDD	—

Table 72. TePBGA II Pinout Listing (continued)

Signal	Signal Package Pin Number Pin Type		Power Supply	Note	
L1_XCOREVSS	AG14, AG15, AG16, AH16, AG18, AG20	AG14, AG15, AG16, AH16, AG18, AG20 SerDes Core GND		_	
L1_XPADVDD	AE16, AF16, AD18, AE19, AF19	SerDes I/O Power (1.0 or 1.05 V)	_	_	
L1_XPADVSS	AF14, AE17, AF20	SerDes I/O GND	—	_	
	SerDes2 Interface				
L2_SD_IMP_CAL_RX	C19	I	L2_XPADVDD	_	
L2_SD_IMP_CAL_TX	C15 I		L2_XPADVDD		
L2_SD_REF_CLK	B17	I	L2_XPADVDD	_	
L2_SD_REF_CLK_B	A17	I	L2_XPADVDD	_	
L2_SD_RXA_N	A19	I	L2_XPADVDD		
L2_SD_RXA_P	B19	I	L2_XPADVDD		
L2_SD_RXE_N	XE_N A15		L2_XPADVDD		
L2_SD_RXE_P	B15	I	L2_XPADVDD	_	
L2_SD_TXA_N	D18	0	L2_XPADVDD		
L2_SD_TXA_P	E18	0	L2_XPADVDD	_	
L2_SD_TXE_N	D15	0	L2_XPADVDD	_	
L2_SD_TXE_P	L2_SD_TXE_P E15		L2_XPADVDD	_	
L2_SDAVDD_0	L2_SDAVDD_0 A16		_	_	
L2_SDAVSS_0	C17	SerDes PLL GND	_	_	
L2_XCOREVDD	A14, B14, D17, B18, B20	SerDes Core Power (1.0 or 1.05 V)	_	_	
L2_XCOREVSS	C14, C16, A18, C18, A20, C20	SerDes Core GND	_	_	
L2_XPADVDD	D14, E16, F18, D19, E19	SerDes I/O Power (1.0 or 1.05 V)	_	_	
L2_XPADVSS	D16, E17, D20	D16, E17, D20 SerDes I/O — GND —			
	SPI Interface				
SPICLK/SD_CLK	AH9	I/O	OVDD	_	

This table shows the heat sink thermal resistance for TePBGA II package with heat sinks, simulated in a standard JEDEC environment, per JESD 51-6.

	A. 51	Thermal Resistance	
Heat Sink Assuming Thermal Grease	AIT FIOW	(°/W)	
AAVID $30 \times 30 \times 9.4$ mm Pin Fin	Natural Convection	13.1	
	0.5 m/s	10.6	
	1 m/s	9.3	
	2 m/s	8.2	
	4 m/s	7.5	
AAVID 31 $ imes$ 35 $ imes$ 23 mm Pin Fin	Natural Convection	11.1	
	0.5 m/s	8.5	
	1 m/s	7.7	
	2 m/s	7.2	
	4 m/s	6.8	
AAVID 43 \times 41 \times 16.5mm Pin Fin	Natural Convection	11.3	
	0.5 m/s	9.0	
	1 m/s	7.8	
	2 m/s	7.0	
	4 m/s	6.5	
Wakefield, 53 $ imes$ 53 $ imes$ 25 mm Pin Fin	Natural Convection	9.7	
	0.5 m/s	7.7	
	1 m/s	6.8	
	2 m/s	6.4	
	4 m/s	6.1	

	Table 82.	Thermal	Resistance	with Hea	t Sink in	Open Flow	(TePBGA II)
--	-----------	---------	------------	----------	-----------	------------------	-------------

Heat sink vendors include the following:

Aavid Thermalloy www.aavidthermalloy.com

Alpha Novatech www.alphanovatech.com

International Electronic Research Corporation (IERC) www.ctscorp.com

Millennium Electronics (MEI) www.mei-thermal.com