E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Security; SEC 3.0
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 125°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8377ecvralga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

There are two I²C controllers. These synchronous, multi-master buses can be connected to additional devices for expansion and system development.

The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550 programming models. 16-byte FIFOs are supported for both the transmitter and the receiver.

The main component of the enhanced local bus controller (eLBC) is its memory controller, which provides a seamless interface to many types of memory devices and peripherals. The memory controller is responsible for controlling eight memory banks shared by a NAND Flash control machine (FCM), a general-purpose chip-select machine (GPCM), and up to three user-programmable machines (UPMs). As such, it supports a minimal glue logic interface to SRAM, EPROM, NOR Flash EPROM, NAND Flash, EPROM, burstable RAM, regular DRAM devices, extended data output DRAM devices, and other peripherals. The eLBC external address latch enable (LALE) signal allows multiplexing of addresses with data signals to reduce the device pin count.

The enhanced local bus controller also includes a number of data checking and protection features, such as data parity generation and checking, write protection, and a bus monitor to ensure that each bus cycle is terminated within a user-specified period. The local bus can operate at up to 133 MHz.

The system timers include the following features: periodic interrupt timer, real time clock, software watchdog timer, and two general-purpose timer blocks.

1.8 Security Engine

The optional security engine is optimized to handle all the algorithms associated with IPSec, IEEE 802.11i, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs). The execution units are as follows:

- Data encryption standard execution unit (DEU), supporting DES and 3DES
- Advanced encryption standard unit (AESU), supporting AES
- Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-256, and HMAC with any algorithm
- One crypto-channel supporting multi-command descriptor chains

1.9 PCI Controller

The PCI controller includes the following features:

- PCI Specification Revision 2.3 compatible
- Single 32-bit data PCI interface operates at up to 66 MHz
- PCI 3.3-V compatible (not 5-V compatible)
- Support for host and agent modes
- On-chip arbitration, supporting 5 external masters on PCI
- Selectable hardware-enforced coherency

8.1.1 MII, RMII, RGMII, and RTBI DC Electrical Characteristics

MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 24 and Table 25. The RGMII and RTBI signals in Table 25 are based on a 2.5 V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Min	Max	Unit	Note
Supply voltage 3.3 V	LV _{DD1} LV _{DD2}	3.13	3.47	V	1
Output high voltage (LV _{DD1} /LV _{DD2} = Min, I _{OH} = -4.0 mA)	V _{OH}	2.40	LV _{DD1} /LV _{DD2} + 0.3	V	—
Output low voltage (LV _{DD1} /LV _{DD2} = Min, I _{OL} = 4.0 mA)	V _{OL}	GND	0.50	V	—
Input high voltage	V _{IH}	2.0	$LV_{DD1}/LV_{DD2} + 0.3$	V	—
Input low voltage	V _{IL}	-0.3	0.90	V	—
Input high current $(V_{IN} = LV_{DD1}, V_{IN} = LV_{DD2})$	Ι _{ΙΗ}	—	30	μA	1
Input low current (V _{IN} = GND)	IIL	-600	_	μA	

Table 24. MII and RMII DC Electrical Characteristics

Notes:

1. LV_{DD1} supports eTSEC 1. LV_{DD2} supports eTSEC 2.

Parameter	Symbol	Min	Мах	Unit	Note
Supply voltage 2.5 V	LV _{DD1} LV _{DD2}	2.37	2.63	V	1
Output high voltage (LV _{DD1} /LV _{DD2} = Min, IOH = -1.0 mA)	V _{OH}	2.00	$LV_{DD1}/LV_{DD2} + 0.3$	V	_
Output low voltage (LV _{DD1} /LV _{DD2} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V	_
Input high voltage	V _{IH}	1.7	$LV_{DD1}/LV_{DD2} + 0.3$	V	_
Input low voltage	V _{IL}	-0.3	0.70	V	_
Input high current (V _{IN} = LV _{DD1} , V _{IN} = LV _{DD2})	Iн	—	-20	μA	1
Input low current (V _{IN} = GND)	IIL	-20	_	μA	—

Table 25. RGMII and RTBI DC Electrical Characteristics

Notes:

1. LV_{DD1} supports eTSEC 1. LV_{DD2} supports eTSEC 2.

8.2.3.2 RMII Receive AC Timing Specifications

This table shows the RMII receive AC timing specifications.

Table 30. RMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
Input low voltage at 3.3 LV _{DD}	V _{IL}	—	—	0.8	V
Input high voltage at 3.3 LV _{DD}	V _{IH}	2.0	—	_	V
REF_CLK clock period	t _{RMR}	15.0	20.0	25.0	ns
REF_CLK duty cycle	t _{RMRH}	35	50	65	%
REF_CLK peak-to-peak jitter	t _{RMRJ}	—	—	250	ps
Rise time REF_CLK (20%–80%)	t _{RMRR}	1.0	—	2.0	ns
Fall time REF_CLK (80%-20%)	t _{RMRF}	1.0	—	2.0	ns
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge	t _{RMRDV}	4.0	—	_	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge	t _{RMRDX}	2.0	_		ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

This figure provides the AC test load for eTSEC.

Figure 13. eTSEC AC Test Load

This figure shows the MII management AC timing diagram.

Figure 16. MII Management Interface Timing Diagram

9 USB

This section provides the AC and DC electrical characteristics for the USB dual-role controllers.

9.1 USB DC Electrical Characteristics

This table provides the DC electrical characteristics for the ULPI interface at recommended $OV_{DD} = 3.3 \text{ V} \pm 165 \text{ mV}.$

Parameter	Symbol	Min	Мах	Unit	Note
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	1
Low-level input voltage	V _{IL}	-0.3	0.8	V	1
Input current	I _{IN}	—	±30	μA	2
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	—	V	—
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V	—

Table 34. USB DC Electrical Characteristics

Notes:

1. The minimum V_{IL} and maximum V_{IH} values are based on the respective minimum and maximum OV_{IN} values found in Table 3.

2. The symbol OV_{IN} represents the input voltage of the supply and is referenced in Table 3.

Parameter	Symbol ¹	Min	Max	Unit	Note
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	_	3.8	ns	3, 8
Output hold from local bus clock for LAD/LDP	t _{LBKHOX}	1		ns	3

Table 39. Local Bus General Timing Parameters—PLL Enable Mode (continued)

Notes:

- The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to rising edge of LSYNC_IN at LBV_{DD}/2 and the 0.4 × LBV_{DD} of the signal in question.
- 3. All signals are measured from LBV_{DD}/2 of the rising/falling edge of LSYNC_IN to $0.5 \times LBV_{DD}$ of the signal in question. 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when LBCR[AHD] is set and the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 6. t_{LBOTOT2} should be used when LBCR[AHD] is not set and the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when LBCR[AHD] is not set and the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the chip.

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.5	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	—	±30	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 44. JTAG interface DC Electrical Characteristics

12.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device. This table provides the JTAG AC timing specifications as defined in Figure 33 through Figure 36.

_		a 2				
Para	meter	Symbol ²	Min	Max	Unit	Note
JTAG external clock frequency of operation		f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle tir	ne	t _{JTG}	30	—	ns	—
JTAG external clock pulse w	idth measured at 1.4 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and	d fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time		t _{TRST}	25	—	ns	3
Input setup times:	Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	-	ns	4
Input hold times:	Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times:	Boundary-scan data TDO	tjtkldv tjtklov	2 2	11 11	ns	_
Output hold times:	Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2		ns	_

Table 45. JTAG AC Timing Specifications (Independent of CLKIN)¹

compliance/test measurement load. The input receiver eye diagram is implementation specific and is not specified. Rx component designer should provide additional margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 43) expected at the input receiver based on an adequate combination of system simulations and the return loss measured looking into the Rx package and silicon. The Rx eye diagram must be aligned in time using the jitter median to locate the center of the eye diagram.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.

NOTE

The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D– line (that is, as measured by a Vector Network Analyzer with 50 Ω probes—see Figure 44). Note that the series capacitors, C_{PEACCTX}, are optional for the return loss measurement.

Figure 43. Minimum Receiver Eye Timing and Voltage Compliance Specification

15.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 44.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and D- package pins.

Figure 44. Compliance Test/Measurement Load

16 Serial ATA (SATA)

This section describes the DC and AC electrical specifications for the serial ATA (SATA) of the MPC8377E. Note that the external cabled applications or long backplane applications (Gen1x and Gen2x) are not supported.

16.1 Requirements for SATA REF_CLK

The reference clock is a single ended input clock required for the SATA interface operation. The AC requirements for the SATA reference clock are listed in the Table 54.

Parameter	Condition	Symbol	Min	Typical	Max	Unit	Note
SD_REF_CLK/ SD_REF_CLK frequency range	_	t _{CLK_REF}		100/125/150	—	MHz	1
SD_REF_CLK/ SD_REF_CLK clock frequency tolerance	_	^t clk_tol	-350	0	+350	ppm	
SD_REF_CLK/ SD_REF_CLK reference clock duty cycle	Measured at 1.6V	^t CLK_DUTY	40	50	60	%	—

 Table 54. SATA Reference Clock Input Requirements

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission.

Parameter	Symbol	Min	Typical	Мах	Units	Note
Channel speed	t _{CH_SPEED}	—	1.5	—	Gbps	
Unit interval	T _{UI}	666.4333	666.667	670.2333	ps	
Total jitter, data-data 5 UI	U _{SATA_TXTJ5UI}	_	_	0.355	UI _{p-p}	1
Total jitter, data-data 250 UI	U _{SATA_TXTJ250UI}	_	_	0.47	UI _{p-p}	1
Deterministic jitter, data-data 5 UI	U _{SATA_TXDJ5UI}	_	_	0.175	UI _{p-p}	1
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}	_	_	0.22	UI _{p-p}	1

Table 56. Gen1i/1.5G Transmitter AC Specifications

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

16.2.2 Gen2i/3G Transmitter Specifications

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.

Table 57. Gen 2i/3G Transmitter DC Specifications

Parameter	Symbol	Min	Typical	Мах	Units	Note
Tx differential output voltage	V _{SATA_TXDIFF}	400	550	700	mV _{p-p}	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	

Note:

1. Terminated by 50 Ω load.

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.

Table 58. Gen 2i/3G Transmitter AC Specifications

Parameter	Symbol	Min	Typical	Мах	Units	Note
Channel speed	t _{CH_SPEED}	—	3.0	—	Gbps	—
Unit interval	T _{UI}	333.2	333.33	335.11	ps	—
Total jitter f _{C3dB} =f _{BAUD} /10	U _{SATA_TXTJfB/10}	_	_	0.3	UI _{p-p}	1
Total jitter f _{C3dB} = f _{BAUD} /500	U _{SATA_TXTJfB/500}	—	_	0.37	UI _{p-p}	1

Parameter	Condition	Symbol	Min	Мах	Unit
Output low voltage	I _{OL} = 8.0 mA	V _{OL}	—	0.5	V
Output low voltage	I _{OL} = 3.2 mA	V _{OL}	—	0.4	V

Table 69. SPI DC Electrical Characteristics (continued)

20.2 SPI AC Timing Specifications

This table provides the SPI input and output AC timing specifications.

Table	70.	SPI	AC	Timina	Specifications
labic	10.		70	i i i i i i i i i i i i i i i i i i i	opcontoutions

Parameter	Symbol ¹	Min	Мах	Unit
SPI outputs—Master mode (internal clock) delay	t _{NIKHOV}	0.5	6	ns
SPI outputs—Slave mode (external clock) delay	t _{NEKHOV}	2	8	ns
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	4	—	ns
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	—	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	—	ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	—	ns

Notes:

 The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOV} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).
</sub>

2. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. The maximum SPICLK input frequency is 66.666 MHz.

This figure provides the AC test load for the SPI.

Figure 48. SPI AC Test Load

These figures represent the AC timing from Table 70. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 51. Differential Voltage Definitions for Transmitter or Receiver

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV_{p-p}, which is referred as the single-ended swing for each signal. In this example, since the differential signaling environment is fully symmetrical, the transmitter output's differential swing (V_{OD}) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and –500 mV, in other words, V_{OD} is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage (V_{DIFFp}) is 500 mV. The peak-to-peak differential voltage (V_{DIFFp}) is 1000 mV_{p-p}.

21.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SD1_REF_CLK and SD1_REF_CLK for both lanes of SerDes1, and SD2_REF_CLK and SD2_REF_CLK for both lanes of SerDes2.

The following sections describe the SerDes reference clock requirements and some application information.

21.2.1 SerDes Reference Clock Receiver Characteristics

Figure 52 shows a receiver reference diagram of the SerDes reference clocks.

- SerDes Reference Clock Receiver Reference Circuit Structure
 - The SD*n*_REF_CLK and $\overline{\text{SD}n}_{\text{REF}}$ are internally AC-coupled differential inputs as shown in Figure 52. Each differential clock input (SD*n*_REF_CLK or $\overline{\text{SD}n}_{\text{REF}}$ has a 50 Ω termination to SGND_SRDS*n* (xcorevss) followed by on-chip AC-coupling.
 - The external reference clock driver must be able to drive this termination.

occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the transmission line and reduce reflections which are a source of noise to the system.

This table describes some AC parameters for PCI Express .

Table 71. SerDes Reference Clock Common AC Parameters

At recommended operating conditions with XV_{DD_SRDS} or $XV_{DD_SRDS} = 1.0 V \pm 5\%$.

Parameter	Symbol	Min	Max	Unit	Note
Rising Edge Rate	Rise Edge Rate	1.0	4.0	V/ns	2, 3
Falling Edge Rate	Fall Edge Rate	1.0	4.0	V/ns	2, 3
Differential Input High Voltage	V _{IH}	200	—	mV	2
Differential Input Low Voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SD <i>n</i> _REF_CLK) to falling edge rate (SD <i>n</i> _REF_CLK) matching	Rise-Fall Matching		20	%	1, 4

Notes:

- 1. Measurement taken from single ended waveform.
- 2. Measurement taken from differential waveform.
- Measured from -200 mV to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 60.
- 4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a 200 mV window centered on the median cross point where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of SDn_REF_CLK should be compared to the Fall Edge Rate of SDn_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 61.

This figure shows the mechanical dimensions and bottom surface nomenclature of the TEPBGA II package.

Figure 63. Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II

Note:

- ¹ All dimensions are in millimeters.
- ² Dimensioning and tolerancing per ASME Y14. 5M-1994.
- ³ Maximum solder ball diameter measured parallel to Datum A.
- ⁴ Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Signal	Package Pin Number	Pin Type	Power Supply	Note
MDQ35	AE1	I/O	GVDD	11
MDQ36	V6	I/O	GVDD	11
MDQ37	Y5	I/O	GVDD	11
MDQ38	AA4	I/O	GVDD	11
MDQ39	AB6	I/O	GVDD	11
MDQ40	AD3	I/O	GVDD	11
MDQ41	AC4	I/O	GVDD	11
MDQ42	AD4	I/O	GVDD	11
MDQ43	AF1	I/O	GVDD	11
MDQ44	AE4	I/O	GVDD	11
MDQ45	AC5	I/O	GVDD	11
MDQ46	AE2	I/O	GVDD	11
MDQ47	AE3	I/O	GVDD	11
MDQ48	AG1	I/O	GVDD	11
MDQ49	AG2	I/O	GVDD	11
MDQ50	AG3	I/O	GVDD	11
MDQ51	AF5	I/O	GVDD	11
MDQ52	AE5	I/O	GVDD	11
MDQ53	AD7	I/O	GVDD	11
MDQ54	AH2	I/O	GVDD	11
MDQ55	AG4	I/O	GVDD	11
MDQ56	AH3	I/O	GVDD	11
MDQ57	AG5	I/O	GVDD	11
MDQ58	AF8	I/O	GVDD	11
MDQ59	AJ5	I/O	GVDD	11
MDQ60	AF6	I/O	GVDD	11
MDQ61	AF7	I/O	GVDD	11
MDQ62	AH6	I/O	GVDD	11
MDQ63	AH7	I/O	GVDD	11
MDQS0	C8	I/O	GVDD	11
MDQS1	C4	I/O	GVDD	11
MDQS2	E3	I/O	GVDD	11
MDQS3	G2	I/O	GVDD	11

Signal	Package Pin Number	Pin Type	Power Supply	Note				
eTSEC1/GPIO1/GPIO2/CFG_RESET Interface								
TSEC1_COL/GPIO2[20]	AF22	I/O	LVDD1	16				
TSEC1_CRS/GPIO2[21]	AE20	I/O	LVDD1	16				
TSEC1_GTX_CLK	AJ25	0	LVDD1	16				
TSEC1_RX_CLK	AG22	I	LVDD1	16				
TSEC1_RX_DV	AD19	I	LVDD1	16				
TSEC1_RX_ER/GPIO2[25]	AD20	I/O	LVDD1	16				
TSEC1_RXD0	AD22	I	LVDD1	16				
TSEC1_RXD1	AE21	I	LVDD1	16				
TSEC1_RXD2	AE22	I	LVDD1	16				
TSEC1_RXD3	AD21	I	LVDD1	16				
TSEC1_TX_CLK	AJ22	I	LVDD1	16				
TSEC1_TX_EN	AG23	0	LVDD1	16				
TSEC1_TX_ER/CFG_LBMUX	AH22	I/O	LVDD1	16				
TSEC1_TXD0/ CFG_RESET_SOURCE[0]	AD23	I/O	LVDD1	16				
TSEC1_TXD1/ CFG_RESET_SOURCE[1]	AE23	I/O	LVDD1	16				
TSEC1_TXD2/ CFG_RESET_SOURCE[2]	AF23	I/O	LVDD1	16				
TSEC1_TXD3/ CFG_RESET_SOURCE[3]	AJ24	I/O	LVDD1	16				
EC_GTX_CLK125	AH24	I	LVDD1	16				
EC_MDC/CFG_CLKIN_DIV	AJ21	I/O	LVDD1	16				
EC_MDIO	AH21	I/O	LVDD1	16				
eTSEC2/GPIO1 Interface								
TSEC2_COL/GPIO1[21]/ TSEC1_TMR_TRIG1	AJ27	I/O	LVDD2	16				
TSEC2_CRS/GPIO1[22]/ TSEC1_TMR_TRIG2	AG29	I/O	LVDD2	16				
TSEC2_GTX_CLK	AF28	0	LVDD2	16				
TSEC2_RX_CLK/ TSEC1_TMR_CLK	AF25	I	LVDD2	16				
TSEC2_RX_DV/GPIO1[23]	AF26	I/O	LVDD2	16				
TSEC2_RX_ER/GPIO1[25]	AG25	I/O	LVDD2	16				

Table 72. TePBGA II Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note
PCI_AD27	AA29	I/O	OVDD	
PCI_AD28	AC24	I/O	OVDD	
PCI_AD29	AC25	I/O	OVDD	_
PCI_AD30	AB28	I/O	OVDD	
PCI_AD31	AE24	I/O	OVDD	
PCI_C_BE_B0	T26	I/O	OVDD	_
PCI_C_BE_B1	T28	I/O	OVDD	
PCI_C_BE_B2	V29	I/O	OVDD	
PCI_C_BE_B3	Y29	I/O	OVDD	_
PCI_DEVSEL_B	U28	I/O	OVDD	5
PCI_FRAME_B	V27	I/O	OVDD	_
PCI_GNT_B0	AE27	I/O	OVDD	_
PCI_GNT_B[1]/ CPCI_HS_LED	AC28	0	OVDD	_
PCI_GNT_B[2]/ CPCI_HS_ENUM	AD27	0	OVDD	—
PCI_GNT_B[3]/PCI_PME	AC27	0	OVDD	—
PCI_GNT_B[4]	AE25	0	OVDD	—
PCI_IDSEL	W28	I	OVDD	5
PCI_INTA_B/IRQ_OUT_B	AD29	0	OVDD	2
PCI_IRDY_B	U29	I/O	OVDD	5
PCI_PAR	V25	I/O	OVDD	—
PCI_PERR_B	Y25	I/O	OVDD	5
PCI_REQ_B0	AE26	I/O	OVDD	—
PCI_REQ_B[1]/CPCI_HS_ES	AC29	I	OVDD	_
PCI_REQ_B2	AB29	I	OVDD	_
PCI_REQ_B3	AD26	I	OVDD	
PCI_REQ_B4	W27	I	OVDD	
PCI_RESET_OUT_B	AD28	0	OVDD	_
PCI_SERR_B	V26	I/O	OVDD	5
PCI_STOP_B	W26	I/O	OVDD	5
PCI_TRDY_B	Y24	I/O	OVDD	5
M66EN	AD15	I	OVDD	

Table 72. TePBGA II Pinout Listing (continued)

As shown in Figure 64, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF Eqn. 20

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low register (RCWLR) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, "Reset, Clocking, and Initialization," in the *MPC8379E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and $\overline{\text{MCK}}$). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

Note that *lbiu_clk* is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LCLK[0:2]). The eLBC clock divider ratio is controlled by LCRR[CLKDIV].

Some of the internal units may be required to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. Table 73 specifies which units have a configurable clock frequency.

Table	73.	Configurable	Clock	Units
-------	-----	--------------	-------	-------

Unit	Default Frequency	Options
eTSEC1, eTSEC2	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
eSDHC and I ² C1 ¹	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security block	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
PCI and DMA complex	csb_clk	Off, csb_clk

MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 8

Eqn. 22

			Input C	(MHz) ²	
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ¹	25	33.33	66.67
			csb_	<i>clk</i> Frequency (MHz)
High	0010	2 : 1			133
High	0011	3 : 1			200
High	0100	4 : 1		133	267
High	0101	5 : 1		167	333
High	0110	6 : 1	150	200	400
High	0111	7 : 1	175	233	
High	1000	8 : 1	200	267	
High	1001	9 : 1	225	300	
High	1010	10 : 1	250	333	
High	1011	11 : 1	275	367	
High	1100	12 : 1	300	400	
High	1101	13 : 1	325		
High	1110	14 : 1	350		
High	1111	15 : 1	375		

Table 77. CSB Frequency Options for Host Mode

Notes:

1. CFG_CLKIN_DIV select the ratio between CLKIN and PCI_SYNC_OUT.

2. CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

Table 78	CSB	Frequency	v Ontion	e for	Δaont	Mode
Table 10.	COD	riequenc	y Option	5 101	Аует	Mode

			Input Clock Frequency (MHz) ²			
CFG_CLKIN_DIV at reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ¹	25	33.33	66.67	
			csb_clk Frequency (MHz)			
Low	0010	2 : 1			133	
Low	0011	3 : 1			200	
Low	0100	4 : 1		133	267	
Low	0101	5 : 1		167	333	
Low	0110	6 : 1	150	200	400	

CFG_CLKIN_DIV at reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ¹	Input Clock Frequency (MHz) ²			
			25	33.33	66.67	
			<i>csb_clk</i> Frequency (MHz)			
Low	0111	7:1	175	233		
Low	1000	8 : 1	200	267		
Low	1001	9 : 1	225	300		
Low	1010	10 : 1	250	333		
Low	1011	11 : 1	275	367		
Low	1100	12 : 1	300	400		
Low	1101	13 : 1	325			
Low	1110	14 : 1	350			
Low	1111	15 : 1	375			

Table 78. CSB Frequency Options for Agent Mode (continued)

Notes:

1. CFG_CLKIN_DIV doubles csb_clk if set high.

2. CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

23.2 Core PLL Configuration

RCWLR[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 79 shows the encodings for RCWLR[COREPLL]. COREPLL values that are not listed in Table 79 should be considered as reserved.

NOTE

Core VCO frequency = core frequency \times VCO divider VCO divider has to be set properly so that the core VCO frequency is in the range of 800–1600 MHz.

RCWLR[COREPLL]			aara alki ash alk Patio	VCO Divider ¹	
0–1	2–5	6			
nn	0000	0	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	
11	nnnn	n	n/a	n/a	
00	0001	0	1:1	2	
01	0001	0	1:1	4	
10	0001	0	1:1	8	
00	0001	1	1.5:1	2	

Table 79. e300 Core PLL Configuration

Table 81. Package Thermal Characteristics for T	ePBGA II (continued)
---	----------------------

Parameter	Symbol	Value	Unit	Note
Junction-to-package natural convection on top		6	°C/W	6

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

24.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers.

24.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C) T_A = ambient temperature for the package (°C) $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W) P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single layer board is appropriate for a tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

24.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

NOTE

The heat sink cannot be mounted on the package.