
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 125°C (TA)
Security Features	-
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8377vranga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Core Frequency (MHz)		Sleep Power at T _j = 65°C (W) ²	Typical Application at $T_j = 65^{\circ}C$ (W) ²	Typical Application at $T_j = 125^{\circ}C$ (W) ³	Max Application at $T_j = 125$ °C (W) ⁴
600	400	1.45	2.1	3.4	4.1
000	300	1.45	2.0	3.3	4.0
667	333	1.45	2.1	3.3	4.1
667	266	1.45	2.0	3.3	3.9
800	400	1.45	2.5	3.8	4.3

Table 5. Power Dissipation ¹ (continued)

Notes:

1. The values do not include I/O supply power (OV_{DD}, LV_{DD} , GV_{DD}) or AV_{DD} . For I/O power values, see Table 6.

2. Typical power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, and running a Dhrystone benchmark application.

3. Typical power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, and running a Dhrystone benchmark application.

4. Maximum power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, worst case process, and running an artificial smoke test.

This table shows the estimated typical I/O power dissipation for the device.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} /LBV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	L[1,2]_ <i>n</i> V _{DD} (1.0 V)	Unit	Comments
	200 MHz data rate, 32-bit	0.28	0.35	—	—	—	_	W	_
	200 MHz data rate, 64-bit	0.41	0.49	_	_	_	_	W	
	266 MHz data rate, 32-bit	0.31	0.4	—	_	—		W	
	266 MHz data rate, 64-bit	0.46	0.56	—	_	—		W	
DDR I/O 65%	300 MHz data rate, 32-bit	0.33	0.43	—	—	—	_	W	
utilization 2 pair of	300 MHz data rate, 64-bit	0.48	0.6	_	_	_	_	W	
clocks	333 MHz data rate, 32-bit	0.35	0.45	—	—	—	_	W	
	333 MHz data rate, 64-bit	0.51	0.64	_	_	_	_	W	
	400 MHz data rate, 32-bit	0.38		—	_	—		W	
	400 MHz data rate, 64-bit	0.56		_	_	_		W	

Table 6. Typical I/O Power Dissipation

This figure shows the DDR1 and DDR2 SDRAM output timing diagram.

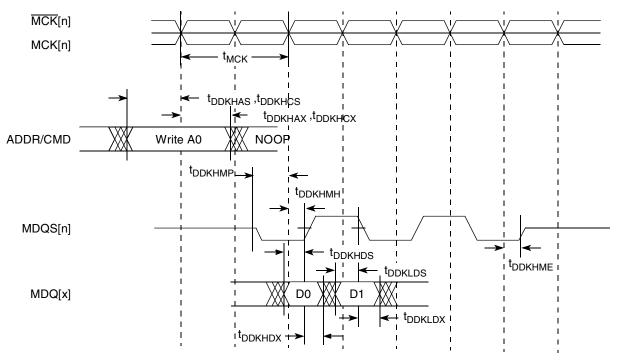


Figure 5. DDR1 and DDR2 SDRAM Output Timing Diagram

This figure provides AC test load for the DDR bus.

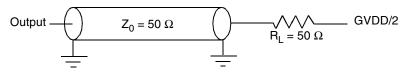


Figure 6. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the chip.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface of the device.

Table 22. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} – 0.2		V

8.2.3 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.3.1 RMII Transmit AC Timing Specifications

This table shows the RMII transmit AC timing specifications.

Table 29. RMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol ¹	Min	Typical	Мах	Unit
REF_CLK clock period	t _{RMT}	15.0	20.0	25.0	ns
REF_CLK duty cycle	t _{RMTH}	35	50	65	%
REF_CLK peak-to-peak jitter	t _{RMTJ}	—	—	250	ps
Rise time REF_CLK (20%–80%)	t _{RMTR}	1.0	—	2.0	ns
Fall time REF_CLK (80%-20%)	t _{RMTF}	1.0	—	2.0	ns
REF_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTDX}	2.0		10.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

This figure shows the RMII transmit AC timing diagram.

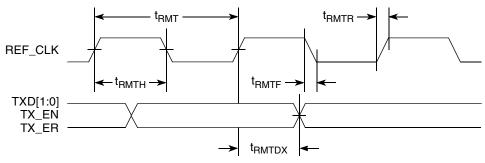


Figure 12. RMII Transmit AC Timing Diagram

Parameter	Symbol ¹	Min	Max	Unit	Note
Local bus clock to output high impedance for LAD/LDP	t _{lbkhoz}	—	3.8	ns	3, 8
Output hold from local bus clock for LAD/LDP	t _{LBKHOX}	1	—	ns	3

Table 39. Local Bus General Timing Parameters—PLL Enable Mode (continued)

Notes:

- The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to rising edge of LSYNC_IN at LBV_{DD}/2 and the 0.4 × LBV_{DD} of the signal in question.
- 3. All signals are measured from LBV_{DD}/2 of the rising/falling edge of LSYNC_IN to $0.5 \times LBV_{DD}$ of the signal in question. 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when LBCR[AHD] is set and the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 6. t_{LBOTOT2} should be used when LBCR[AHD] is not set and the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when LBCR[AHD] is not set and the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

This table describes the general timing parameters of the local bus interface of the device when in PLL bypass mode.

Parameter	Symbol ¹	Min	Max	Unit	Note
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock	t _{LBIVKH}	7.0	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3.0	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7
Local bus clock to LALE rise	t _{LBKHLR}	—	4.5	ns	_
Local bus clock to output valid	t _{LBKHOV}	—	3.0	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{lbkhoz}	—	4.0	ns	3, 8

Table 40. Local Bus General Timing Parameters—PLL Bypass Mode

Notes:

 The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.

- All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from LBV_{DD}/2 of the rising/falling edge of LCLK0 to $0.4 \times LBV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when LBCR[AHD] is set and the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when LBCR[AHD] is not set and the load on LALE output pin is at least 10pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when LBCR[AHD] is not set and the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

This figure provides the AC test load for the local bus.

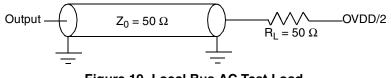


Figure 19. Local Bus AC Test Load

11.2.2.2 Full-Speed Read Meeting Hold (Minimum Delay)

There is no minimum delay constraint due to the full clock cycle between the driving and sampling of data.

$t_{CLK_DELAY} + t_{OH} + t_{DATA_DELAY} > t_{SFSIXKH}$

Eqn. 9

This means that Data + Clock delay must be greater than -2 ns. This is always fulfilled.

11.3 eSDHC AC Timing Specifications (High-Speed Mode)

This table provides the eSDHC AC timing specifications for high-speed mode as defined in Figure 30 and Figure 31.

Table 43. eSDHC AC Timing Specifications for High-Speed Mode

At recommended operating conditions OV_{DD} = 3.3 V \pm 165 mV.

Parameter	Symbol ¹	Min	Max	Unit	Note
SD_CLK clock frequency—high speed mode	f _{SHSCK}	0	50	MHz	—
SD_CLK clock cycle	t _{SHSCK}	20	—	ns	_
SD_CLK clock frequency—identification mode	f _{SIDCK}	0	400	KHz	_
SD_CLK clock low time	t _{SHSCKL}	7	_	ns	2
SD_CLK clock high time	t _{SHSCKH}	7	_	ns	2
SD_CLK clock rise and fall times	t _{SHSCKR∕} t _{SHSCKF}	_	3	ns	2
Input setup times: SD_CMD, SD_DATx, SD_CD to SD_CLK	t _{SHSIVKH}	5	—	ns	2
Input hold times: SD_CMD, SD_DATx, SD_CD to SD_CLK	t _{SHSIXKH}	0	—	ns	2
Output delay time: SD_CLK to SD_CMD, SD_DATx valid	t _{SHSKHOV}	_	4	ns	2
Output Hold time: SD_CLK to SD_CMD, SD_DATx invalid	t _{SHSKHOX}	0	—	ns	2
SD_CLK delay within device	t _{INT_CLK_DLY}	1.5	_	ns	4
SD Card Input Setup	t _{ISU}	6	_	ns	3
SD Card Input Hold	t _{IH}	2	_	ns	3
SD Card Output Valid	t _{ODLY}	_	14	ns	3
SD Card Output Hold	t _{OH}	2.5		ns	3

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first three letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{SFSIXKH} symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) going to high (H). Also t_{SFSKHOV} symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Measured at capacitive load of 40 pF.

3. For reference only, according to the SD card specifications.

4. Average, for reference only.

Parameter	Symbol ²	Min	Мах	Unit	Note
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5

 Table 45. JTAG AC Timing Specifications (Independent of CLKIN) ¹ (continued)

Notes:

- 1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 17). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.

This figure provides the AC test load for TDO and the boundary-scan outputs of the device.

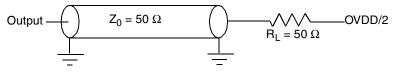
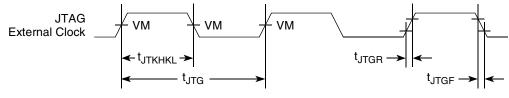
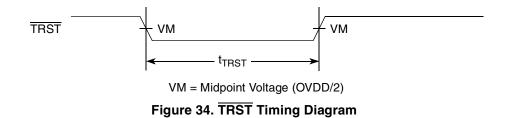



Figure 32. AC Test Load for the JTAG Interface


This figure provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OVDD/2)

Figure 33. JTAG Clock Input Timing Diagram

This figure provides the $\overline{\text{TRST}}$ timing diagram.

Parameter	Comments	Symbol	Min	Typical	Max	Units	Note
Minimum receiver eye width	The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 -$ $U_{PEEWRX} = 0.6$ UI.	T _{RX-EYE}	0.4	_	_	UI	2, 3
Maximum time between the jitter median and maximum deviation from the median.	Jitter is defined as the measurement variation of the crossing points ($V_{PEDPPRX} = 0$ V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI.	T _{RX-EYE-MEDIAN-to} -MAX-JITTER	_		0.3	UI	2, 3, 7
AC peak common mode input voltage	$V_{PEACPCMRX} = V_{RXD+} - V_{RXD} /2 - V_{RX-CM-DC} \\V_{RX-CM-DC} = DC_{(avg)} \text{ of } V_{RX-D+} - V_{RX-D} /2$	V _{RX-CM-ACp}	_	_	150	mV	2
Differential return loss	Measured over 50 MHz to 1.25 GHz with the D+ and D- lines biased at +300 mV and -300 mV, respectively.	RL _{RX-DIFF}	10	—	_	dB	4
Common mode return loss	Measured over 50 MHz to 1.25 GHz with the D+ and D- lines biased at 0 V.	RL _{RX-CM}	6	_	_	dB	4
DC differential input impedance	RX DC differential mode impedance.	Z _{RX-DIFF-DC}	80	100	120	Ω	5
DC Input Impedance	Required RX D+ as well as D- DC impedance ($50 \pm 20\%$ tolerance).	Z _{RX-DC}	40	50	60	Ω	2, 5
Powered down DC input impedance	Required RX D+ as well as D– DC impedance when the receiver terminations do not have power.	Z _{RX-HIGH-IMP-DC}	200 k	—	_	Ω	6
Electrical idle detect threshold	$V_{PEEIDT} = 2 \times IV_{RX-D+} - V_{RX-D-}I$ Measured at the package pins of the receiver	V _{RX-IDLE} -DET-DIFF p-p	65	—	175	mV	—

Table 54.	SATA	Reference	Clock Inp	ut Requirements	(continued)
-----------	------	-----------	------------------	-----------------	-------------

Parameter	Condition	Symbol	Min	Typical	Max	Unit	Note
SD_REF_CLK/ SD_REF_CLK cycle to cycle Clock jitter (period jitter)	Cycle-to-cycle at ref clock input	^t CLK_CJ	_	_	100	ps	
SD_REF_CLK/ SD_REF_CLK total reference clock jitter, phase jitter (peak-peak)	Peak-to-peak jitter at ref clock input	t _{CLK_PJ}	-50	_	+50	ps	2, 3

Notes:

1. Only 100/125/150 MHz have been tested, other in between values will not work correctly with the rest of the system.

2. In a frequency band from 150 kHz to 15 MHz at BER of 10^{-12} .

3. Total peak to peak Deterministic Jitter "D_I" should be less than or equal to 50 ps.

This figure shows the SATA reference clock timing waveform.

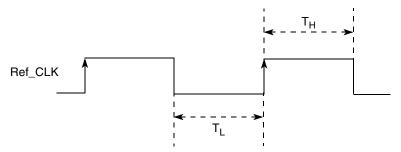


Figure 45. SATA Reference Clock Timing Waveform

16.2 Transmitter (Tx) Output Characteristics

This section discusses the Gen1i/1.5G and Gen2i/3G transmitter output characteristics for the SATA interface.

16.2.1 Gen1i/1.5G Transmitter Specifications

This table provides the DC differential transmitter output DC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission.

Parameter	Symbol	Min	Typical	Мах	Units	Note
Tx differential output voltage	V _{SATA_TXDIFF}	400	500	600	mV _{p-p}	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	_

Note:

1. Terminated by 50 Ω load.

Parameter	Symbol	Min	Typical	Мах	Units	Note
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}	_	_	0.35	UI _{p-p}	1

Table 60. Gen 1i/1.5G Receiver AC Specifications (continued)

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

16.3.2 Gen2i/3G Receiver (Rx) Specifications

This table provides the Gen2i or 3 Gbits/s differential receiver input DC characteristics for the SATA interface.

Table 61. Gen2i/3G Receiver Input DC Specifications

Parameter	Symbol	Min	Typical	Мах	Units	Note
Differential input voltage	V _{SATA_RXDIFF}	275	500	750	mVp-p	1
Differential RX input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	—

Note:

1. Voltage relative to common of either signal comprising a differential pair.

This table provides the differential receiver output AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.

Table 62. Gen 2i/3G Receiver AC Specifications

Parameter	Symbol	Min	Typical	Max	Units	Note
Channel Speed	t _{CH_SPEED}	—	3.0	—	Gbps	—
Unit Interval	T _{UI}	333.2	333.33	335.11	ps	—
Total jitter f _{C3dB} = f _{BAUD} /10	U _{SATA_TXTJfB/10}	—	—	0.46	UI _{p-p}	1
Total jitter f _{C3dB} = f _{BAUD} /500	U _{SATA_TXTJfB/500}	—	_	0.60	UI _{p-p}	1
Total jitter f _{C3dB} = f _{BAUD} /1667	U _{SATA_TXTJfB/1667}	—	—	0.65	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/10$	U _{SATA_TXDJfB/10}	_	—	0.35	UI _{p-p}	1
Deterministic jitter f _{C3dB} = f _{BAUD} /500	U _{SATA_TXDJfB/500}	—	-	0.42	UI _{p-p}	1
Deterministic jitter $f_{C3dB} = f_{BAUD}/1667$	U _{SATA_TXDJfB/1667}	—	—	0.35	UI _{p-p}	1

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

NOTE

Figure 56 to Figure 59 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by the clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the device SerDes reference clock receiver requirement provided in this document.

This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with device SerDes reference clock input's DC requirement.

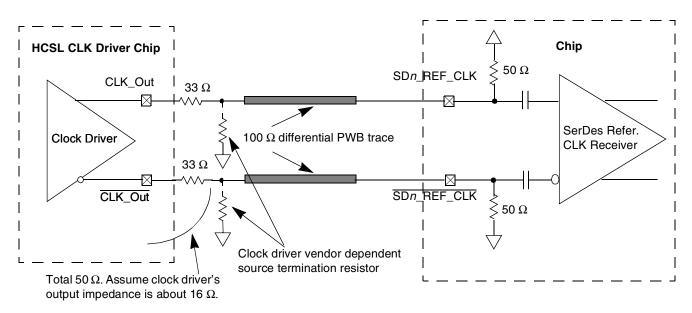


Figure 56. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common-mode voltage is higher than the device SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS

21.3 SerDes Transmitter and Receiver Reference Circuits

This figure shows the reference circuits for SerDes data lane's transmitter and receiver.

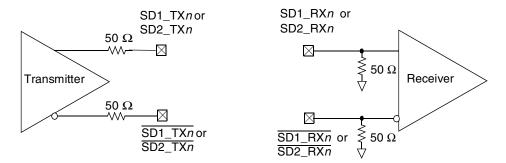


Figure 62. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below in this document based on the application usage:

- Section 8, "Ethernet: Enhanced Three-Speed Ethernet (eTSEC)"
- Section 15, "PCI Express"
- Section 16, "Serial ATA (SATA)"

Note that an external AC coupling capacitor is required for the above three serial transmission protocols with the capacitor value defined in specification of each protocol section.

22 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

22.1 Package Parameters for the MPC8377E TePBGA II

The package parameters are provided in the following list. The package type is $31 \text{ mm} \times 31 \text{ mm}$, 689 plastic ball grid array (TePBGA II).

Package outline	$31 \text{ mm} \times 31 \text{ mm}$
Interconnects	689
Pitch	1.00 mm
Module height (typical)	2.0 mm to 2.46 mm (maximum)
Solder Balls	3.5% Ag, 96.5% Sn
Ball diameter (typical)	0.60 mm

This figure shows the mechanical dimensions and bottom surface nomenclature of the TEPBGA II package.

Figure 63. Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II

Note:

- ¹ All dimensions are in millimeters.
- ² Dimensioning and tolerancing per ASME Y14. 5M-1994.
- ³ Maximum solder ball diameter measured parallel to Datum A.
- ⁴ Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Signal	Package Pin Number	Pin Type	Power Supply	Note
MDQ35	AE1	I/O	GVDD	11
MDQ36	V6	I/O	GVDD	11
MDQ37	Y5	I/O	GVDD	11
MDQ38	AA4	I/O	GVDD	11
MDQ39	AB6	I/O	GVDD	11
MDQ40	AD3	I/O	GVDD	11
MDQ41	AC4	I/O	GVDD	11
MDQ42	AD4	I/O	GVDD	11
MDQ43	AF1	I/O	GVDD	11
MDQ44	AE4	I/O	GVDD	11
MDQ45	AC5	I/O	GVDD	11
MDQ46	AE2	I/O	GVDD	11
MDQ47	AE3	I/O	GVDD	11
MDQ48	AG1	I/O	GVDD	11
MDQ49	AG2	I/O	GVDD	11
MDQ50	AG3	I/O	GVDD	11
MDQ51	AF5	I/O	GVDD	11
MDQ52	AE5	I/O	GVDD	11
MDQ53	AD7	I/O	GVDD	11
MDQ54	AH2	I/O	GVDD	11
MDQ55	AG4	I/O	GVDD	11
MDQ56	AH3	I/O	GVDD	11
MDQ57	AG5	I/O	GVDD	11
MDQ58	AF8	I/O	GVDD	11
MDQ59	AJ5	I/O	GVDD	11
MDQ60	AF6	I/O	GVDD	11
MDQ61	AF7	I/O	GVDD	11
MDQ62	AH6	I/O	GVDD	11
MDQ63	AH7	I/O	GVDD	11
MDQS0	C8	I/O	GVDD	11
MDQS1	C4	I/O	GVDD	11
MDQS2	E3	I/O	GVDD	11
MDQS3	G2	I/O	GVDD	11

Signal	Package Pin Number	Pin Type	Power Supply	Note
LA25/LAD30	D29	I/O	LBVDD	_
LA26/LAD31	E20	I/O	LBVDD	_
LA27	H26	0	LBVDD	_
LA28	C29	0	LBVDD	_
LA29	E28	0	LBVDD	_
LA30	B26	0	LBVDD	_
LA31	J25	0	LBVDD	_
LA10/LALE	H29	0	LBVDD	_
LBCTL	A22	0	LBVDD	_
LCLK0	B22	0	LBVDD	_
LCLK1	C23	0	LBVDD	_
LCLK2	B23	0	LBVDD	_
LCS_B0	D25	0	LBVDD	_
LCS_B1	F19	0	LBVDD	_
LCS_B2	C27	0	LBVDD	_
LCS_B3	D24	0	LBVDD	_
LCS_B4/LDP0	C24	I/O	LBVDD	_
LCS_B5/LDP1	B29	I/O	LBVDD	_
LA7/LCS_B6/LDP2	E29	I/O	LBVDD	_
LA8/LCS_B7/LDP3	F29	I/O	LBVDD	_
LFCLE/LGPL0	D21	0	LBVDD	_
LFALE/LGPL1	A26	0	LBVDD	_
LFRE_B/LGPL2/LOE_B	F22	0	LBVDD	_
LFWP_B/LGPL3	C21	0	LBVDD	_
LGPL4/LFRB_B/LGTA_B/ LUPWAIT/LPBSE	J29	I/O	LBVDD	16
LA9/LGPL5	G29	0	LBVDD	
LSYNC_IN	A21	I	LBVDD	_
LSYNC_OUT	D23	0	LBVDD	_
LWE_B0/LFWE0/LBS_B0	E22	0	LBVDD	_
LWE_B1/LFWE1/LBS_B1	B25	0	LBVDD	_
LWE_B2/LFWE2/LBS_B2	E27	0	LBVDD	_
LWE_B3/LFWE3/LBS_B3	F28	0	LBVDD	_

Table 72. TePBGA II Pinout Listing (continued)

Table 72. Te	PBGA II P	inout Listing	(continued)
--------------	-----------	---------------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Note
GPIO1[10]/GTM1_TGATE4_B/ GTM2_TGATE3_B/DACK3_B	J27	I/O	OVDD	
GPIO1[11]/GTM1_TOUT4_B/ GTM2_TOUT3_B/DDONE3_B	P24	I/O	OVDD	—
	USB/GPIO2 Interface		•	
USBDR_CLK/GPIO2[23]	AJ11	I/O	OVDD	_
USBDR_DIR_DPPULLUP/ GPIO2[9]	AG12	I/O	OVDD	
USBDR_NXT/GPIO2[8]	AJ10	I/O	OVDD	_
USBDR_PCTL0/GPIO2[11]/ SD_DAT2	AF10	I/O	OVDD	
USBDR_PCTL1/GPIO2[22]/ SD_DAT3	AE9	I/O	OVDD	
USBDR_PWRFAULT/ GPIO2[10]/SD_DAT1	AG13	I/O	OVDD	
USBDR_STP_SUSPEND	AH12	0	OVDD	12
USBDR_D0_ENABLEN/ GPIO2[0]	AG10	I/O	OVDD	_
USBDR_D1_SER_TXD/ GPIO2[1]	AF13	I/O	OVDD	
USBDR_D2_VMO_SE0/ GPIO2[2]	AG11	I/O	OVDD	
USBDR_D3_SPEED/GPIO2[3]	AH11	I/O	OVDD	_
USBDR_D4_DP/GPIO2[4]	AG9	I/O	OVDD	_
USBDR_D5_DM/GPIO2[5]	AF9	I/O	OVDD	
USBDR_D6_SER_RCV/ GPIO2[6]	AH13	I/O	OVDD	—
USBDR_D7_DRVVBUS/ GPIO2[7]	AH10	I/O	OVDD	_
·	I ² C Interface			
IIC1_SCL	C12	I/O	OVDD	2
IIC1_SDA	B12	I/O	OVDD	2
IIC2_SCL	A10	I/O	OVDD	2
IIC2_SDA	A12	I/O	OVDD	2
·	JTAG Interface			
ТСК	B13	I	OVDD	_

Signal	Package Pin Number	Pin Type	Power Supply	Note
	Programmable Interrupt Controller	(PIC) Interface		
MCP_OUT_B	AD14	0	OVDD	2
IRQ_B0/MCP_IN_B/GPIO2[12]	F9	I/O	OVDD	_
IRQ_B1/GPIO2[13]	E9	I/O	OVDD	_
IRQ_B2/GPIO2[14]	F10	I/O	OVDD	_
IRQ_B3/GPIO2[15]	D9	I/O	OVDD	_
IRQ_B4/GPIO2[16]/SD_WP	C9	I/O	OVDD	_
IRQ_B5/GPIO2[17]/ USBDR_PWRFAULT	AE10	I/O	OVDD	—
IRQ_B6/GPIO2[18]	AD10	I/O	OVDD	_
IRQ_B7/GPIO2[19]	AD9	I/O	OVDD	—
·	PMC Interface	·		
QUIESCE_B	D13	0	OVDD	
	SerDes1 Interface	·		
L1_SD_IMP_CAL_RX	AJ14	I	L1_XPADVDD	_
L1_SD_IMP_CAL_TX	AG19	I	L1_XPADVDD	_
L1_SD_REF_CLK	AJ17	I	L1_XPADVDD	_
L1_SD_REF_CLK_B	AH17	I	L1_XPADVDD	_
L1_SD_RXA_N	AJ15	I	L1_XPADVDD	—
L1_SD_RXA_P	AH15	I	L1_XPADVDD	—
L1_SD_RXE_N	AJ19	I	L1_XPADVDD	—
L1_SD_RXE_P	AH19	I	L1_XPADVDD	—
L1_SD_TXA_N	AF15	0	L1_XPADVDD	—
L1_SD_TXA_P	AE15	0	L1_XPADVDD	—
L1_SD_TXE_N	AF18	0	L1_XPADVDD	—
L1_SD_TXE_P	AE18	0	L1_XPADVDD	—
L1_SDAVDD_0	AJ18	SerDes PLL Power (1.0 or 1.05 V)		_
L1_SDAVSS_0	AG17	SerDes PLL GND	—	_
L1_XCOREVDD	AH14, AJ16, AF17, AH20, AJ20	SerDes Core Power (1.0 or 1.05 V)	—	_

Table 72. TePBGA II Pinout Listing (continued)

Unit	Default Frequency	Options		
PCI Express1, 2	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3		
SATA1, 2	csb_clk/3	Off, csb_clk		

Table 73. Configurable Clock Units (continued)

¹ This only applies to I^2C1 (I^2C2 clock is not configurable).

This table provides the operating frequencies for the TePBGA II package under recommended operating conditions (see Table 3).

Parameter ¹	Minimum Operating Frequency (MHz)	Maximum Operating Frequency (MHz)		
e300 core frequency (<i>core_clk</i>)	333	800		
Coherent system bus frequency (csb_clk)	133	400		
DDR2 memory bus frequency (MCK) ¹	250	400		
DDR1 memory bus frequency (MCK) ²	167	333		
Local bus frequency (LCLKn) ¹	—	133		
Local bus controller frequency (<i>lbc_clk</i>)	_	400		
PCI input frequency (CLKIN or PCI_CLK)	25	66		
eTSEC frequency	133	400		
Security encryption controller frequency	_	200		
USB controller frequency	_	200		
eSDHC controller frequency	—	200		
PCI Express controller frequency	—	400		
SATA controller frequency	—	200		

Table 74. Operating Frequencies for TePBGA II

Notes:

1. The CLKIN frequency, RCWLR[SPMF], and RCWLR[COREPLL] settings must be chosen such that the resulting *csb_clk*, MCK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[xCM] must be programmed such that the maximum internal operating frequency of the Security core, USB modules, SATA, and eSDHC will not exceed their respective value listed in this table.

2. The DDR data rate is $2 \times$ the DDR memory bus frequency.

3. The local bus frequency is ½, ¼, or 1/8 of the *lbiu_clk* frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2× the *csb_clk* frequency (depending on RCWLR[LBCM]).

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (not including PCI output clocks)	PCI Output Clocks (including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	NA	Z _{DIFF}	W

Table 83. Impedance Characteristics

Note: Nominal supply voltages. See Table 2, $T_i = 105^{\circ}C$.

25.5 Configuration Pin Muxing

The device provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

25.6 Pull-Up Resistor Requirements

The device requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see AN3665, "MPC837xE Design Checklist."

26 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 26.1, "Part Numbers Fully Addressed by This Document."

Revision	Date	Substantive Change(s)	
6	07/2011	In Section 2.2, "Power Sequencing," updated power down sequencing information.	
5	07/2011	 In Table 2, "Absolute Maximum Ratings¹," removed footnote 5 from LB_{IN} to OV_{IN}. Also, corrected footnote 5. In Table 3, "Recommended Operating Conditions," added footnote 2 to AV_{DD}. In Figure 2, "Overshoot/Undershoot Voltage for GV_{DD}/LV_{DD}/OV_{DD}/LBV_{DD}," added LBV_{DD}. In Table 13, "DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V," updated I_{OZ} min/max to -50/50. In Figure 11, "RGMII and RTBI AC Timing and Multiplexing Diagrams," added distinction between t_{SKRGT_RX} and t_{SKRGT_TX} signals. In Table 33, "MII Management AC Timing Specifications," updated MDC frequency—removed Min and Max values, added Typical value. Also, updated footnote 2 and removed footnote 3. In Table 48, "PCI DC Electrical Characteristics," updated V_{IH} min value to 2.0. In Table 72, "TePBGA II Pinout Listing," added Note to LGPL4/LFRB_B/LGTA_B/LUPWAIT/LPBSE (to be consistent with AN3665, "MPC837xE Design Checklist." In Table 74, "Operating Frequencies for TePBGA II," added Minimum Operating Frequency values. 	
4	11/2010	 In Table 25, "RGMII and RTBI DC Electrical Characteristics," updated V_{IH} min value to 1.7. In Table 40, "Local Bus General Timing Parameters—PLL Bypass Mode," added row for t_{LBKHLR}. In Section 10.2, "Local Bus AC Electrical Specifications," and in Section 23, "Clocking," updated LCCR to LCRR. In Table 72, "TePBGA II Pinout Listing," added SD_WP to pin C9. Also clarified TEST_SEL0 and TEST_SEL1 pins—no change in functionality. 	
3	03/2010	 Added Section 4.3, "eTSEC Gigabit Reference Clock Timing." In Table 34, "USB DC Electrical Characteristics," and Table 35, "USB General Timing Parameters (ULPI Mode Only)," added table footnotes . In Table 39, "Local Bus General Timing Parameters—PLL Enable Mode," and Table 40, "Local Bus General Timing Parameters—PLL Bypass Mode," corrected footnotes for t_{LBOTOT1}, t_{LBOTOT2}, t_{LBOTOT3}. In Figure 22, "Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (PLL Enable Mode)," and Figure 24, "Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (PLL Enable Mode)," shifted "Input Signals: LAD[0:31]/LDP[0:3]" from the falling edge to the rising edge of LSYNC_IN. In Figure 63, "Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II," added heat spreader. In Section 25.6, "Pull-Up Resistor Requirements," removed "Ethernet Management MDIO pin" from list of open drain type pins. In Table 72, "TePBGA II Pinout Listing," updated the Pin Type column for AVDD_C, AVDD_L, and AVDD_P pins. in Table 72, "TePBGA II Pinout Listing," added Note 16 to eTSEC pins. In Table 77, "CSB Frequency Options for Host Mode," and Table 78, "CSB Frequency Options for Agent Mode," updated <i>csb_clk</i> frequencies available. In Table 84, "Part Numbering Nomenclature," removed footnote to "e300 core Frequency." 	

Table 87. Document Revision History (continued)