

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

EXF

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Security; SEC 3.0
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 125°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8377evralg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Characteristic	Symbol	Max Value	Unit	Note
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 4
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 4
	Three-speed Ethernet signals	LV _{IN}	–0.3 to (LV _{DD} + 0.3)	V	
	PCI, DUART, CLKIN, system control and power management, I ² C, and JTAG signals	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3, 4, 5
	Local Bus	LB _{IN}	–0.3 to (LBV _{DD} + 0.3)	V	_
Storage temperatu	re range	T _{STG}	–55 to 150	0 °C	

Table 2. Absolute Maximum Ratings¹ (continued)

Notes:

- 1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. (M,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 5. Overshoot/undershoot by OV_{IN} on the PCI interface does not comply to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 2.
- 6. L[1,2]_nV_{DD} includes SDAV_{DD_0}, XCOREV_{DD}, and XPADV_{DD} power inputs.

2.1.2 Power Supply Voltage Specification

This table provides recommended operating conditions for the device. Note that the values in this table are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic		Symbol	Recommended Value	Unit	Note
Core supply voltage	up to 667 MHz	V _{DD}	1.0 ± 50 mV	V	1
	800 MHz		1.05 ± 50 mV	۷	1
PLL supply voltage (e300 core, eLBC and system)	up to 667 MHz	AV _{DD}	1.0 ± 50 mV	V	1, 2
	800 MHz		1.05 ± 50 mV	۷	1, 2
DDR1 and DDR2 DRAM I/O voltage	GV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	1	
Three-speed Ethernet I/O, MII management volta	LV _{DD} [1,2]	3.3 V ± 165 mV 2.5 V ± 125 mV	V	_	
PCI, local bus, DUART, system control and power JTAG I/O voltage	OV _{DD}	3.3 V ± 165 mV	V	1	
Local Bus		LBV _{DD}	1.8 V ± 90 mV 2.5 V ± 125 mV 3.3 V ± 165 mV	V	

Table 3. Recommended Operating Conditions

6.1 DDR1 and DDR2 SDRAM DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the device when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter	Symbol	Min Max		Unit	Note
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2, 5
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.140	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.140	V	_
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.40 V)	I _{ОН}	-13.4	—	mA	_
Output low current (V _{OUT} = 0.3 V)	I _{OL}	13.4	_	mA	_

Table 13. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le GV_{DD}$.

5. See AN3665, "MPC837xE Design Checklist," for proper DDR termination.

Table 14 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 14. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter	Symbol	Min	Мах	Unit	Note
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, \overline{DQS}	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.090 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 15. DDR SDRAM DC Electrical Characteristics for GV_{DD} (typ) = 2.5 V

Parameter	Symbol	Symbol Min		Unit	Note
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2, 5
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	

Table 49. PCI AC Timing Specifications at 66 MHz (continued)

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, VIH = $0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Input hold from cock	t _{PCIXKH}	0.25	—	ns	2, 4, 6
Output clock skew	t _{PCKOSK}	—	0.5	ns	5

Notes:

Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 1 ns skew for 66 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

This table shows the PCI AC timing specifications at 33 MHz.

Table 50. PCI AC Timing Specifications at 33 MHz

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, $V_{IH} = 0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Clock to output valid	t _{PCKHOV}	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.25	—	ns	2, 4, 6
Output clock skew	t _{PCKOSK}	_	0.5	ns	5

Notes:

- Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 2 ns skew for 33 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

This figure provides the AC test load for PCI.

Figure 39. PCI AC Test Load

This figure shows the PCI input AC timing conditions.

Figure 40. PCI Input AC Timing Measurement Conditions

This figure shows the PCI output AC timing conditions.

Figure 41. PCI Output AC Timing Measurement Condition

15 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus.

15.1 DC Requirements for PCI Express SD_REF_CLK and SD_REF_CLK

For more information see Section 21, "High-Speed Serial Interfaces (HSSI)."

Table 54. SATA	Reference	Clock Input	Requirements	(continued)
----------------	-----------	--------------------	--------------	-------------

Parameter	Condition	Symbol	Min	Typical	Max	Unit	Note
SD_REF_CLK/ SD_REF_CLK cycle to cycle Clock jitter (period jitter)	Cycle-to-cycle at ref clock input	t _{CLK_CJ}		_	100	ps	
SD_REF_CLK/ SD_REF_CLK total reference clock jitter, phase jitter (peak-peak)	Peak-to-peak jitter at ref clock input	t _{CLK_PJ}	-50	_	+50	ps	2, 3

Notes:

1. Only 100/125/150 MHz have been tested, other in between values will not work correctly with the rest of the system.

2. In a frequency band from 150 kHz to 15 MHz at BER of 10^{-12} .

3. Total peak to peak Deterministic Jitter "D_I" should be less than or equal to 50 ps.

This figure shows the SATA reference clock timing waveform.

Figure 45. SATA Reference Clock Timing Waveform

16.2 Transmitter (Tx) Output Characteristics

This section discusses the Gen1i/1.5G and Gen2i/3G transmitter output characteristics for the SATA interface.

16.2.1 Gen1i/1.5G Transmitter Specifications

This table provides the DC differential transmitter output DC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission.

Parameter	Symbol	Min	Typical	Мах	Units	Note
Tx differential output voltage	V _{SATA_TXDIFF}	400	500	600	mV _{p-p}	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	

Note:

1. Terminated by 50 Ω load.

Parameter	Symbol	Min	Typical	Мах	Units	Note
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}		_	0.35	UI _{p-p}	1

Table 60. Gen 1i/1.5G Receiver AC Specifications (continued)

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

16.3.2 Gen2i/3G Receiver (Rx) Specifications

This table provides the Gen2i or 3 Gbits/s differential receiver input DC characteristics for the SATA interface.

Table 61. Gen2i/3G Receiver Input DC Specifications

Parameter	Symbol	Min	Typical	Max	Units	Note
Differential input voltage	V _{SATA_RXDIFF}	275	500	750	mVp-p	1
Differential RX input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	

Note:

1. Voltage relative to common of either signal comprising a differential pair.

This table provides the differential receiver output AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.

Table 62. Gen 2i/3G Receiver AC Specifications

Parameter	Symbol	Min	Typical	Max	Units	Note
Channel Speed	t _{CH_SPEED}	—	3.0	_	Gbps	_
Unit Interval	T _{UI}	333.2	333.33	335.11	ps	_
Total jitter $f_{C3dB} = f_{BAUD}/10$	U _{SATA_TXTJfB/10}	—	—	0.46	UI _{p-p}	1
Total jitter f _{C3dB} = f _{BAUD} /500	U _{SATA_TXTJfB/500}	—	—	0.60	UI _{p-p}	1
Total jitter $f_{C3dB} = f_{BAUD}/1667$	U _{SATA_TXTJfB/1667}	—	—	0.65	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/10$	U _{SATA_TXDJfB/10}	—	—	0.35	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/500$	U _{SATA_TXDJfB/500}	_	_	0.42	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/1667$	U _{SATA_TXDJfB/1667}	_	_	0.35	UI _{p-p}	1

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

This figure shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

This figure shows the SPI timing in master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 50. SPI AC Timing in Master Mode (Internal Clock) Diagram

21 High-Speed Serial Interfaces (HSSI)

This chip features two serializer/deserializer (SerDes) interfaces to be used for high-speed serial interconnect applications. See Table 1 for the interfaces supported.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

21.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 51 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for description. The figure shows waveform for either a transmitter output (SD*n*_TX and \overline{SDn}_TX) or a receiver input (SD*n*_RX and \overline{SDn}_RX). Each signal swings between A volts and B volts where A > B.

greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.

- For external DC-coupled connection, as described in Section 21.2.1, "SerDes Reference Clock Receiver Characteristics," the maximum average current requirements sets the requirement for average voltage (common mode voltage) to be between 100 mV and 400 mV.
 Figure 53 shows the SerDes reference clock input requirement for DC-coupled connection scheme.
- For external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SGND_SRDSn. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage (SGND_SRDSn). Figure 54 shows the SerDes reference clock input requirement for AC-coupled connection scheme.
- Single-ended Mode
 - The reference clock can also be single-ended. The SD _REF_CLK input amplitude (single-ended swing) must be between 400 mV and 800 mV_{p-p} (from V_{min} to V_{max}) with \overline{SDn}_REF_CLK either left unconnected or tied to ground.
 - The SD*n*_REF_CLK input average voltage must be between 200 mV and 400 mV. Figure 55 shows the SerDes reference clock input requirement for single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused phase (SDn_REF_CLK) through the same source impedance as the clock input (SDn_REF_CLK) in use.

Figure 53. Differential Reference Clock Input DC Requirements (External DC-Coupled)

NOTE

Figure 56 to Figure 59 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by the clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the device SerDes reference clock receiver requirement provided in this document.

This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with device SerDes reference clock input's DC requirement.

Figure 56. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common-mode voltage is higher than the device SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS

output driver features a 50- Ω termination resistor. It also assumes that the LVDS transmitter establishes its own common mode level without relying on the receiver or other external component.

Figure 57. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

Figure 58 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. Since LVPECL driver's DC levels (both common mode voltages and output swing) are incompatible with device SerDes reference clock input's DC requirement, AC-coupling has to be used. Figure 58 assumes that the LVPECL clock driver's output impedance is 50 Ω . R1 is used to DC-bias the LVPECL outputs prior to AC-coupling. Its value could be ranged from 140 Ω to 240 Ω depending on clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50 Ω termination resistor to attenuate the LVPECL output's differential peak level such that it meets the device SerDes reference clock's differential input amplitude requirement (between 200 mV and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω . Consult clock

21.3 SerDes Transmitter and Receiver Reference Circuits

This figure shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 62. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below in this document based on the application usage:

- Section 8, "Ethernet: Enhanced Three-Speed Ethernet (eTSEC)"
- Section 15, "PCI Express"
- Section 16, "Serial ATA (SATA)"

Note that an external AC coupling capacitor is required for the above three serial transmission protocols with the capacitor value defined in specification of each protocol section.

22 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

22.1 Package Parameters for the MPC8377E TePBGA II

The package parameters are provided in the following list. The package type is $31 \text{ mm} \times 31 \text{ mm}$, 689 plastic ball grid array (TePBGA II).

Package outline	$31 \text{ mm} \times 31 \text{ mm}$
Interconnects	689
Pitch	1.00 mm
Module height (typical)	2.0 mm to 2.46 mm (maximum)
Solder Balls	3.5% Ag, 96.5% Sn
Ball diameter (typical)	0.60 mm
Pitch Module height (typical) Solder Balls Ball diameter (typical)	1.00 mm 2.0 mm to 2.46 mm (maximum) 3.5% Ag, 96.5% Sn 0.60 mm

This figure shows the mechanical dimensions and bottom surface nomenclature of the TEPBGA II package.

Figure 63. Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II

Note:

- ¹ All dimensions are in millimeters.
- ² Dimensioning and tolerancing per ASME Y14. 5M-1994.
- ³ Maximum solder ball diameter measured parallel to Datum A.
- ⁴ Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Signal	Package Pin Number	Pin Type	Power Supply	Note
UART_RTS_B[2]	L29	0	OVDD	
	Enhanced Local Bus Controller (eLBC)	Interface		
LAD0	E24	I/O	LBVDD	
LAD1	G28	I/O	LBVDD	_
LAD2	H25	I/O	LBVDD	_
LAD3	F26	I/O	LBVDD	_
LAD4	C26	I/O	LBVDD	_
LAD5	J28	I/O	LBVDD	
LAD6	F21	I/O	LBVDD	_
LAD7	F23	I/O	LBVDD	_
LAD8	E25	I/O	LBVDD	_
LAD9	E26	I/O	LBVDD	_
LAD10	A23	I/O	LBVDD	
LAD11	F24	I/O	LBVDD	_
LAD12	G24	I/O	LBVDD	
LAD13	F25	I/O	LBVDD	_
LAD14	H28	I/O	LBVDD	
LAD15	G25	I/O	LBVDD	
LA11/LAD16	F27	I/O	LBVDD	
LA12/LAD17	B21	I/O	LBVDD	
LA13/LAD18	A25	I/O	LBVDD	
LA14/LAD19	C28	I/O	LBVDD	
LA15/LAD20	H24	I/O	LBVDD	
LA16/LAD21	E23	I/O	LBVDD	
LA17/LAD22	B28	I/O	LBVDD	
LA18/LAD23	D28	I/O	LBVDD	
LA19/LAD24	A27	I/O	LBVDD	
LA20/LAD25	C25	I/O	LBVDD	_
LA21/LAD26	B27	I/O	LBVDD	_
LA22/LAD27	H27	I/O	LBVDD	_
LA23/LAD28	E21	I/O	LBVDD	_
LA24/LAD29	F20	I/O	LBVDD	

Signal	Package Pin Number	Pin Type	Power Supply	Note
TSEC2_RXD0/GPIO1[16]	AE28	I/O	LVDD2	16
TSEC2_RXD1/GPIO1[15]	AE29	I/O	LVDD2	16
TSEC2_RXD2/GPIO1[14]	AH26	I/O	LVDD2	16
TSEC2_RXD3/GPIO1[13]	AH25	I/O	LVDD2	16
TSEC2_TX_CLK/GPIO2[24]/ TSEC1_TMR_GCLK	AG28	I/O	LVDD2	16
TSEC2_TX_EN/GPIO1[12]/ TSEC1_TMR_ALARM2	AJ26	I/O	LVDD2	16
TSEC2_TX_ER/GPIO1[24]/ TSEC1_TMR_ALARM1	AG26	I/O	LVDD2	16
TSEC2_TXD0/GPIO1[20]	AH28	I/O	LVDD2	16
TSEC2_TXD1/GPIO1[19]/ TSEC1_TMR_PP1	AF27	I/O	LVDD2	16
TSEC2_TXD2/GPIO1[18]/ TSEC1_TMR_PP2	AJ28	I/O	LVDD2	16
TSEC2_TXD3/GPIO1[17]/ TSEC1_TMR_PP3	AF29	I/O	LVDD2	16
	GPIO1 Interface			
GPIO1[0]/GTM1_TIN1/ GTM2_TIN2/DREQ0_B	P25	I/O	OVDD	—
GPIO1[1]/GTM1_TGATE1_B/ GTM2_TGATE2_B/DACK0_B	N25	I/O	OVDD	_
GPIO1[2]/GTM1_TOUT1_B/ DDONE0_B	N26	I/O	OVDD	_
GPIO1[3]/GTM1_TIN2/ GTM2_TIN1/DREQ1_B	В9	I/O	OVDD	_
GPIO1[4]/GTM1_TGATE2_B/ GTM2_TGATE1_B/DACK1_B	N29	I/O	OVDD	_
GPIO1[5]/GTM1_TOUT2_B/ GTM2_TOUT1_B/DDONE1_B	M29	I/O	OVDD	_
GPIO1[6]/GTM1_TIN3/ GTM2_TIN4/DREQ2_B	A9	I/O	OVDD	_
GPIO1[7]/GTM1_TGATE3_B/ GTM2_TGATE4_B/DACK2_B	B10	I/O	OVDD	—
GPIO1[8]/GTM1_TOUT3_B/ DDONE2_B	J26	I/O	OVDD	—
GPIO1[9]/GTM1_TIN4/ GTM2_TIN3/DREQ3_B	J24	I/O	OVDD	_

Signal	Package Pin Number	Pin Type	Power Supply	Note
L1_XCOREVSS	AG14, AG15, AG16, AH16, AG18, AG20	SerDes Core GND	—	_
L1_XPADVDD	AE16, AF16, AD18, AE19, AF19	SerDes I/O Power (1.0 or 1.05 V)	_	_
L1_XPADVSS	AF14, AE17, AF20	SerDes I/O GND		_
	SerDes2 Interface			
L2_SD_IMP_CAL_RX	C19	I	L2_XPADVDD	_
L2_SD_IMP_CAL_TX	C15	I	L2_XPADVDD	
L2_SD_REF_CLK	B17	I	L2_XPADVDD	_
L2_SD_REF_CLK_B	A17	I	L2_XPADVDD	_
L2_SD_RXA_N	A19	I	L2_XPADVDD	
L2_SD_RXA_P	B19	I	L2_XPADVDD	
L2_SD_RXE_N	A15	I	L2_XPADVDD	
L2_SD_RXE_P	B15	I	L2_XPADVDD	_
L2_SD_TXA_N	D18	0	L2_XPADVDD	
L2_SD_TXA_P	E18	0	L2_XPADVDD	_
L2_SD_TXE_N	D15	0	L2_XPADVDD	_
L2_SD_TXE_P	E15	0	L2_XPADVDD	_
L2_SDAVDD_0	A16	SerDes PLL Power (1.0 or 1.05 V)	_	_
L2_SDAVSS_0	C17	SerDes PLL GND	_	_
L2_XCOREVDD	A14, B14, D17, B18, B20	SerDes Core Power (1.0 or 1.05 V)	_	_
L2_XCOREVSS	C14, C16, A18, C18, A20, C20	SerDes Core GND	—	_
L2_XPADVDD	D14, E16, F18, D19, E19	SerDes I/O Power (1.0 or 1.05 V)	_	_
L2_XPADVSS	D16, E17, D20	SerDes I/O GND	_	_
	SPI Interface			
SPICLK/SD_CLK	AH9	I/O	OVDD	_

Signal	Package Pin Number	Pin Type	Power Supply	Note
SPIMISO/SD_DAT0	AD11	I/O	OVDD	
SPIMOSI/SD_CMD	AJ9	I/O	OVDD	_
SPISEL_B/SD_CD	AE11	I	OVDD	_
	System Control Interface			
SRESET_B	AD12	I/O	OVDD	2
HRESET_B	AE12	I/O	OVDD	1
PORESET_B	AE14	I	OVDD	_
	Test Interface	•		
TEST	E10	I	OVDD	10
TEST_SEL0	D10	I	OVDD	13
TEST_SEL1	D12	I	OVDD	13
	Thermal Management			
Reserved	F15	I	_	14
	Power Supply Signals			
LVDD1	AC21, AG21, AH23	Power for eTSEC 1 I/O (2.5 V, 3.3 V)	LVDD1	_
LVDD2	AG24, AH27, AH29	Power for eTSEC 2 I/O (2.5 V, 3.3 V)	LVDD2	_
LBVDD	G20, D22, A24, G26, D27, A28	Power for eLBC (3.3, 2.5, or 1.8 V)	LBVDD	_
VDD	K10, L10, M10, N10, P10, R10, T10, U10, V10, W10, Y10, K11, R11, Y11, K12, Y12, K13, Y13, K14, Y14, K15, L15, W15, Y15, K16, Y16, K17, Y17, K18, Y18, K19, R19, Y19, K20, L20, M20, N20, P20, R20, T20, U20, V20, W20, Y20	Power for Core (1.0 V or 1.5 V)	VDD	

Signal	Package Pin Number	Pin Type	Power Supply	Note
Pull Down	B16, AH18	_	_	7

Notes:

1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OVDD.

2. This pin is an open drain signal. A weak pull-up resistor (2-10 kΩ) should be placed on this pin to OVDD.

3. This output is actively driven during reset rather than being released to high impedance during reset.

4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.

- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI Specification recommendation and see AN3665, "MPC837xE Design Checklist," for more details.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND using a 0 Ω resistor.
- 8. This pin must always be left not connected.
- 9. For DDR2 operation, it is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor.
- 10. This pin must always be tied low. If it is left floating it may cause the device to malfunction.
- 11.See AN3665, "MPC837xE Design Checklist," for proper DDR termination.

12. This pin must not be pulled down during PORESET.

13. This pin must always be tied to OVDD.

14.Open or tie to GND.

- 15. Voltage settings are dependent on the frequency used; see Table 3.
- 16.See AN3665, "MPC837xE Design Checklist," for proper termination.

23.1 System PLL Configuration

The system PLL is controlled by the RCWLR[SPMF] parameter. The system PLL VCO frequency depends on RCWLR[DDRCM] and RCWLR[LBCM]. Table 75 shows the multiplication factor encodings for the system PLL.

NOTE

If RCWLR[DDRCM] and RCWLR[LBCM] are both cleared, the system PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).

If either RCWLR[DDRCM] or RCWLR[LBCM] are set, the system PLL VCO frequency = $2 \times (CSB$ frequency) $\times (System PLL VCO Divider)$.

The VCO divider needs to be set properly so that the System PLL VCO frequency is in the range of 400–800 MHz.

RCWLR[SPMF]	System PLL Multiplication Factor
0000	Reserved
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111–1111	\times 7 to \times 15

Table 75. System PLL Multiplication Factors

As described in Section 23, "Clocking," The LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 77 and Table 78 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

The RCWLR[SVCOD] denotes the system PLL VCO internal frequency as shown in Table 76.

Table 76. System PLL VCO Divider

RCWLR[SVCOD]	VCO Division Factor
00	4
01	8
10	2
11	1

26.1 Part Numbers Fully Addressed by This Document

Table 84 provides the Freescale part numbering nomenclature for this chip. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

MPC	8377	E	C	ZQ	AF	D	A
Product Code	Part Identifier	Encryption Acceleratio n	Temperature Range ¹	Package ²	e300 core Frequency ³	DDR Data Rate	Revision Level ⁴
MPC	8377	Blank = Not included E = included	Blank = 0°C (T _a) to 125°C (T _j) C = -40°C (T _a) to 125°C (T _j)	VR = Pb-free 689 TePBGA II	AN = 800 MHz AL = 667 MHz AJ = 533 MHz AG = 400 MHz	G = 400 MHz F = 333 MHz D = 266 MHz	Blank = Freescale ATMC fab A = GlobalFoundries fab

Table 84. Part Numbering Nomenclature

Note:

¹ Contact local Freescale office on availability of parts with an extended temperature range.

² See Section 22, "Package and Pin Listings," for more information on the available package type.

³ Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

⁴ No design changes occurred between initial parts and the revision "*A*" parts. Only the fab source has changed in moving to revision "*A*" parts. Initial revision parts and revision "*A*" parts are form, fit, function, and reliability equivalent.

This table lists the available core and DDR data rate frequency combinations.

Table 85. Available Parts (Core/DDR Data Rate)

MPC8377E	MPC8378E	MPC8379E
800 MHz/400 MHz	800 MHz/400 MHz	800 MHz/400 MHz
667 MHz/400 MHz	667 MHz/400 MHz	667 MHz/400 MHz
533 MHz/333 MHz	533 MHz/333 MHz	533 MHz/333 MHz
400 MHz/266 MHz	400 MHz/266 MHz	400 MHz/266 MHz

Table 87	. Document	Revision	History	(continued)
----------	------------	----------	---------	-------------

Revision	Date	Substantive Change(s)
2	10/2009	 In Table 3, "Recommended Operating Conditions," added "Operating temperature range" values. In Table 5, "Power Dissipation ¹," corrected maximal application for 800/400 MHz to 4.3 W. In Table 5, "Power Dissipation ¹," added a column for "Typical Application at T_j = 65°C (W)". In Table 5, "Power Dissipation ¹," added a column for "Sleep Power at T_j = 65°C (W)". In Table 11, removed overbar from CFG_CLKIN_DIV. In Table 11, "Current Draw Characteristics for MV_{REF}," updated I_{MVREF} maximum value for both DDR1 and DDR2 to 600 and 400 µA, respectively. Also, updated Note 1 and added Note 2. In Table 20, "DDR1 and DDR2 SDRAM Input AC Timing Specifications," column headings renamed to "Min" and "Max". Footnote 2 updated to state "T is the MCK clock period". In Table 20, "DDR1 and DDR2 SDRAM Input AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," and Table 20, "DDR1 and DDR2 SDRAM Input AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Input AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," updated t_{RMTDX}I to 2.0 ns. In Table 60, Gen 1i/1.5G Transmitter AC Specifications," and Table 62, Gen 2i/3G Transmitter AC Specifications," corrected titles from "Transmitter" to "Receiver". In Table 72, "TePBGA II Pinout Listing," removed pin THERM0; it is now Reserved. Also added 1.05 V to VDD pin. In Table 74, "Operating Frequencies for TePBGA II," corrected "DDR2 memory bus frequency (MCK)" range to 125–200. In Table 79, "e300 Core PLL Configuration," added 3.5:1 and 4:1 core_clk: csb_clk ratio options. In Table 80, "Example Clock Frequency Combinations," updated column heading to "DDR data rate" . In Section 20.2, "SPI AC Timing Specifications," correct
1	02/2009	 In Table 3, "Recommended Operating Conditions," added two new rows for 800 MHz, and created two rows for SerDes. In addition, changed 666 to 667 MHz. In Table 5, "Power Dissipation ¹," added Notes 4 and 5. In addition, changed 666 to 667 MHz. In Table 13, "DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V," Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," and Table 72, "TePBGA II Pinout Listing," added footnote to references to MVREF, MDQ, and MDQS, referencing AN3665, <i>MPC837xE Design Checklist</i>. In Table 21, updated t_{DDKHCX} minimum value for 333 MHz to 2.40. In Table 72, "TePBGA II Pinout Listing," added footnote to USBDR_STP_SUSPEND and modified footnote 10 and added footnote 14. In Table 74, "Operating Frequencies for TePBGA II," changed 667 to 800 MHz for <i>core_clk</i>. In Table 80, "Example Clock Frequency Combinations," added 800 MHz cells for e300 core. Updated part numbering information in AF column in Table 84, "Part Numbering Nomenclature." In addition, modified extended temperature information in notes 1 and 4. In Table 85, "Available Parts (Core/DDR Data Rate)," added new row for 800/400 MHz.
0	12/2008	Initial public release.