

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	336 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f946t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ΤΔRI F 1-1·	PIC16F946 PINOLIT DESCRIPTIONS	(CONTINUED)
IADLE I-I.	FIG10F940 FINOUT DESCRIFTIONS	(CONTINUED)

Name	Function	Input Type	Output Type	Description
RC7/RX/DT/SDI/SDA/SEG8	RC7	ST	CMOS	General purpose I/O.
	RX	ST		USART asynchronous serial receive.
	DT	ST	CMOS	USART synchronous serial data.
	SDI	ST	CMOS	SPI™ data input.
	SDA	ST	CMOS	I ² C [™] data.
	SEG8	_	AN	LCD analog output.
RD0/COM3	RD0	ST	CMOS	General purpose I/O.
	COM3	—	AN	LCD analog output.
RD1	RD1	ST	CMOS	General purpose I/O.
RD2/CCP2	RD2	ST	CMOS	General purpose I/O.
	CCP2	ST	CMOS	Capture 2 input/Compare 2 output/PWM 2 output.
RD3/SEG16	RD3	ST	CMOS	General purpose I/O.
	SEG16	—	AN	LCD analog output.
RD4/SEG17	RD4	ST	CMOS	General purpose I/O.
	SEG17	—	AN	LCD analog output.
RD5/SEG18	RD5	ST	CMOS	General purpose I/O.
	SEG18	_	AN	LCD analog output.
RD6/SEG19	RD6	ST	CMOS	General purpose I/O.
	SEG19		AN	LCD analog output.
RD7/SEG20	RD7	ST	CMOS	General purpose I/O.
	SEG20		AN	LCD analog output.
RE0/AN5/SEG21	RE0	ST	CMOS	General purpose I/O.
	AN5	AN	_	Analog input Channel 5.
	SEG21	—	AN	LCD analog output.
RE1/AN6/SEG22	RE1	ST	CMOS	General purpose I/O.
	AN6	AN	_	Analog input Channel 6.
	SEG22		AN	LCD analog output.
RE2/AN7/SEG23	RE2	ST	CMOS	General purpose I/O.
	AN7	AN	_	Analog input Channel 7.
	SEG23		AN	LCD analog output.
RE3/MCLR/VPP	RE3	ST		Digital input only.
	MCLR	ST	_	Master Clear with internal pull-up.
	Vpp	ΗV	_	Programming voltage.
RE4/SEG24	RE4	ST	CMOS	General purpose I/O.
	SEG24		AN	LCD analog output.
RE5/SEG25	RE5	ST	CMOS	General purpose I/O.
	SEG25	_	AN	LCD analog output.
RE6/SEG26	RE6	ST	CMOS	General purpose I/O.
	SEG26	_	AN	LCD analog output.
RE7/SEG27	RE7	ST	CMOS	General purpose I/O.
	SEG27	—	AN	LCD analog output.
RF0/SEG32	RF0	ST	CMOS	General purpose I/O.
	SEG32	_	AN	LCD analog output.
Legend: AN = Analog input	or output	CMOS =	CMOS	compatible input or output D = Direct
TTL = TTL compatib HV = High Voltage	ole input	ST = XTAL =	 Schmitt Crystal 	Trigger input with CMOS levels

3.4 **PORTC and TRISC Registers**

PORTC is an 8-bit bidirectional port. PORTC is multiplexed with several peripheral functions. PORTC pins have Schmitt Trigger input buffers.

All PORTC pins have latch bits (PORTC register). They, when written, will modify the contents of the PORTC latch; thus, modifying the value driven out on a pin if the corresponding TRISC bit is configured for output.

Note: Analog lines that carry LCD signals (i.e., SEGx, VLCDy, where x and y are segment and LCD bias voltage identifiers) are shown as direct connections to the device pins. The signals are outputs from the LCD module and may be tri-stated, depending on the configuration of the LCD module.

EXAMPLE 3-3: INITIALIZING PORTC

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTC	;Init PORTC
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	FFh	;Set RC<7:0> as inputs
MOVWF	TRISC	;
BCF	STATUS, RPO	;Bank 2
BSF	STATUS, RP1	;
CLRF	LCDCON	;Disable VLCD<3:1>
		;inputs on RC<2:0>
BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;

REGISTER 3-7: PORTC – PORTC REGISTER (ADDRESS: 07h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 RC<7:0>: PORTC I/O Pin bits

1 = Port pin is >VIH

0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-8: TRISC – PORTC TRI-STATE REGISTER (ADDRESS: 87h)

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

Note: TRISC<7:6> always reads '1' in XT, HS and LP OSC modes.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

^{© 2005} Microchip Technology Inc.

4.2 Clock Source Modes

Clock source modes can be classified as external or internal.

- External clock modes rely on external circuitry for the clock source. Examples are oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes), and Resistor-Capacitor (RC mode) circuits.
- Internal clock sources are contained internally within the PIC16F946. The PIC16F946 has two internal oscillators: the 8 MHz High-Frequency Internal Oscillator (HFINTOSC) and 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS) bit (see **Section 4.5 "Clock Switching**").

4.3 External Clock Modes

4.3.1 OSCILLATOR START-UP TIMER (OST)

If the PIC16F946 is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from the OSC1 pin, following a Power-on Reset (POR), and the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the PIC16F946. When switching between clock sources a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 4-1.

4.3.1.1 Special Case

An exception to this is when the device is put to Sleep while the following conditions are true:

- LP is the selected primary oscillator mode.
- T1OSCEN = 1 (Timer1 oscillator is enabled).
- SCS = 0 (oscillator mode is defined by FOSC<2:0>).
- OSTS = 1 (device is running from primary system clock).

For this case, the OST is not necessary after a wake-up from Sleep, since Timer1 continues to run during Sleep and uses the same LP oscillator circuit as its clock source. For these devices, this case is typically seen when the LCD module is running during Sleep.

In applications where the OSCTUNE register is used to shift the FINTOSC frequency, the application should not expect the FINTOSC frequency to stabilize immediately. In this case, the frequency may shift gradually toward the new value. The time for this frequency shift is less than eight cycles of the base frequency.

Note:	When the OST is invoked, the WDOG is								
	held in Reset , because the WDOG ripple								
	counter is used by the OST to perform the								
	oscillator delay count. When the OST								
	count has expired, the WDOG will begin								
	counting (if enabled).								

Table 4-1 shows examples where the oscillator delay is invoked.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 4.6 "Two-Speed Clock Start-up Mode"**).

7.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

7.3 Timer2 Output

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate the shift clock.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh/ 8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
11h	TMR2	Holding I	Holding Register for the 8-bit TMR2 Register								0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
92h	PR2	Timer2 P	eriod Regist	ter						1111 1111	1111 1111

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

9.8 LCD Interrupts

The LCD timing generation provides an interrupt that defines the LCD frame timing. This interrupt can be used to coordinate the writing of the pixel data with the start of a new frame. Writing pixel data at the frame boundary allows a visually crisp transition of the image. This interrupt can also be used to synchronize external events to the LCD.

A new frame is defined to begin at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 9-17. The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins to access data after the interrupt (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame. When the LCD driver is running with Type-B waveforms and the LMUX<1:0> bits are not equal to '00', there are some additional issues that must be addressed. Since the DC voltage on the pixel takes two frames to maintain zero volts, the pixel data must not change between subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily be the complement of the waveform generated in the even frames and a DC component would be introduced into the panel. Therefore, when using Type-B waveforms, the user must synchronize the LCD pixel updates to occur within a subframe after the frame interrupt.

To correctly sequence writing while in Type-B, the interrupt will only occur on complete phase intervals. If the user attempts to write when the write is disabled, the WERR (LCDCON<5>) bit is set.

Note: The interrupt is not generated when the Type-A waveform is selected and when the Type-B with no multiplex (static) is selected.

FIGURE 9-17: WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE (EXAMPLE – TYPE-B, NON-STATIC)

FIGURE 11-5: ASYNCHRONOUS RECEPTION

TABLE 11-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART I	Receive D	ata Regist	er					0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

© 2005 Microchip Technology Inc.

12.1 A/D Configuration and Operation

There are three registers available to control the functionality of the A/D module:

- 1. ANSEL (Register 12-1)
- 2. ADCON0 (Register 12-2)
- 3. ADCON1 (Register 12-3)

12.1.1 ANALOG PORT PINS

The ANS<7:0> bits (ANSEL<7:0>) and the TRIS bits control the operation of the A/D port pins. Set the corresponding TRIS bits to set the pin output driver to its high-impedance state. Likewise, set the corresponding ANSEL bit to disable the digital input buffer.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

12.1.2 CHANNEL SELECTION

There are up to eight analog channels on the PIC16F946, AN<7:0>. The CHS<2:0> bits (ADCON0<4:2>) control which channel is connected to the sample and hold circuit.

12.1.3 VOLTAGE REFERENCE

There are two options for each reference to the A/D converter, VREF+ and VREF-. VREF+ can be connected to either VDD or an externally applied voltage. Alternatively, VREF- can be connected to either VSs or an externally applied voltage. VCFG<1:0> bits are used to select the reference source.

12.1.4 CONVERSION CLOCK

The A/D conversion cycle requires 11 TAD. The source of the conversion clock is software selectable via the ADCS bits (ADCON1<6:4>). There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

For correct conversion, the A/D conversion clock (1/TAD) must be selected to ensure a minimum TAD of 1.6 $\mu s.$ Table 12-1 shows a few TAD calculations for selected frequencies.

A/D Clock	Source (TAD)	Device Frequency							
Operation	ADCS<2:0>	20 MHz	5 MHz	4 MHz	1.25 MHz				
2 Tosc	000	100 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.6 μs				
4 Tosc	100	200 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs (2)	3.2 μs				
8 Tosc	001	400 ns ⁽²⁾	1.6 μs	2.0 μs	6.4 μs				
16 Tosc	101	800 ns ⁽²⁾	3.2 μs	4.0 μs	12.8 μs ⁽³⁾				
32 Tosc	010	1.6 μs	6.4 μs	8.0 μs (3)	25.6 μs ⁽³⁾				
64 Tosc	110	3.2 μs	12.8 μs ⁽³⁾	16.0 μs ⁽³⁾	51.2 μs ⁽³⁾				
A/D RC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)				

TABLE 12-1:TAD vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

- **Note 1:** The A/D RC source has a typical TAD time of 4 μ s for VDD > 3.0V.
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be performed during Sleep.

12.1.5 STARTING A CONVERSION

The A/D conversion is initiated by setting the GO/DONE bit (ADCON0<1>). When the conversion is complete, the A/D module:

- Clears the GO/DONE bit
- Sets the ADIF flag (PIR1<6>)
- Generates an interrupt (if enabled)

If the conversion must be aborted, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete A/D conversion sample. Instead, the ADRESH:ADRESL registers will retain the value of the previous conversion. After an aborted conversion, a 2 TAD delay is required before another acquisition can be initiated. Following the delay, an input acquisition is automatically started on the selected channel.

Note: The GO/DONE bit should not be set in the same instruction that turns on the A/D.

FIGURE 12-2: A/D CONVERSION TAD CYCLES

TCY TO TAD TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	TAD9	TAD10	TAD11	
	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
Convers	sion St	arts									
Holding Capa	icitor is	s Disco	nnecte	d from	Analog	g Input	(typica	lly 100	ns)		
Set GO/DONE	bit					ADR <u>e</u> GO/D ADIF	★ SH an ONE b bit is s	id ADR it is cle et,	ESL re eared,	gisters a	are loaded,
						Holdir	ng Cap	acitor i	s Conn	ected to	o Analog Input

12.1.6 CONVERSION OUTPUT

The A/D conversion can be supplied in two formats: left or right shifted. The ADFM bit (ADCON0<7>) controls the output format. Figure 12-3 shows the output formats.

FIGURE 12-3: 10-BIT A/D RESULT FORMAT

x = Bit is unknown

REGISTER 12-3:	ADCON1	– A/D CON	ITROL RE	GISTER 1	(ADDRES	S: 9Fh)		
	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	—	ADCS2	ADCS1	ADCS0	_	_	—	—
	bit 7							bit 0
Dit 7	Unimpien	nentea: Rea	d as "0"					
bit 6-4	ADCS<2:	0>: A/D Conv	version Clo	ck Select bit	S			
	000 = F	osc/2						
	001 = F	osc/8						
	010 = F	OSC/32						
	$x_{11} = F$	BC (clock de	rived from a	a dedicated	internal osci	ator = 500	(Hz max)	
	100 = F			addicated				
	101 - F	000/1 0sc/16						
	101 – T							
	110 = r	050/04						
bit 3-0	Unimplen	nented: Rea	d as '0'					
	Legend:							
	R = Reada	able bit	VV = V	Vritable bit	U = Unir	nplemented	bit, read as '()'

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

©	2005	Microchip	Technology	Inc.
---	------	-----------	------------	------

12.1.7 CONFIGURING THE A/D

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see **Section 19.0** "**Electrical Specifications**". After this sample time has elapsed, the A/D conversion can be started.

These steps should be followed for an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog/digital I/O (ANSEL)
 - Configure voltage reference (ADCON0)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON1)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit (PIR1<6>)
 - Set ADIE bit (PIE1<6>)
 - Set PEIE and GIE bits (INTCON<7:6>)
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

EXAMPLE 12-1: A/D CONVERSION

;This code block configures the A/D ;for polling, Vdd reference, R/C clock ;and RA0 input.

Conversion start and wait for complete polling code included.

BSF	STATUS, RPO	;Bank 1
MOVLW	B'01110000'	;A/D RC clock
MOVWF	ADCON1	
BSF	TRISA,0	;Set RA0 to input
BSF	ANSEL,0	;Set RA0 to analog
BCF	STATUS, RPO	;Bank 0
MOVLW	B'1000001'	;Right, Vdd Vref, AN0
MOVWF	ADCON0	
CALL	SampleTime	;Wait min sample time
BSF	ADCON0,GO	;Start conversion
BTFSC	ADCON0,GO	;Is conversion done?
GOTO	\$-1	;No, test again
MOVF	ADRESH,W	;Read upper 2 bits
MOVWF	RESULTHI	
BSF	STATUS, RPO	;Bank 1
MOVF	ADRESL,W	;Read lower 8 bits
MOVWF	RESULTLO	

14.12.3 TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit. and pin RC6/TX/CK/SCK/SCL/SEG9 is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC6/TX/CK/SCK/SCL/SEG9 should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 14-10).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the master receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC6/TX/CK/SCK/SCL/SEG9 should be enabled by setting bit CKP.

FIGURE 14-10: I²C[™] WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

PIC16F946

REGISTER 15-1:	CCP1CON	I – CCP2C	ON ⁽¹⁾ RE(GISTER (A	DDRESS: 1	7h/1Dh)		
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_		CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
	bit 7							bit 0
bit 7-6	Unimplem	ented: Rea	d as '0'					
bit 5-4	CCPxX:CC	PxY: PWM	Least Sign	ificant bits				
	<u>Capture mo</u> Unused	ode:						
	<u>Compare n</u> Unused	node:						
	<u>PWM mode</u> These bits	<u>e:</u> are the two	LSbs of the	PWM duty	cycle. The eig	ght MSbs ar	e found in C	CPRxL.
bit 3-0	CCPxM<3:	CCPxM<3:0>: CCPx Mode Select bits						
	0000 = Ca	apture/Comp	are/PWM o	lisabled (res	ets CCPx mo	dule)		
	0100 = Ca	apture mode	, every falli	ng edge				
	0101 = Ca	apture mode	, every risir	ig eage				
	0110 – Ca	apture mode	. every 401	n risina edae	•			
	1000 = Cc	mpare mod	e, set outpu	ut on match	(CCPxIF bit is	s set)		
	1001 = Cc	mpare mod	e, clear out	put on matcl	h (CCPxIF bit	is set)		
	1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)							
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)							
	11xx = PV	VM mode						
								,
	Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Absolute Maximum Natings	
Ambient temperature under bias	-40° to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	-0.3 ∀ to +6.5V
Voltage on MCLR with respect to Vss ⁽²⁾	0.3V to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	.)
Maximum current sunk by all ports (combined)	/
Maximum current sourced by all ports (combined)	

- **Note 1:** Power dissipation is calculated as follows: $POIS = VDD \times \{IDD \Sigma \mid OH\} + \Sigma \{(VDD VOH) \times IOH\} + \Sigma (VOL \times IOL).$
 - 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

+ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F946

19.2	DC Characteristics: PIC16F946-I	(Industrial))
------	---------------------------------	--------------	---

DC CH	ARACTERISTICS	Standa Operat	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param	Davias Characteristics	Min	Tunt	Mox	Unito		Conditions	
No.	Device Characteristics	IVIIII	турт	IVIAX	Units	Vdd	Note	
D010	Supply Current (IDD) ^(1, 2)	_	8	TBD	μΑ	2.0	Fosc = 32 kHz	
		_	11	TBD	μA	3.0	LP Oscillatør mode	
		_	33	TBD	μΑ	5.0		
D011		_	110	TBD	μA	2.0	Fosc = MUHZ	
		_	190	TBD	μA	3.0	XT Oscillator mode	
		_	330	TBD	μA	5.0		
D012		_	220	TBD	μA	2.0	Fosc = 4 MHz	
		—	370	TBD	μA	3.0-	XT Oscillator mode	
		—	0.6	TBD	mA	5.0		
D013		_	70	TBD	μĄ	2.0	Fosc = 1 MHz	
		_	140	TBD	μA	3.0	EC Oscillator mode	
		—	260	TBQ	μA	5.0		
D014		_	180	TBQ	ŅА	2.0	Fosc = 4 MHz	
		_	320	TBD	μÂ	3.0	EC Oscillator mode	
			500	TBD	μΑ	5.0		
D015			5	ŢĎD	μA	2.0	Fosc = 31 kHz	
		+/	∕>14	TBD	μA	3.0	INTOSC mode	
			30	TBD	mA	5.0		
D016	((√́340	TBD	μΑ	2.0	Fosc = 4 MHz	
		$ \rightarrow) $	500	TBD	μA	3.0	INTOSC mode	
		\leq	0.8	TBD	mA	5.0		
D017		}	180	TBD	μΑ	2.0	Fosc = 4 MHz	
			320	TBD	μΑ	3.0	EXTRC mode	
		_	580	TBD	μA	5.0		
D018			2.1	TBD	mA	4.5	Fosc = 20 MHz	
			3.0	TBD	mA	5.0	HS Oscillator mode	

Legend: 7BD = To Be Determined

Data in/Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

DC CHA		Standa Operat	ard Operation ing temperation	t ing Co rature	nditions -40°C ≤	(unless ≦ TA ≤ +12	otherwise stated) 25°C for extended
Param	Device Characteristics	Min	Tynt	Max	Unite		Conditions
No.	Device Gharacteristics		IJPI	Max	Units	Vdd	Note
D020E	Power-down Base	—	0.1	TBD	μA	2.0	WDT, BOR, Comparators, VREF
	Current (IPD) ⁽⁴⁾	—	0.5	TBD	μA	3.0	and T10SC disabled
		—	0.75	TBD	μA	5.0	\sim
D021E		_	0.6	TBD	μA	2.0	WDT Current
		—	1.8	TBD	μA	3.0 〈	
		—	8.4	TBD	μA	5.0	$A \otimes $
D022E		_	58	TBD	μA	3.0	BOR Current
		—	75	TBD	μΑ 🤇	5.0	7
D023E		_	35	TBD	μA	20	Comparator Current ⁽³⁾
		_	65	TBD	μA	3.0	
		—	130	твр>	Au/	5.0	
D024E		—	40	₹BQ∕	μΑ	2.0	CVREF Current
		_	50.5 <	(IBD)	μΑ	3.0	
		—	80	TBD	~μΑ	5.0	
D025E		_	2.1	TBD	μΑ	2.0	T1OSC Current
			2.5	¥вр	μΑ	3.0	
		$ \neq /$	>> 3.4 [→]	TBD	μΑ	5.0	
D026E		$\langle \langle \rangle$	/1/2	TBD	μA	3.0	A/D Current ⁽³⁾
		$P - \sum$	0.0022	TBD	μA	5.0	

19.3 DC Characteristics: PIC16F946-E (Extended) (Continued)

Legend: TBD = To Be Determined

† Data in 'Typ' column is at 5.04, 25°C unless otherwise stated. These parameters are for design guidance only and are not/tested.

Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail, all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

19.4 DC Characteristics: PIC16F946-I (Industrial), PIC16F946-E (Extended) (Continued)

DC CH	ARACT	ERISTICS	Standard Ope Operating temp	rating (perature	Condition -40°C -40°C	s (unle ≤ Ta ≤ ≤ Ta ≤	ess otherwise stated) +85°C for industrial +125°C for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Capacitive Loading Specs on Output Pins					
D100	COS C2	OSC2 pin	_	_	15*	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins	<u> </u>		50* 🤇	PF)	\triangleright
		Data EEPROM Memory				$\backslash \rangle$	\sim
D120	ED	Byte Endurance	100K	1M	$\langle \langle \rangle $	EAV	$-40^{\circ}C \le TA \le +85^{\circ}C$
D120A	ED	Byte Endurance	10K	100K		E/W	+85°C ≤ TA ≤ +125°C
D121	Vdrw	VDD for Read/Write	VMIN		55	V	Using EECON1 to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time		5	6	ms	
D123	TRETD	Characteristic Retention	40		—	Year	Provided no other specifica- tions are violated
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾		10M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
		Program Flash Memory	\diamond				
D130	Εр	Cell Endurance	∕∕10K	100K		E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
D130A	ED	Cell Endurance	ў∕ 1К	10K		E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$
D131	Vpr	VDD for Read	Vmin	_	5.5	V	VMIN = Minimum operating voltage
D132	Vpew	VDD for Erase/Write	4.5	—	5.5	V	
D133	TPEW	Erase/Write cycle time	—	2	2.5	ms	
D134	TRETD	Characteristic Retention	40	-	_	Year	Provided no other specifica- tions are violated

These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2:> Negative current is defined as current sourced by the pin.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X /XX XXX Temperature Package Pattern Range	Examples: a) PIC16F946-E/SP 301 = Extended Temp., skinny PDIP package, 20 MHz, QTP pattern #301
Device:	PIC16F946 ⁽¹⁾ , PIC16F946T ⁽²⁾	b) PIC16F946-I/SO = Industrial Temp., SOIC package, 20 MHz
Temperature Range:	$I = -40^{\circ}C \text{ to } +85^{\circ}C$ $E = -40^{\circ}C \text{ to } +125^{\circ}C$	
Package:	PT = TQFP (Thin Quad Flatpack)	
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	
		 Note 1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = In tape and reel.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.