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controller, dual I2C controllers, a 4-channel DMA controller, an enhanced secured digital host controller, 
and a general-purpose I/O port. This figure shows the block diagram of the chip.

Figure 1. MPC8377E Block Diagram and Features

The following features are supported in the chip:

• e300c4s core built on Power Architecture® technology with 32 KB instruction cache and 32 KB 
data cache, a floating point unit, and two integer units

• DDR1/DDR2 memory controller supporting a 32/64-bit interface

• Peripheral interfaces, such as a 32-bit PCI interface with up to 66-MHz operation

• 32-bit local bus interface running up to 133-MHz

• USB 2.0 (full/high speed) support

• Power management controller for low-power consumption

• High degree of software compatibility with previous-generation PowerQUICC processor-based 
designs for backward compatibility and easier software migration

• Optional security engine provides acceleration for control and data plane security protocols

The optional security engine (SEC 3.0) is noted with the extension “E” at the end. It allows CPU-intensive 
cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator 
provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.
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1.3 Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)
The eTSECs include the following features:

• Two enhanced Ethernet interfaces can be used for RGMII/MII/RMII/RTBI

• Two controllers conform to IEEE Std 802.3®, IEEE 802.3u, IEEE 802.3x, IEEE 802.3z, 
IEEE 802.3au, IEEE 802.3ab, and IEEE Std 1588™ standards

• Support for Wake-on-Magic Packet™, a method to bring the device from standby to full operating 
mode

• MII management interface for external PHY control and status

1.4 Integrated Programmable Interrupt Controller (IPIC)
The integrated programmable interrupt controller (IPIC) implements the necessary functions to provide a 
flexible solution for general-purpose interrupt control. The IPIC programming model is compatible with 
the MPC8260 interrupt controller, and it supports 8 external and 34 internal discrete interrupt sources. 
Interrupts can also be redirected to an external interrupt controller.

1.5 Power Management Controller (PMC)
The power management controller includes the following features:

• Provides power management when the device is used in both host and agent modes

• Supports PCI Power Management 1.2 D0, D1, D2, and D3hot states

• Support for PME generation in PCI agent mode, PME detection in PCI host mode

• Supports Wake-on-LAN (Magic Packet), USB, GPIO, and PCI (PME input as host)

• Supports MPC8349E backward-compatibility mode

1.6 Serial Peripheral Interface (SPI)
The serial peripheral interface (SPI) allows the device to exchange data between other PowerQUICC 
family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time 
clocks, A/D converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface 
(receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an 
independent baud-rate generator, and a control unit.

1.7 DMA Controller, Dual I2C, DUART, Enhanced Local Bus Controller 
(eLBC), and Timers

The device provides an integrated four-channel DMA controller with the following features:

• Allows chaining (both extended and direct) through local memory-mapped chain descriptors 
(accessible by local masters)

• Supports misaligned transfers
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1.10 PCI Express Controller
The PCI Express controller includes the following features:

• PCI Express 1.0a compatible

• Two ×1 links or one ×2 link width

• Auto-detection of number of connected lanes

• Selectable operation as root complex or endpoint

• Both 32- and 64-bit addressing

• 128-byte maximum payload size

• Support for MSI and INTx interrupt messages

• Virtual channel 0 only

• Selectable Traffic Class

• Full 64-bit decode with 32-bit wide windows

• Dedicated four channel descriptor-based DMA engine per interface

1.11 Serial ATA (SATA) Controllers
The serial ATA (SATA) controllers have the following features:

• Supports Serial ATA Rev 2.5 Specification

• Spread spectrum clocking on receive

• Asynchronous notification

• Hot Plug including asynchronous signal recovery

• Link power management

• Native command queuing

• Staggered spin-up and port multiplier support

• Port multiplier support

• SATA 1.5 and 3.0 Gb/s operation

• Interrupt driven

• Power management support

• Error handling and diagnostic features

— Far end/near end loopback

— Failed CRC error reporting

— Increased ALIGN insertion rates

• Scrambling and CONT override
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This figure shows the undershoot and overshoot voltages at the interfaces of the device.

Figure 2. Overshoot/Undershoot Voltage for GVDD/LVDD/OVDD/LBVDD

SerDes up to 667 MHz L[1,2]_nVDD 1.0 ± 50 mV V 1, 3

800 MHz 1.05 V ± 50 mV V 1, 3

Operating temperature range commerical Ta
Tj

Ta=0 (min)—
Tj=125 (max)

°C —

extended temperature Ta
Tj

Ta=–40 (min)—
Tj=125 (max)

°C —

Notes:
1. GVDD, OVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or negative 

direction.
2. AVDD is the input to the filter discussed in Section 25.1, “PLL Power Supply Filtering,” and is not necessarily the voltage at 

the AVDD pin.
3. L[1,2]_nVDD, SDAVDD_0, XCOREVDD, and XPADVDD power inputs.

Table 3. Recommended Operating Conditions (continued)

Characteristic Symbol
Recommended 

Value
Unit Note

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

G/L/O/LBVDD + 20%

G/L/O/LBVDD

G/L/O/LBVDD + 5%

of tinterface1

1. Note that tinterface refers to the clock period associated with the bus clock interface.

VIH

VIL

Note:

2. Note that with the PCI overshoot allowed (as specified above), the device does
not fully comply with the maximum AC ratings and device protection guideline outlined in 
the PCI Rev. 2.3 Specification (Section 4.2.2.3). 
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The minimum frequency for DDR2 is 250 MHz data rate (125 MHz clock), 167 MHz data rate (83 MHz 
clock) for DDR1. This figure shows the DDR1 and DDR2 SDRAM output timing for the MCK to MDQS 
skew measurement (tDDKHMH).

Figure 4. DDR Timing Diagram for tDDKHMH

MDQS epilogue end tDDKHME –0.6 0.6 ns 6, 8

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing 
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, 
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until 
outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock 
reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
4. Note that tDDKHMH follows the symbol conventions described in Note 1. For example, tDDKHMH describes the DDR timing 

(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through 
control of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock 
adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set 
to the same adjustment value. See the MPC8379E PowerQUICC II Pro Host Processor Reference Manual for a description 
and understanding of the timing modifications enabled by use of these bits. 

5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data MDQ, ECC, or 
data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.

6. All outputs are referenced to the rising edge of MCKn at the pins of the microprocessor. Note that tDDKHMP follows the 
symbol conventions described in Note 1.

7. Clock Control register is set to adjust the memory clocks by 1/2 the applied cycle.
8. See AN3665, “MPC837xE Design Checklist,” for proper DDR termination.

Table 21. DDR1 and DDR2 SDRAM Output AC Timing Specifications (continued)

Parameter Symbol1 Min Max Unit Note

MDQS

MCK[n]

MCK[n]
tMCK

tDDKHMHmax) = 0.6 ns

tDDKHMH(min) = –0.6 ns

MDQS
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This figure shows the DDR1 and DDR2 SDRAM output timing diagram.

Figure 5. DDR1 and DDR2 SDRAM Output Timing Diagram

This figure provides AC test load for the DDR bus.

Figure 6. DDR AC Test Load

7 DUART
This section describes the DC and AC electrical specifications for the DUART interface of the chip.

7.1 DUART DC Electrical Characteristics
This table provides the DC electrical characteristics for the DUART interface of the device.

Table 22. DUART DC Electrical Characteristics

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage OVDD VIL –0.3 0.8 V

High-level output voltage, 
IOH = –100 μA

VOH OVDD – 0.2 — V

ADDR/CMD

tDDKHAS ,tDDKHCS

tDDKHMH

tDDKLDS

tDDKHDS

MDQ[x]

MDQS[n]

MCK[n]

MCK[n]
tMCK

tDDKLDX

tDDKHDX

D1D0

tDDKHAX ,tDDKHCX

Write A0 NOOP

tDDKHME

tDDKHMP

Output Z0 = 50 Ω
RL = 50 Ω

GVDD/2
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7.2 DUART AC Electrical Specifications
this table provides the AC timing parameters for the DUART interface of the device.

8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC)
This section provides the AC and DC electrical characteristics for the enhanced three-speed Ethernet 
controller.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) 
(10/100/1000 Mbps)—MII/RGMII/RTBI/RMII DC Electrical 
Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit 
media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent 
interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated 
at 2.5 V. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface 
(RGMII) Specification Version 1.3. The RMII interface follows the RMII Consortium RMII Specification 
Version 1.2.

Low-level output voltage,
IOL = 100 μA

VOL — 0.2 V

Input current,
(0 V ≤VIN ≤ OVDD)

IIN — ±30 μA

Note:  The symbol VIN, in this case, represents the OVIN symbol referenced in Table 2.

Table 23. DUART AC Timing Specifications

Parameter Value Unit Note

Minimum baud rate 256 baud —

Maximum baud rate > 1,000,000 baud 1

Oversample rate 16 — 2

Notes:
1. Actual attainable baud rate will be limited by the latency of interrupt processing.
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are 

sampled each 16th sample.

Table 22. DUART DC Electrical Characteristics (continued)

Parameter Symbol Min Max Unit
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8.1.1 MII, RMII, RGMII, and RTBI DC Electrical Characteristics

MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 24 and 
Table 25. The RGMII and RTBI signals in Table 25 are based on a 2.5 V CMOS interface voltage as 
defined by JEDEC EIA/JESD8-5.

Table 24. MII and RMII DC Electrical Characteristics

Parameter Symbol Min Max Unit Note

Supply voltage 3.3 V LVDD1
LVDD2

3.13 3.47 V 1

Output high voltage
(LVDD1/LVDD2 = Min, IOH = –4.0 mA)

VOH 2.40 LVDD1/LVDD2 + 0.3 V —

Output low voltage
(LVDD1/LVDD2 = Min, IOL = 4.0 mA)

VOL GND 0.50 V —

Input high voltage VIH 2.0 LVDD1/LVDD2 + 0.3 V —

Input low voltage VIL –0.3 0.90 V —

Input high current
(VIN

 = LVDD1, VIN = LVDD2)
IIH — 30 μA 1

Input low current
(VIN

 = GND)
IIL –600 — μA —

Notes:
1. LVDD1 supports eTSEC 1. LVDD2 supports eTSEC 2.

Table 25. RGMII and RTBI DC Electrical Characteristics

Parameter Symbol Min Max Unit Note

Supply voltage 2.5 V LVDD1
LVDD2

2.37 2.63 V 1

Output high voltage
(LVDD1/LVDD2 = Min, IOH = –1.0 mA)

VOH 2.00 LVDD1/LVDD2 + 0.3 V —

Output low voltage
(LVDD1/LVDD2 = Min, IOL = 1.0 mA)

VOL GND – 0.3 0.40 V —

Input high voltage VIH 1.7 LVDD1/LVDD2 + 0.3 V —

Input low voltage VIL –0.3 0.70 V —

Input high current
(VIN

 = LVDD1, VIN = LVDD2)
IIH — –20 μA 1

Input low current
(VIN = GND)

IIL –20 — μA —

Notes:
1. LVDD1 supports eTSEC 1. LVDD2 supports eTSEC 2.
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This figure shows the RMII receive AC timing diagram.

Figure 14. RMII Receive AC Timing Diagram

8.3 Management Interface Electrical Characteristics
The electrical characteristics specified here apply to MII management interface signals MDIO 
(management data input/output) and MDC (management data clock).

This figure provides the AC test load for eTSEC.

Figure 15. eTSEC AC Test Load

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 2.5 V or 3.3 V. The DC electrical 
characteristics for MDIO and MDC are provided in Table 31 and Table 32.

Table 31. MII Management DC Electrical Characteristics When Powered at 2.5 V

Parameter Conditions Symbol Min Max Unit

Supply voltage (2.5 V) — LVDD1 2.37 2.63 V

Output high voltage IOH = –1.0 mA LVDD1 = Min VOH 2.00 LVDD1 + 0.3 V

Output low voltage IOL = 1.0 mA LVDD1 = Min VOL GND – 0.3 0.40 V

Input high voltage — LVDD1 = Min VIH 1.7 — V

Input low voltage — LVDD1 = Min VIL –0.3 0.70 V

Input high current VIN = LVDD1 IIH — 20 μA

Input low current VIN = LVDD1 IIL –15 — μA

REF_CLK

RXD[1:0]

tRMRDX

tRMR

tRMRH

tRMRR

tRMRF

CRS_DV
RX_ER

tRMRDV

Valid Data

Output Z0 = 50 Ω LVDD/2
RL = 50 Ω
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This table describes the general timing parameters of the local bus interface of the device when in PLL 
bypass mode.

This figure provides the AC test load for the local bus.

Figure 19. Local Bus AC Test Load

Table 40. Local Bus General Timing Parameters—PLL Bypass Mode

Parameter Symbol1 Min Max Unit Note

Local bus cycle time tLBK 15 — ns 2

Input setup to local bus clock tLBIVKH 7.0 — ns 3, 4

Input hold from local bus clock tLBIXKH 1.0 — ns 3, 4

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT1 1.5 — ns 5

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT2 3.0 — ns 6

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT3 2.5 — ns 7

Local bus clock to LALE rise tLBKHLR — 4.5 ns —

Local bus clock to output valid tLBKHOV — 3.0 ns 3

Local bus clock to output high impedance for LAD/LDP tLBKHOZ — 4.0 ns 3, 8

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 
symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes 
high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go 
high (H), with respect to the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of 
LCLK0 (for all other inputs).

3. All signals are measured from LBVDD/2 of the rising/falling edge of LCLK0 to 0.4 × LBVDD of the signal in question for 3.3-V 
signaling levels.

4. Input timings are measured at the pin.
5. tLBOTOT1 should be used when LBCR[AHD] is set and the load on LALE output pin is at least 10pF less than the load on 

LAD output pins.
6. tLBOTOT2 should be used when LBCR[AHD] is not set and the load on LALE output pin is at least 10pF less than the load 

on LAD output pins.
7. tLBOTOT3 should be used when LBCR[AHD] is not set and the load on LALE output pin equals to the load on LAD output pins.
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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This figures show the local bus signals.

Figure 20. Local Bus Signals, Non-special Signals Only (PLL Enable Mode)

Output Signals:

LA[27:31]/LBCTL/LBCKE/LOE

LSDA10/LSDWE/LSDRAS/
LSDCAS/LSDDQM[0:3]

LSYNC_IN

Input Signals:
LAD[0:31]/LDP[0:3]

Output (Data) Signals:
LAD[0:31]/LDP[0:3]

Output (Address) Signal:
LAD[0:31]

LALE

tLBIXKH
tLBIVKH

tLBKHOX

tLBKHOZ

tLBKHLR
tLBOTOT

tLBKHOX
tLBKHOV

tLBKHOX

tLBKHOZ

tLBKHOV

tLBKHOV

Input Signal:
LGTA

tLBIXKHtLBIVKH
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11.2.2.2 Full-Speed Read Meeting Hold (Minimum Delay)

There is no minimum delay constraint due to the full clock cycle between the driving and sampling of data.

tCLK_DELAY + tOH + tDATA_DELAY > tSFSIXKH Eqn. 9

This means that Data + Clock delay must be greater than –2 ns. This is always fulfilled.

11.3 eSDHC AC Timing Specifications (High-Speed Mode)
This table provides the eSDHC AC timing specifications for high-speed mode as defined in Figure 30 and 
Figure 31.

Table 43. eSDHC AC Timing Specifications for High-Speed Mode
At recommended operating conditions OVDD = 3.3 V ± 165 mV.

Parameter Symbol1 Min Max Unit Note

SD_CLK clock frequency—high speed mode fSHSCK 0 50 MHz —

SD_CLK clock cycle tSHSCK 20 — ns —

SD_CLK clock frequency—identification mode fSIDCK 0 400 KHz —

SD_CLK clock low time tSHSCKL 7 — ns 2

SD_CLK clock high time tSHSCKH 7 — ns 2

SD_CLK clock rise and fall times tSHSCKR/
tSHSCKF

— 3 ns 2

Input setup times: SD_CMD, SD_DATx, SD_CD to 
SD_CLK

tSHSIVKH 5 — ns 2

Input hold times: SD_CMD, SD_DATx, SD_CD to SD_CLK tSHSIXKH 0 — ns 2

Output delay time: SD_CLK to SD_CMD, SD_DATx valid tSHSKHOV — 4 ns 2

Output Hold time: SD_CLK to SD_CMD, SD_DATx invalid tSHSKHOX 0 — ns 2

SD_CLK delay within device tINT_CLK_DLY 1.5 — ns 4

SD Card Input Setup tISU 6 — ns 3

SD Card Input Hold tIH 2 — ns 3

SD Card Output Valid tODLY — 14 ns 3

SD Card Output Hold tOH 2.5 — ns 3

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSFSIXKH 
symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) 
going to high (H). Also tSFSKHOV symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with 
respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol 
representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter 
convention is used with the appropriate letter: R (rise) or F (fall).

2. Measured at capacitive load of 40 pF.
3. For reference only, according to the SD card specifications.
4. Average, for reference only.
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This means that data delay should be equal or less than the clock delay in the ideal case where 
tSHSCLKL = 10 ns:

tDATA_DELAY – tCLK_DELAY < 10 – 6 – 4

tDATA_DELAY – tCLK_DELAY < 0

11.3.1.2 High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and 
SD_DAT/CMD signals on the PCB.

tCLK_DELAY < tSHSCKL + tSHSKHOX + tDATA_DELAY – tIH Eqn. 13

tCLK_DELAY – tDATA_DELAY < tSHSCKL + tSHSKHOX – tIH Eqn. 14

This means that clock can be delayed versus data up to 8 ns (external delay line) in ideal case of 
tSHSCLKL = 10 ns:

tCLK_DELAY – tDATA_DELAY < 10 + 0 – 2

tCLK_DELAY – tDATA_DELAY < 8

11.3.2 High-Speed Input Path (Read)

This figure provides the data and command input timing diagram.

Figure 31. High-Speed Input Path

For the input path, the device eSDHC expects to sample the data 1.5 internal clock cycles after it was 
driven by the SD card. Since in this mode the SD card drives the data at the rising edge of the clock, a 
sufficient delay to the clock and the data must exist to ensure it will not be sampled at the wrong internal 

tCLK_DELAY

Output from the

SD CLK at
the Card Pin

SD Card Pins

tSHSIVKH

Driving
Edge

Sampling
Edge

tOH tDATA_DELAY

tODLY

tSHSCK (Clock Cycle)
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tSHSIXKH

Right EdgeWrong Edge
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Input at the
MPC8377E Pins

SD CLK at the
MPC8377E Pin
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This figure provides the boundary-scan timing diagram.

Figure 35. Boundary-Scan Timing Diagram

This figure provides the test access port timing diagram.

Figure 36. Test Access Port Timing Diagram
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This table shows the PCI AC timing specifications at 33 MHz.

Input hold from cock tPCIXKH 0.25 — ns 2, 4, 6

Output clock skew tPCKOSK — 0.5 ns 5

Notes:
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH 
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the 
PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) 
with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.
5. PCI specifications allows 1 ns skew for 66 MHz but includes the total allowed skew, board, connectors, etc.
6. Value does not comply with the PCI 2.3 Local Bus Specifications.

Table 50. PCI AC Timing Specifications at 33 MHz
PCI_SYNC_IN clock input levels are with next levels: VIL = 0.1 × OVDD, VIH = 0.7 × OVDD.

Parameter Symbol1 Min Max Unit Note

Clock to output valid tPCKHOV — 11 ns 2

Output hold from clock tPCKHOX 2 — ns 2

Clock to output high impedance tPCKHOZ — 14 ns 2, 3

Input setup to clock tPCIVKH 3.0 — ns 2, 4

Input hold from clock tPCIXKH 0.25 — ns 2, 4, 6

Output clock skew tPCKOSK — 0.5 ns 5

Notes:
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH 
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the 
PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) 
with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.
5. PCI specifications allows 2 ns skew for 33 MHz but includes the total allowed skew, board, connectors, etc.
6. Value does not comply with the PCI 2.3 Local Bus Specifications.

Table 49. PCI AC Timing Specifications at 66 MHz (continued)
PCI_SYNC_IN clock input levels are with next levels: VIL = 0.1 × OVDD, VIH = 0.7 × OVDD.

Parameter Symbol1 Min Max Unit Note
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The eye diagram must be valid for any 250 consecutive UIs. 

A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is 
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx 
UI.

NOTE
It is recommended that the recovered Tx UI be calculated using all edges in 
the 3500 consecutive UI interval with a fit algorithm using a minimization 
merit function (that is, least squares and median deviation fits).

Figure 42. Minimum Transmitter Timing and Voltage Output Compliance Specifications

15.4.3 Differential Receiver (Rx) Input Specifications

This table defines the specifications for the differential input at all receivers. The parameters are specified 
at the component pins.

Table 53. Differential Receiver (Rx) Input Specifications

Parameter Comments Symbol Min Typical Max Units Note

Unit interval Each UPERX is 400 ps ± 300 
ppm. UPERX does not account 
for Spread Spectrum Clock 
dictated variations.

UI 399.88 400 400.12 ps 1

Differential peak-to-peak 
output voltage

VPEDPPRX = 2 × |VRX-D+ – 
VRX-D-| 

VRX-DIFFp-p 0.175 — 1.200 V 2

[De-emphasized Bit]
566 mV (3 dB) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB)

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV

0.7 UI = UI – 0.3 UI(JTX-TOTAL-MAX)

VTX-DIFF = 0 mV

(D+ D– Crossing Point)
VTX-DIFF = 0 mV

(D+ D– Crossing Point)
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Minimum receiver eye 
width

The maximum interconnect 
media and transmitter jitter that 
can be tolerated by the receiver 
can be derived as 
TRX-MAX-JITTER = 1 – 
UPEEWRX = 0.6 UI.

TRX-EYE 0.4 — — UI 2, 3

Maximum time between 
the jitter median and 
maximum deviation from 
the median.

Jitter is defined as the 
measurement variation of the 
crossing points (VPEDPPRX = 0 
V) in relation to a recovered Tx 
UI. A recovered Tx UI is 
calculated over 3500 
consecutive unit intervals of 
sample data. Jitter is measured 
using all edges of the 250 
consecutive UI in the center of 
the 3500 UI used for calculating 
the Tx UI. 

TRX-EYE-MEDIAN-to

-MAX-JITTER

— — 0.3 UI 2, 3, 7

AC peak common mode 
input voltage

VPEACPCMRX = |VRXD+ – 
VRXD-|/2 – VRX-CM-DC
VRX-CM-DC = DC(avg) of |VRX-D+ 
– VRX-D-|/2 

VRX-CM-ACp — — 150 mV 2

Differential return loss Measured over 50 MHz to 1.25 
GHz with the D+ and D– lines 
biased at +300 mV and –300 
mV, respectively. 

RLRX-DIFF 10 — — dB 4

Common mode return 
loss

Measured over 50 MHz to 1.25 
GHz with the D+ and D– lines 
biased at 0 V.

RLRX-CM 6 — — dB 4

DC differential input 
impedance

RX DC differential mode 
impedance.

ZRX-DIFF-DC 80 100 120 Ω 5

DC Input Impedance Required RX D+ as well as D- 
DC impedance (50 ± 20% 
tolerance). 

ZRX-DC 40 50 60 Ω 2, 5

Powered down DC input 
impedance

Required RX D+ as well as D– 
DC impedance when the 
receiver terminations do not 
have power.

ZRX-HIGH-IMP-DC 200 k — — Ω 6

Electrical idle detect 
threshold

VPEEIDT = 2 × |VRX-D+ -VRX-D-| 
Measured at the package pins 
of the receiver 

VRX-IDLE-DET-DIFF

p-p

65 — 175 mV —

Table 53. Differential Receiver (Rx) Input Specifications (continued)

Parameter Comments Symbol Min Typical Max Units Note
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driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock 
driver chip.

Figure 58. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver. 
It assumes the DC levels of the clock driver are compatible with device SerDes reference clock input’s DC 
requirement.

Figure 59. Single-Ended Connection (Reference Only)

21.2.4 AC Requirements for SerDes Reference Clocks
The clock driver selected should provide a high quality reference clock with low phase noise and 
cycle-to-cycle jitter. Phase noise less than 100 KHz can be tracked by the PLL and data recovery loops and 
is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise 
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The thermal performance of a device cannot be adequately predicted from the junction to ambient thermal 
resistance. The thermal performance of any component is strongly dependent on the power dissipation of 
surrounding components. In addition, the ambient temperature varies widely within the application. For 
many natural convection and especially closed box applications, the board temperature at the perimeter 
(edge) of the package is approximately the same as the local air temperature near the device. Specifying 
the local ambient conditions explicitly as the board temperature provides a more precise description of the 
local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

TJ = TA + (RθJB × PD)

where:

TA = ambient temperature for the package (°C)

RθJB = junction to board thermal resistance (°C/W) per JESD51-8

PD = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction 
temperature can be made. The application board should be similar to the thermal test condition: the 
component is soldered to a board with internal planes.

24.2.3 Experimental Determination of Junction Temperature

NOTE
The heat sink cannot be mounted on the package.

To determine the junction temperature of the device in the application after prototypes are available, use 
the thermal characterization parameter (ΨJT) to determine the junction temperature and a measure of the 
temperature at the top center of the package case using the following equation:

TJ = TT + (ΨJT × PD)

where:

TJ = junction temperature (°C)

TT = thermocouple temperature on top of package (°C)

ΨJT = junction to ambient thermal resistance (°C/W)

PD = power dissipation in the package (W)

The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type 
T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so 
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the 
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire 
is placed flat against the package case to avoid measurement errors caused by cooling effects of the 
thermocouple wire.

24.2.4 Heat Sinks and Junction-to-Case Thermal Resistance
For the power values the device is expected to operate at, it is anticipated that a heat sink will be required. 
A preliminary estimate of heat sink performance can be obtained from the following first-cut approach. 
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Tyco Electronics
Chip Coolers™
www.chipcoolers.com

Wakefield Engineering
www.wakefield.com

Interface material vendors include the following:

Chomerics, Inc.
www.chomerics.com

Dow-Corning Corporation
Dow-Corning Electronic Materials
www.dowcorning.com

Shin-Etsu MicroSi, Inc.
www.microsi.com

The Bergquist Company
www.bergquistcompany.com

24.3 Heat Sink Attachment
The device requires the use of heat sinks. When heat sinks are attached, an interface material is required, 
preferably thermal grease and a spring clip. The spring clip should connect to the printed circuit board, 
either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces 
that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the 
solder joint lifetime of the package. The recommended maximum compressive force on the top of the 
package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces, 
and its performance should be verified under the application requirements. 

24.3.1 Experimental Determination of the Junction Temperature with a 
Heat Sink

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the 
interface between the case of the package and the interface material. A clearance slot or hole is normally 
required in the heat sink. Minimize the size of the clearance to minimize the change in thermal 
performance caused by removing part of the thermal interface to the heat sink. Because of the experimental 
difficulties with this technique, many engineers measure the heat sink temperature and then back calculate 
the case temperature using a separate measurement of the thermal resistance of the interface. From this 
case temperature, the junction temperature is determined from the junction to case thermal resistance. 

TJ = TC + (RθJC × PD)

where:

TJ = junction temperature (°C)

TC = case temperature of the package (°C)


