E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Security; SEC 3.0
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 125°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8377ecvranga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.3 chipOutput Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type ¹	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	45	LBV _{DD} = 2.5 V, 3.3 V
	40	LBV _{DD} = 1.8 V
PCI signals	25	OV _{DD} = 3.3 V
DDR1 signal	18	GV _{DD} = 2.5 V
DDR2 signal	18	GV _{DD} = 1.8 V
eTSEC 10/100/1000 signals	45	LV _{DD} = 2.5 V, 3.3 V
DUART, system control, I ² C, JTAG, SPI, and USB	45	OV _{DD} = 3.3 V
GPIO signals	45	OV _{DD} = 3.3 V

Table 4. Output	Drive	Capability
-----------------	-------	------------

Note:

1. Specialized SerDes output capabilities are described in the relevant sections of these specifications (such as PCI Express and SATA)

2.2 Power Sequencing

The device requires its power rails to be applied in a specific sequence in order to ensure proper device operation. During the power ramp up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there may be a period of time that all input and output pins will actively be driven and cause contention and excessive current. To avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltages (V_{DD} and AV_{DD}) before the I/O voltages and assert PORESET before the power supplies fully ramp up. V_{DD} and AV_{DD} must reach 90% of their nominal value before GV_{DD} , LV_{DD} , and OV_{DD} reach 10% of their value, see the following figure. I/O

4.1 DC Electrical Characteristics

This table provides the clock input (CLKIN/PCI_CLK) DC timing specifications for the device.

Parameter	Condition	Symbol	Min	Мах	Unit	Note
Input high voltage	—	V _{IH}	2.7	OV _{DD} + 0.3	V	1
Input low voltage	—	V _{IL}	-0.3	0.4	V	1
CLKIN Input current	$0 V \le V_{IN} \le OV_{DD}$	I _{IN}	—	± 10	μA	
PCI_CLK Input current	0 V \leq V _{IN} \leq 0.5 V or OV _{DD} - 0.5 V \leq V _{IN} \leq OV _{DD}	I _{IN}	_	± 30	μA	_

 Table 7. CLKIN DC Electrical Characteristics

Note:

1. In PCI agent mode, this specification does not comply with PCI 2.3 Specification.

4.2 AC Electrical Characteristics

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the device.

Parameter	Symbol	Min	Typical	Max	Unit	Note
CLKIN/PCI_CLK frequency	f_{CLKIN}	25	—	66.666	MHz	1, 6
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	40	ns	—
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	_	—	—	± 150	ps	4, 5

Table 8. CLKIN AC Timing Specifications

Notes:

- 2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter-short term and long term-and is guaranteed by design.
- The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.
- 6. Spread spectrum is allowed up to 1% down-spread on CLKIN/PCI_CLK up to 60 KHz.

^{1.} **Caution:** The system, core and security block must not exceed their respective maximum or minimum operating frequencies.

4.3 eTSEC Gigabit Reference Clock Timing

This table provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.

		Table 9. EC_GTX_CLK125 AC Timing Specifications	

At recommended operating conditions with $LV_{DD} = 2.5 \pm 0.125 \text{ mV}/ 3.3 \text{ V} \pm 165 \text{ mV}$	

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Note
EC_GTX_CLK125 frequency	t _{G125}	_	125	—	MHz	
EC_GTX_CLK125 cycle time	t _{G125}		8	—	ns	
EC_GTX_CLK rise and fall time $LV_{DD} = 2.5 \text{ V}$ $LV_{DD} = 3.3 \text{ V}$	t _{G125R} /t _{G125F}			0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle 1000Base-T for RGMII, RTBI	t _{G125H} /t _{G125}	47	_	53	%	2
EC_GTX_CLK125 jitter	—	_	_	±150	ps	2

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.

 EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.2.2, "RGMII and RTBI AC Timing Specifications," for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the chip.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins of the device.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	—	—	± 30	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

 Table 10. RESET Pins DC Electrical Characteristics

Notes:

• This table applies for pins PORESET and HRESET. The PORESET is input pin, thus stated output voltages are not relevant.

• HRESET and SRESET are open drain pin, thus V_{OH} is not relevant for these pins.

6.1 DDR1 and DDR2 SDRAM DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the device when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter	Symbol	Min	Мах	Unit	Note
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2, 5
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.140	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.140	V	_
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.40 V)	I _{ОН}	-13.4	—	mA	_
Output low current (V _{OUT} = 0.3 V)	I _{OL}	13.4	_	mA	

Table 13. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le GV_{DD}$.

5. See AN3665, "MPC837xE Design Checklist," for proper DDR termination.

Table 14 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 14. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter	Symbol	Min	Мах	Unit	Note
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, \overline{DQS}	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.090 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 15. DDR SDRAM DC Electrical Characteristics for GV_{DD} (typ) = 2.5 V

Parameter	Symbol	Min	Мах	Unit	Note
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2, 5
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	

8.1.1 MII, RMII, RGMII, and RTBI DC Electrical Characteristics

MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 24 and Table 25. The RGMII and RTBI signals in Table 25 are based on a 2.5 V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Min	Max	Unit	Note
Supply voltage 3.3 V	LV _{DD1} LV _{DD2}	3.13	3.47	V	1
Output high voltage (LV _{DD1} /LV _{DD2} = Min, I _{OH} = -4.0 mA)	V _{OH}	2.40	LV _{DD1} /LV _{DD2} + 0.3	V	—
Output low voltage (LV _{DD1} /LV _{DD2} = Min, I _{OL} = 4.0 mA)	V _{OL}	GND	0.50	V	—
Input high voltage	V _{IH}	2.0	$LV_{DD1}/LV_{DD2} + 0.3$	V	—
Input low voltage	V _{IL}	-0.3	0.90	V	—
Input high current $(V_{IN} = LV_{DD1}, V_{IN} = LV_{DD2})$	Ι _{ΙΗ}	—	30	μA	1
Input low current (V _{IN} = GND)	IIL	-600	_	μA	

Table 24. MII and RMII DC Electrical Characteristics

Notes:

1. LV_{DD1} supports eTSEC 1. LV_{DD2} supports eTSEC 2.

Parameter	Symbol	Min	Мах	Unit	Note
Supply voltage 2.5 V	LV _{DD1} LV _{DD2}	2.37	2.63	V	1
Output high voltage (LV _{DD1} /LV _{DD2} = Min, IOH = -1.0 mA)	V _{OH}	2.00	$LV_{DD1}/LV_{DD2} + 0.3$	V	_
Output low voltage (LV _{DD1} /LV _{DD2} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V	_
Input high voltage	V _{IH}	1.7	$LV_{DD1}/LV_{DD2} + 0.3$	V	_
Input low voltage	V _{IL}	-0.3	0.70	V	_
Input high current (V _{IN} = LV _{DD1} , V _{IN} = LV _{DD2})	Iн	—	-20	μA	1
Input low current (V _{IN} = GND)	IIL	-20	_	μA	—

Table 25. RGMII and RTBI DC Electrical Characteristics

Notes:

1. LV_{DD1} supports eTSEC 1. LV_{DD2} supports eTSEC 2.

Table 38. Local Bus DC Electrical Characteristics (LBV_{DD} = 1.8 V)

At recommended operating conditions with $LBV_{DD} = 1.8$ V.

Parameter	Cond	itions	Symbol	Min	Мах	Unit
Supply voltage 1.8 V	-	_	LBV _{DD}	1.71	1.89	V
Output high voltage	I _{OH} = -1.0 mA	LBV _{DD} = Min	V _{OH}	LBV _{DD} - 0.45	—	V
Output low voltage	I _{OL} = 1.0 mA	LBV _{DD} = Min	V _{OL}	—	0.45	V
Input high voltage	_	LBV _{DD} = Min	V _{IH}	$0.65 imes LBV_{DD}$	LBV _{DD} + 0.3	V
Input low voltage	_	LBV _{DD} = Min	V _{IL}	-0.3	$0.35 imes LBV_{DD}$	V
Input high current	V _{IN} ¹ =	LBV _{DD}	I _{IH}	—	10	μA
Input low current	V _{IN} ¹ =	= GND	١ _{IL}	-10	—	μA

10.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface of the device when in PLL enable mode.

Parameter	Symbol ¹	Min	Max	Unit	Note
Local bus cycle time	t _{LBK}	7.5	15	ns	2
Input setup to local bus clock (except LUPWAIT/LGTA)	t _{LBIVKH}	1.5	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LUPWAIT/LGTA input setup to local bus clock	t _{LBIVKH1}	1.5	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7
Local bus clock to LALE rise	t _{LBKHLR}	—	4.5	ns	—
Local bus clock to output valid (except LALE)	t _{LBKHOV}	—	4.5	ns	3

Table 39. Local Bus General Timing Parameters—PLL Enable Mode

Figure 21. Local Bus Signals, Non-special Signals Only (PLL Bypass Mode)

This means that data delay should be equal or less than the clock delay in the ideal case where $t_{SHSCLKL} = 10$ ns:

```
t_{DATA\_DELAY} - t_{CLK\_DELAY} < 10 - 6 - 4t_{DATA\_DELAY} - t_{CLK\_DELAY} < 0
```

11.3.1.2 High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

```
t_{CLK\_DELAY} < t_{SHSCKL} + t_{SHSKHOX} + t_{DATA\_DELAY} - t_{IH} Eqn. 13
```

$$t_{CLK_DELAY} - t_{DATA_DELAY} < t_{SHSCKL} + t_{SHSKHOX} - t_{IH}$$
 Eqn. 14

This means that clock can be delayed versus data up to 8 ns (external delay line) in ideal case of $t_{SHSCLKL} = 10$ ns:

```
t_{CLK\_DELAY} - t_{DATA\_DELAY} < 10 + 0 - 2
t_{CLK\_DELAY} - t_{DATA\_DELAY} < 8
```

11.3.2 High-Speed Input Path (Read)

This figure provides the data and command input timing diagram.

Figure 31. High-Speed Input Path

For the input path, the device eSDHC expects to sample the data 1.5 internal clock cycles after it was driven by the SD card. Since in this mode the SD card drives the data at the rising edge of the clock, a sufficient delay to the clock and the data must exist to ensure it will not be sampled at the wrong internal

15.4.1 Differential Transmitter (Tx) Output

This table defines the specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Parameter	Conditions	Symbol	Min	Typical	Мах	Units	Note
Unit interval	Each U_{PETX} is 400 ps ± 300 ppm. U_{PETX} does not account for Spread Spectrum Clock dictated variations.	UI	399.88	400	400.12	ps	1
Differential peak-to-peak output voltage	$V_{PEDPPTX} = 2 \times IV_{TX-D+} - V_{TX-D-I}$	V _{TX-DIFFp-p}	0.8	_	1.2	V	2
De-emphasized differential output voltage (ratio)	Ratio of the $V_{PEDPPTX}$ of the second and following bits after a transition divided by the $V_{PEDPPTX}$ of the first bit after a transition.	V _{TX-DE-RATIO}	-3.0	-3.5	-4.0	dB	2
Minimum Tx eye width	The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 -$ $U_{PEEWTX} = 0.3 UI.$	T _{TX-EYE}	0.70		_	UI	2, 3
Maximum time between the jitter median and maximum deviation from the median	Jitter is defined as the measurement variation of the crossing points ($V_{PEDPPTX} = 0$ V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.	T _{TX-EYE-MEDIAN-to-} MAX-JITTER			0.15	U	2, 3
D+/D– Tx output rise/fall time	_	T _{TX-RISE} , T _{TX-FALL}	0.125	_	—	UI	2, 5
RMS AC peak common mode output voltage	$\label{eq:VPEACPCMTX} \begin{split} &V_{\text{PEACPCMTX}} = \text{RMS}(\text{IV}_{\text{TXD+}} - \text{V}_{\text{TXD-}}\text{I}/2 - \text{V}_{\text{TX-CM-DC}}) \\ &V_{\text{TX-CM-DC}} = \text{DC}_{(\text{avg})} \text{ of } \\ &V_{\text{TX-CM-}} - \text{V}_{\text{TX-D-}}\text{I}/2 \end{split}$	V _{TX-CM-ACp}	_		20	mV	2
Absolute delta of DC common mode voltage during LO and electrical idle	$eq:linear_line$	V _{TX-CM-DC-} ACTIVE- IDLE-DELTA	0	_	100	mV	2

Table 52. Differential Transmitter (Tx) Output Specifications

Parameter	Conditions	Symbol	Min	Typical	Мах	Units	Note
Common mode return loss	Measured over 50 MHz to 1.25 GHz.	RL _{TX-CM}	6	_	—	dB	4
DC differential Tx impedance	Tx DC differential mode low impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	_
Transmitter DC impedance	Required Tx D+ as well as D– DC impedance during all states	Z _{TX-DC}	40	_	—	Ω	_
Lane-to-Lane output skew	Static skew between any two transmitter lanes within a single link	L _{TX-SKEW}	—	_	500 + 2 UI	ps	_
AC coupling capacitor	All transmitters should be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.	C _{TX}	75	_	200	nF	_
Crosslink random timeout	This random timeout helps resolve conflicts in crosslink configuration by eventually resulting in only one downstream and one upstream port.	T _{crosslink}	0	_	1	ms	7

Table 52. Differential Transmitter (Tx) Output Specifications (continued)

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 44 and measured over any 250 consecutive Tx UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 42.)
- 3. A T_{TX-EYE} = 0.70 UI provides for a total sum of deterministic and random jitter budget of T_{TX-JITTER-MAX} = 0.30 UI for the transmitter collected over any 250 consecutive Tx UIs. The T_{TX-EYE-MEDIAN-to-MAX-JITTER} median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- 4. The transmitter input impedance will result in a differential return loss greater than or equal to 12 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D- line (that is, as measured by a vector network analyzer with 50-Ω probes, see Figure 44). Note that the series capacitors, C_{TX}, is optional for the return loss measurement.
- 5. Measured between 20%–80% at transmitter package pins into a test load as shown in Figure 44 for both V_{TX-D+} and V_{TX-D-}.
- 6. See Section 4.3.1.8 of the PCI Express Base Specifications, Rev 1.0a.
- 7. See Section 4.2.6.3 of the PCI Express Base Specifications, Rev 1.0a.

15.4.2 Transmitter Compliance Eye Diagrams

The Tx eye diagram in Figure 42 is specified using the passive compliance/test measurement load (see Figure 44) in place of any real PCI Express interconnect + Rx component. There are two eye diagrams that must be met for the transmitter. Both diagrams must be aligned in time using the jitter median to locate the center of the eye diagram. The different eye diagrams differ in voltage depending on whether it is a transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit is always relative to the transition bit.

Parameter	Comments	Symbol	Min	Typical	Max	Units	Note
Minimum receiver eye width	The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 -$ $U_{PEEWRX} = 0.6$ UI.	T _{RX-EYE}	0.4			UI	2, 3
Maximum time between the jitter median and maximum deviation from the median.	Jitter is defined as the measurement variation of the crossing points ($V_{PEDPPRX} = 0$ V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.	T _{RX-EYE-MEDIAN-to} -MAX-JITTER			0.3	UI	2, 3, 7
AC peak common mode input voltage	$V_{PEACPCMRX} = V_{RXD+} - V_{RXD-l/2} - V_{RX-CM-DC} \\V_{RX-CM-DC} = DC_{(avg)} \text{ of } V_{RX-D+} - V_{RX-D-l/2} /2$	V _{RX-CM-ACp}	—	_	150	mV	2
Differential return loss	Measured over 50 MHz to 1.25 GHz with the D+ and D– lines biased at +300 mV and –300 mV, respectively.	RL _{RX-DIFF}	10	_	—	dB	4
Common mode return loss	Measured over 50 MHz to 1.25 GHz with the D+ and D- lines biased at 0 V.	RL _{RX-CM}	6	_	_	dB	4
DC differential input impedance	RX DC differential mode impedance.	Z _{RX-DIFF-DC}	80	100	120	Ω	5
DC Input Impedance	Required RX D+ as well as D- DC impedance (50 \pm 20% tolerance).	Z _{RX-DC}	40	50	60	Ω	2, 5
Powered down DC input impedance	Required RX D+ as well as D– DC impedance when the receiver terminations do not have power.	Z _{RX-HIGH-IMP-DC}	200 k	_	_	Ω	6
Electrical idle detect threshold	$V_{PEEIDT} = 2 \times V_{RX-D+} - V_{RX-D-} $ Measured at the package pins of the receiver	V _{RX-IDLE-DET-DIFF} p-p	65	—	175	mV	—

Parameter	Comments	Symbol	Min	Typical	Max	Units	Note
Unexpected Electrical Idle Enter Detect Threshold Integration Time	An unexpected electrical idle (Vrx-diffp-p < Vrx-idle-det-diffp-p) must be recognized no longer than Trx-idle-det-diff-entertime to signal an unexpected idle condition.	T _{RX-IDLE-DET-DIFF-} ENTERTIME	_	_	10	ms	_
Total Skew	Skew across all lanes on a link. This includes variation in the length of SKP ordered set (e.g. COM and one to five SKP Symbols) at the Rx as well as any delay differences arising from the interconnect itself.	L _{RX-SKEW}			20	ns	

Table 53. Differential Receiver (Rx) Input Specifications (continued)

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 44 should be used as the Rx device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 43). If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- 3. A T_{Rx-EYE} = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect collected any 250 consecutive UIs. The TRx-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 4. The receiver input impedance will result in a differential return loss greater than or equal to 10 dB with the D+ line biased to 300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D- line (that is, as measured by a vector network analyzer with 50- Ω probes, see Figure 44). Note that the series capacitors, C_{Tx}, is optional for the return loss measurement.
- 5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
- 6. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.
- 7. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

15.5 Receiver Compliance Eye Diagrams

The Rx eye diagram in Figure 43 is specified using the passive compliance/test measurement load (see Figure 44) in place of any real PCI Express Rx component. In general, the minimum receiver eye diagram measured with the compliance/test measurement load (see Figure 44) is larger than the minimum receiver eye diagram measured over a range of systems at the input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due to traces internal to the package as well as silicon parasitic characteristics that cause the real PCI Express component to vary in impedance from the

Parameter	Symbol	Min	Typical	Мах	Units	Note
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}		_	0.35	UI _{p-p}	1

Table 60. Gen 1i/1.5G Receiver AC Specifications (continued)

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

16.3.2 Gen2i/3G Receiver (Rx) Specifications

This table provides the Gen2i or 3 Gbits/s differential receiver input DC characteristics for the SATA interface.

Table 61. Gen2i/3G Receiver Input DC Specifications

Parameter	Symbol	Min	Typical	Max	Units	Note
Differential input voltage	V _{SATA_RXDIFF}	275	500	750	mVp-p	1
Differential RX input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	

Note:

1. Voltage relative to common of either signal comprising a differential pair.

This table provides the differential receiver output AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.

Table 62. Gen 2i/3G Receiver AC Specifications

Parameter	Symbol	Min	Typical	Max	Units	Note
Channel Speed	t _{CH_SPEED}	—	3.0	_	Gbps	_
Unit Interval	T _{UI}	333.2	333.33	335.11	ps	_
Total jitter $f_{C3dB} = f_{BAUD}/10$	U _{SATA_TXTJfB/10}	—	—	0.46	UI _{p-p}	1
Total jitter f _{C3dB} = f _{BAUD} /500	U _{SATA_TXTJfB/500}	—	—	0.60	UI _{p-p}	1
Total jitter $f_{C3dB} = f_{BAUD}/1667$	U _{SATA_TXTJfB/1667}	—	—	0.65	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/10$	U _{SATA_TXDJfB/10}	—	—	0.35	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/500$	U _{SATA_TXDJfB/500}	_	_	0.42	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/1667$	U _{SATA_TXDJfB/1667}	_	_	0.35	UI _{p-p}	1

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

18 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the chip.

18.1 GPIO DC Electrical Characteristics

This table provides the DC electrical characteristics for the device GPIO.

Table 65. GPIO DC Electrical Characteristics

This specification applies when operating at 3.3 V \pm 165 mV supply.

Parameter	Condition	Symbol	Min	Мах	Unit
Output high voltage	I _{OH} = -6.0 mA	V _{OH}	2.4	—	V
Output low voltage	I _{OL} = 6.0 mA	V _{OL}	—	0.5	V
Output low voltage	I _{OL} = 3.2 mA	V _{OL}	—	0.4	V
Input high voltage	—	V _{IH}	2.0	OV _{DD} + 0.3	V
Input low voltage	—	V _{IL}	-0.3	0.8	V
Input current	$0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{OV}_{\text{DD}}$	I _{IN}	—	± 30	μA

18.2 GPIO AC Timing Specifications

This table provides the GPIO input and output AC timing specifications.

Table 66	. GPIO	Input AC	Timing	Specifications
----------	--------	----------	--------	----------------

Parameter	Symbol	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLKIN. Timings are measured at the pin.
- GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any
 external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

This figure provides the AC test load for the GPIO.

Figure 47. GPIO AC Test Load

19 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the chip.

greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.

- For external DC-coupled connection, as described in Section 21.2.1, "SerDes Reference Clock Receiver Characteristics," the maximum average current requirements sets the requirement for average voltage (common mode voltage) to be between 100 mV and 400 mV.
 Figure 53 shows the SerDes reference clock input requirement for DC-coupled connection scheme.
- For external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SGND_SRDSn. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage (SGND_SRDSn). Figure 54 shows the SerDes reference clock input requirement for AC-coupled connection scheme.
- Single-ended Mode
 - The reference clock can also be single-ended. The SD _REF_CLK input amplitude (single-ended swing) must be between 400 mV and 800 mV_{p-p} (from V_{min} to V_{max}) with \overline{SDn}_REF_CLK either left unconnected or tied to ground.
 - The SD*n*_REF_CLK input average voltage must be between 200 mV and 400 mV. Figure 55 shows the SerDes reference clock input requirement for single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused phase (SDn_REF_CLK) through the same source impedance as the clock input (SDn_REF_CLK) in use.

Figure 53. Differential Reference Clock Input DC Requirements (External DC-Coupled)

output driver features a 50- Ω termination resistor. It also assumes that the LVDS transmitter establishes its own common mode level without relying on the receiver or other external component.

Figure 57. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

Figure 58 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. Since LVPECL driver's DC levels (both common mode voltages and output swing) are incompatible with device SerDes reference clock input's DC requirement, AC-coupling has to be used. Figure 58 assumes that the LVPECL clock driver's output impedance is 50 Ω . R1 is used to DC-bias the LVPECL outputs prior to AC-coupling. Its value could be ranged from 140 Ω to 240 Ω depending on clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50 Ω termination resistor to attenuate the LVPECL output's differential peak level such that it meets the device SerDes reference clock's differential input amplitude requirement (between 200 mV and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω . Consult clock

Signal	Package Pin Number	Pin Type	Power Supply	Note
MDQ35	AE1	I/O	GVDD	11
MDQ36	V6	I/O	GVDD	11
MDQ37	Y5	I/O	GVDD	11
MDQ38	AA4	I/O	GVDD	11
MDQ39	AB6	I/O	GVDD	11
MDQ40	AD3	I/O	GVDD	11
MDQ41	AC4	I/O	GVDD	11
MDQ42	AD4	I/O	GVDD	11
MDQ43	AF1	I/O	GVDD	11
MDQ44	AE4	I/O	GVDD	11
MDQ45	AC5	I/O	GVDD	11
MDQ46	AE2	I/O	GVDD	11
MDQ47	AE3	I/O	GVDD	11
MDQ48	AG1	I/O	GVDD	11
MDQ49	AG2	I/O	GVDD	11
MDQ50	AG3	I/O	GVDD	11
MDQ51	AF5	I/O	GVDD	11
MDQ52	AE5	I/O	GVDD	11
MDQ53	AD7	I/O	GVDD	11
MDQ54	AH2	I/O	GVDD	11
MDQ55	AG4	I/O	GVDD	11
MDQ56	AH3	I/O	GVDD	11
MDQ57	AG5	I/O	GVDD	11
MDQ58	AF8	I/O	GVDD	11
MDQ59	AJ5	I/O	GVDD	11
MDQ60	AF6	I/O	GVDD	11
MDQ61	AF7	I/O	GVDD	11
MDQ62	AH6	I/O	GVDD	11
MDQ63	AH7	I/O	GVDD	11
MDQS0	C8	I/O	GVDD	11
MDQS1	C4	I/O	GVDD	11
MDQS2	E3	I/O	GVDD	11
MDQS3	G2	I/O	GVDD	11

Signal	Package Pin Number	Pin Type	Power Supply	Note
LA25/LAD30	D29	I/O	LBVDD	
LA26/LAD31	E20	I/O	LBVDD	_
LA27	H26	0	LBVDD	_
LA28	C29	0	LBVDD	_
LA29	E28	0	LBVDD	—
LA30	B26	0	LBVDD	—
LA31	J25	0	LBVDD	—
LA10/LALE	H29	0	LBVDD	—
LBCTL	A22	0	LBVDD	—
LCLK0	B22	0	LBVDD	—
LCLK1	C23	0	LBVDD	—
LCLK2	B23	0	LBVDD	—
LCS_B0	D25	0	LBVDD	—
LCS_B1	F19	0	LBVDD	—
LCS_B2	C27	0	LBVDD	—
LCS_B3	D24	0	LBVDD	—
LCS_B4/LDP0	C24	I/O	LBVDD	—
LCS_B5/LDP1	B29	I/O	LBVDD	—
LA7/LCS_B6/LDP2	E29	I/O	LBVDD	—
LA8/LCS_B7/LDP3	F29	I/O	LBVDD	—
LFCLE/LGPL0	D21	0	LBVDD	—
LFALE/LGPL1	A26	0	LBVDD	—
LFRE_B/LGPL2/LOE_B	F22	0	LBVDD	—
LFWP_B/LGPL3	C21	0	LBVDD	—
LGPL4/LFRB_B/LGTA_B/ LUPWAIT/LPBSE	J29	I/O	LBVDD	16
LA9/LGPL5	G29	0	LBVDD	—
LSYNC_IN	A21	I	LBVDD	—
LSYNC_OUT	D23	0	LBVDD	—
LWE_B0/LFWE0/LBS_B0	E22	0	LBVDD	—
LWE_B1/LFWE1/LBS_B1	B25	0	LBVDD	—
LWE_B2/LFWE2/LBS_B2	E27	0	LBVDD	—
LWE_B3/LFWE3/LBS_B3	F28	0	LBVDD	—

Table 72. TePBGA II Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note	
L1_XCOREVSS	AG14, AG15, AG16, AH16, AG18, AG20	SerDes Core GND	—	_	
L1_XPADVDD	AE16, AF16, AD18, AE19, AF19	SerDes I/O Power (1.0 or 1.05 V)	_	_	
L1_XPADVSS	AF14, AE17, AF20	SerDes I/O GND	—	_	
	SerDes2 Interface				
L2_SD_IMP_CAL_RX	C19	I	L2_XPADVDD	_	
L2_SD_IMP_CAL_TX	C15	I	L2_XPADVDD		
L2_SD_REF_CLK	B17	I	L2_XPADVDD	_	
L2_SD_REF_CLK_B	A17	I	L2_XPADVDD	_	
L2_SD_RXA_N	A19	I	L2_XPADVDD		
L2_SD_RXA_P	B19	I	L2_XPADVDD		
L2_SD_RXE_N	A15	I	L2_XPADVDD		
L2_SD_RXE_P	B15	I	L2_XPADVDD	_	
L2_SD_TXA_N	D18	0	L2_XPADVDD		
L2_SD_TXA_P	E18	0	L2_XPADVDD	_	
L2_SD_TXE_N	D15	0	L2_XPADVDD	_	
L2_SD_TXE_P	E15	0	L2_XPADVDD	_	
L2_SDAVDD_0	A16	SerDes PLL Power (1.0 or 1.05 V)	_	_	
L2_SDAVSS_0	C17	SerDes PLL GND	_	_	
L2_XCOREVDD	A14, B14, D17, B18, B20	SerDes Core Power (1.0 or 1.05 V)	_	_	
L2_XCOREVSS	C14, C16, A18, C18, A20, C20	SerDes Core GND	_	_	
L2_XPADVDD	D14, E16, F18, D19, E19	SerDes I/O Power (1.0 or 1.05 V)	_	_	
L2_XPADVSS	D16, E17, D20	SerDes I/O GND			
SPI Interface					
SPICLK/SD_CLK	AH9	I/O	OVDD	_	

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2012 Freescale Semiconductor, Inc.

Document Number: MPC8377EEC Rev. 8 05/2012

