

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	32КВ (32К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21226jfp-u1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/22 Group, R8C/23 Group RENESAS MCU

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using the R8C CPU core and is packaged in a 48-pin plastic molded LQFP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of executing instructions at high speed. This MCU is equipped with one CAN module and suited to in-vehicle or FA networking.

Furthermore, the data flash (1 KB x 2 blocks) is embedded in the R8C/23 Group.

The difference between R8C/22 and R8C/23 Groups is only the existence of the data flash. Their peripheral functions are the same.

1.1 Applications

Automotive, etc.

	Itom	Specification		
CPU	Item Number of fundamental instructions	•		
CFU				
	Minimum instruction execution time	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)		
	Operating mode	Single-chip		
	Address space	1 Mbyte		
		Refer to Table 1.4 Product Information for R8C/23 Group		
Daviahaval	Memory capacity	-		
Peripheral Function	Ports	I/O ports: 41 pins, Input port: 3 pins		
FUNCTION	Timers	Timer RA: 8 bits x 1 channel,		
		Timer RB: 8 bits x 1 channel (Each timer equipped with 8-bit prescaler)		
		Timer RD: 16 bits x 2 channel		
		(Circuits of input capture and output compare)		
		Timer RE: With compare match function		
	Serial interface	1 channel (UARTO)		
		Clock synchronous I/O, UART		
		1 channel (UART1)		
		UART		
	Clock synchronous serial interface	1 channel		
		I ² C bus interface ⁽²⁾ , Clock synchronous serial I/O with chip		
		select		
	LIN module	Hardware LIN: 1 channel		
		(Timer RA, UART0)		
	CAN module	1 channel with 2.0B specification: 16 slots		
	A/D converter	10-bit A/D converter: 1 circuit, 12 channels		
	Watchdog timer	15 bits x 1 channel (with prescaler)		
	-	Reset start selectable		
	Interrupts	Internal: 14 sources, External: 6 sources, Software: 4 sources,		
		Priority level: 7 levels		
	Clock generation circuits	2 circuits		
		XIN clock generation circuit (with on-chip feedback resistor)		
		On-chip oscillator (high speed, low speed)		
		High-speed on-chip oscillator has frequency adjustmen		
		function.		
	Oscillation stop detection	Stop detection of XIN clock oscillation		
	function			
	Voltage detection circuit	On-chip		
	Power-on reset circuit include	On-chip		
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)(D, J version)		
Characteristics		VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz)(K version)		
		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)		
	Current consumption	Typ. 12.5 mA (VCC = 5 V, f(XIN) = 20 MHz, High-speed on-		
		chip oscillator stopping) Type 6.0 mA ($V(CC = 5.V)$ f(XIN) = 10 MHz. High speed on ship		
		Typ. 6.0 mA (VCC = 5 V, f(XIN) = 10 MHz, High-speed on-chip		
Floop Momory	Brogromming and areauty voltage	oscillator stopping) VCC = 2.7 to 5.5 V		
Flash Memory	Programming and erasure voltage			
	Programming and erasure	10,000 times (data flash)		
<u>On a matica</u> A 1 1		1,000 times (program ROM)		
Operating Ambi	ent Temperature	-40 to 85°C		
		-40 to 125°C (option ⁽¹⁾)		
Package		48-pin mold-plastic LQFP		

Table 1.2 Functions and Specifications for R8C/23 Group

NOTES:

- 1. When using options, be sure to inquire about the specification.
- 2. I²C bus is a registered trademark of Koninklijke Philips Electronics N.V.

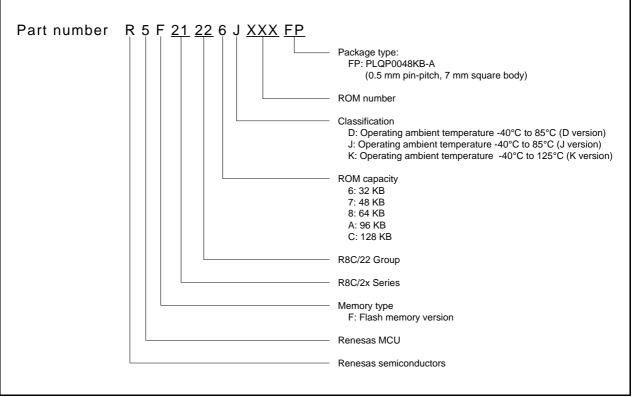
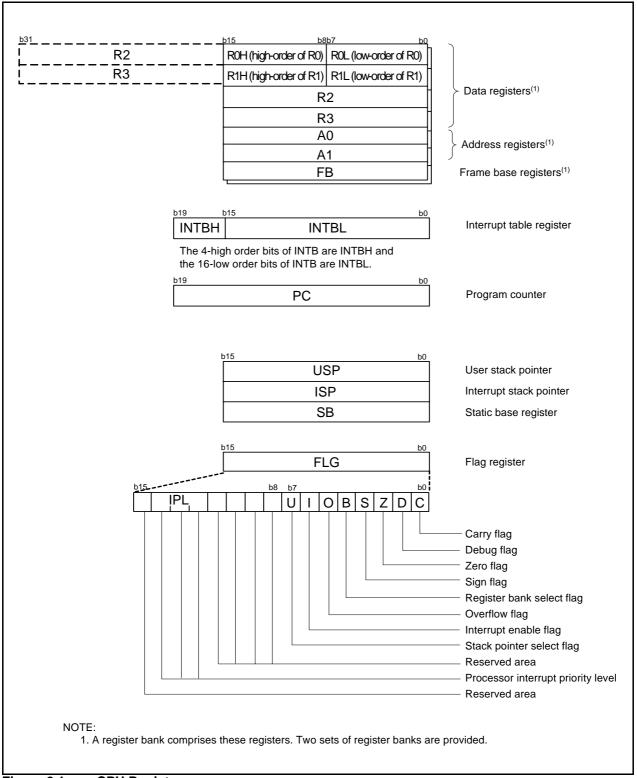

1.4 **Product Information**

Table 1.3 lists Product Information for R8C/22 Group and Table 1.4 lists Product Information for R8C/23 Group.

Table 1.3	Product Information for	r R8C/22 Group)	Curre	nt of Aug. 2008
Type No.	ROM Capacity	RAM Capacity	Package Type	Rer	narks
R5F21226DFF	2 32 Kbytes	2 Kbytes	PLQP0048KB-A	D version	Flash memory
R5F21227DFF	2 48 Kbytes	2.5 Kbytes	PLQP0048KB-A	-	version
R5F21228DFF	P 64 Kbytes	3 Kbytes	PLQP0048KB-A	-	
R5F21226JFP	32 Kbytes	2 Kbytes	PLQP0048KB-A	J version	
R5F21227JFP	48 Kbytes	2.5 Kbytes	PLQP0048KB-A		
R5F21228JFP	64 Kbytes	3 Kbytes	PLQP0048KB-A	-	
R5F2122AJFP	96 Kbytes	5 Kbytes	PLQP0048KB-A		
R5F2122CJFF	² 128 Kbytes ⁽¹⁾	6 Kbytes	PLQP0048KB-A		
R5F21226KFF	2 32 Kbytes	2 Kbytes	PLQP0048KB-A	K version	
R5F21227KFF	48 Kbytes	2.5 Kbytes	PLQP0048KB-A		
R5F21228KFF	64 Kbytes	3 Kbytes	PLQP0048KB-A		
R5F2122AKFF	96 Kbytes	5 Kbytes	PLQP0048KB-A		
R5F2122CKFF	2 128 Kbytes ⁽¹⁾	6 Kbytes	PLQP0048KB-A		

NOTE:

1. Do not use addresses 20000h to 23FFFh because these areas are used for the emulator debugger. Refer to 24. Notes on Emulator Debugger of Hardware Manual.



Type Number, Memory Size, and Package of R8C/22 Group

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. Of these, R0, R1, R2, R3, A0, A1, and FB comprise a register bank. Two sets of register banks are provided.

RENESAS

2.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Table 4.1 to Table 4.13 list the SFR Information.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protect Mode Register	CSPR	00h
			1000000b ⁽⁸⁾
001Dh		1	
001Eh		1	
001Fh		1	
0020h		1	
0021h		1	
0022h		1	
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽⁶⁾	VCA2	00h ⁽³⁾
			0100000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁷⁾	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h			
0039h			

003Fh

X: Undefined

NOTES:

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. The LVD0ON bit in the OFS register is set to 1.
- 4. Power-on reset, voltage monitor 1 reset or the LVD0ON bit in the OFS register is set to 0.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.
- 6. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b7.
- 7. Software reset, the watchdog timer rest, and the voltage monitor 2 reset do not affect other than the b0 and b6.
- 8. The CSPROINI bit in the OFS register is 0.

Address	Desister	Sumbal	After reach
Address	Register	Symbol	After reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register		00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h			
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h		<u> </u>	
0116h		<u> </u>	
0117h			1
0118h	Timer RE Counter Data Register	TRESEC	00h
0119h	Timer RE Compare Data Register	TREMIN	00h
011Ah			
011Bh			
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h			
0121h			
0122h			
0123h			
0124h			
0125h			
0126h			
0127h			
0128h			
0129h			
012Ah			
012Bh			
012Dh			
012Dh			
012Eh			
012Fh			
0130h			
0131h			
0132h			
0133h			
0134h			
0135h			1
0136h			
0137h	Timer RD Start Register	TRDSTR	11111100b
0138h	Timer RD Mode Register	TRDMR	00001110b
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b
013Ah	Timer RD Function Control Register	TRDFCR	1000000b
013Bh	Timer RD Output Master Enable Register 1	TRDOER1	FFh
013Ch	Timer RD Output Master Enable Register 2	TRDOER2	011111116
013Dh	Timer RD Output Control Register	TRDOCR	00h
013Eh	Timer RD Digital Filter Function Select Register 0	TRDDF0	00h
013Fh	Timer RD Digital Filter Function Select Register 1	TRDDF1	00h
010111	Timor the Digitar Filler Fariotion Deleot Neglater 1		0011

Table 4.5SFR Information (5)⁽¹⁾

X: Undefined

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

			A.(
Address	Register	Symbol	After reset
1340h			
1341h			
1342h	CAN0 Acceptance Filter Support Register	COAFS	XXh
1343h			XXh
1344h			
1345h			
1346h			
1347h			
1348h			
1349h			
134Ah			
134Bh			
134Ch		ł	
134Dh			
134Eh			
134Fh			
1350h			
1351h			
1352h			
1353h			
1354h	 	<u> </u>	h
1355h		<u> </u>	├
			├ ────
1356h			
1357h			
1358h			
1359h			
135Ah	, ,		
135Bh		<u> </u>	l
135Ch	<u>}</u>	<u> </u>	l
		<u> </u>	ļĮ
135Dh		ļ	ļļ
135Eh			
135Fh	CAN0 Clock Select Register CAN0 Slot 0: Identifier/DLC	CCLKR	00h
1360h	CAN0 Slot 0: Identifier/DLC		XXh
1361h			XXh
1362h			XXh
1363h			XXh
			XXh
1364h			
1365h			XXh
1366h	CAN0 Slot 0: Data Field		XXh
1367h			XXh
1368h			XXh
1369h			XXh
136Ah			XXh
136Bh			XXh
	4		
136Ch	•		XXh
136Dh			XXh
136Eh	CAN0 Slot 0: Time Stamp		XXh
136Fh			XXh
1370h	CAN0 Slot 1: Identifier/DLC		XXh
1371h			XXh
1372h			XXh
	4		
1373h	•		XXh
1374h			XXh
1375h			XXh
1376h	CAN0 Slot 1: Data Field		XXh
1377h			XXh
1378h			XXh
1379h	1		XXh
137Ah	4		XXh
137An 137Bh	4		
	4		XXh
137Ch			XXh
137Dh			XXh
137Eh	CAN0 Slot 1: Time Stamp		XXh
10/11			
137En			XXh

Table 4.9SFR Information (9)⁽¹⁾

X: Undefined

NOTE:

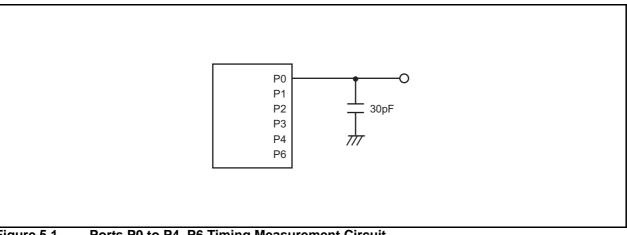
1. The blank regions are reserved. Do not access locations in these regions.

Table 4.10	SFR Information (10) ⁽¹⁾
------------	-------------------------------------

		0.1.1	A.(
Address	Register	Symbol	After reset
1380h	CAN0 Slot 2: Identifier/DLC		XXh
1381h			XXh
1382h			XXh
1383h			XXh
1384h			XXh
1385h			XXh
1386h	CAN0 Slot 2: Data Field		XXh
1387h			XXh
1388h			XXh
1389h			XXh
138Ah			XXh
138Bh			XXh
138Ch			XXh
138Dh			XXh
138Eh	CAN0 Slot 2: Time Stamp		XXh
138Fh			XXh
1390h	CAN0 Slot 3: Identifier/DLC		XXh
1391h			XXh
1392h			XXh
1393h			XXh
1394h			XXh
1395h			XXh
1396h	CAN0 Slot 3: Data Field		XXh
1397h			XXh
1398h			XXh
1399h			XXh
139Ah			XXh
139Bh			XXh
139Ch			XXh
139Dh			XXh
139Eh	CAN0 Slot 3: Time Stamp		XXh
139Fh			XXh
13A0h	CAN0 Slot 4: Identifier/DLC		XXh
13A1h			XXh
13A2h			XXh
13A3h			XXh
13A4h			XXh
13A5h			XXh
13A6h	CAN0 Slot 4: Data Field		XXh
13A7h			XXh
13A8h			XXh
13A9h			XXh
13AAh			XXh
13ABh			XXh
13ACh			XXh
13ADh			XXh
13AEh	CAN0 Slot 4: Time Stamp		XXh
13AFh			XXh
13B0h	CAN0 Slot 5: Identifier/DLC		XXh
13B1h			XXh
13B2h			XXh
13B3h			XXh
13B4h			XXh
13B5h			XXh
13B6h	CAN0 Slot 5: Data Field	+	XXh
13B7h			XXh
13B8h			XXh
13B9h			XXh
13BAh			XXh
13BBh			XXh
13BCh			XXh
13BDh			XXh
13BEh	CAN0 Slot 5: Time Stamp	+	XXh
13BEn 13BFh			XXh

X: Undefined

NOTE:


1. The blank regions are reserved. Do not access locations in these regions.

Symbol	Parameter	Conditions	Standard			Unit	
Symbol		arameter	Conditions		Тур.	Max.	Onit
-	Resolution		Vref = AVCC	-	-	10	Bits
-	Absolute	10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	-	-	±3	LSB
	Accuracy	8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	-	-	±2	LSB
		10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 3.3 \text{ V}$	-	-	±5	LSB
		8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 3.3 \text{ V}$	-	-	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	3.3	-	-	μs
	8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	2.8	-	-	μs	
Vref	Reference voltage	9		2.7	-	AVcc	V
Via	Analog input voltage ⁽²⁾			0	-	AVcc	V
_	A/D operating	Without sample & hold		0.25	-	10	MHz
	clock frequency	With sample & hold		1	-	10	MHz

Table 5.3	A/D Converter Characteristi	cs
Table 5.5	A/D Converter Characteristi	CS

NOTES:

Vcc = AVcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.
 When analog input voltage exceeds reference voltage, A/D conversion result is 3FFh in 10-bit mode, FFh in 8-bit mode.

Ports P0 to P4, P6 Timing Measurement Circuit Figure 5.1

Symbol	Parameter	Conditions		Unit			
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Unit	
-	Program/erase endurance ⁽²⁾	R8C/22 Group	100 ⁽³⁾	-	-	times	
		R8C/23 Group	1,000(3)	-	-	times	
-	Byte program time		-	50	400	μS	
-	Block erase time		-	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until erase suspend		-	-	97 + CPU clock × 6 cycle	μS	
-	Interval from erase start/restart until following suspend request		650	-	-	μS	
-	Interval from program start/restart until following suspend request		0	-	-	ns	
-	Time from suspend until program/erase restart		-	-	3 + CPU clock × 4 cycle	μS	
-	Program, erase voltage		2.7	_	5.5	V	
_	Read voltage		2.7	-	5.5	V	
-	Program, erase temperature		0	-	60	°C	
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year	

Table 5.4	Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure endurance can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Cumbal	Parameter		Conditions		Link		
Symbol			Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time	CK clock cycle time		4	-	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width			0.4		0.6	tsucyc
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
t FALL	SSCK clock falling time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
tsu	SSO, SSI data input setup time			100	-	-	ns
tн	SSO, SSI data input hold tim		1	-	-	tCYC ⁽²⁾	
tlead	SCS setup time	Slave		1tcyc + 50	-	-	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns
top	SSO, SSI data output delay time			-	-	1	tCYC ⁽²⁾
tSA	SSI slave access time			-	-	1tcyc + 100	ns
tor	SSI slave out open time			_	-	1tcyc + 100	ns

Table 5.12 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

NOTES:

1. Vcc = 2.7 to 5.5 V, Vss = 0 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified. 2. 1tcyc = 1/f1(s)

Cumbol	Doro	meter	Condit	Condition		Standard			
Symbol	Pala	meter	Condition		Min.	Тур.	Max.	Unit	
Vон	Output "H" Voltage	Except XOUT	Iон = -5 mA		Vcc - 2.0	-	Vcc	V	
			Іон = -200 μА		Vcc - 0.3	-	Vcc	V	
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	-	Vcc	V	
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V	
Vol	Output "L" Voltage	Except XOUT	IOL = 5 mA		-	-	2.0	V	
			Ιοι = 200 μΑ		-	-	0.45	V	
		XOUT	Drive capacity HIGH	IOL = 1 mA	-	-	2.0	V	
			Drive capacity LOW	Ιοι = 500 μΑ	-	-	2.0	V	
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLX0, RXD1, CLK0, SSI, SCL, SDA, SSO			0.1	0.5	-	V	
		RESET			0.1	1.0	-	V	
Ін	Input "H" current		VI = 5 V, Vcc = 5 V		-	_	5.0	μΑ	
lı∟	Input "L" current		VI = 0 V, Vcc = 5 V		-	_	-5.0	μΑ	
Rpullup	Pull-Up Resistance		VI = 0 V, Vcc = 5 V		30	50	167	kΩ	
RfXIN	Feedback Resistance	XIN			-	1.0	-	MΩ	
VRAM	RAM Hold Voltage	•	During stop mode		2.0	-	-	V	

Table 5.14 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

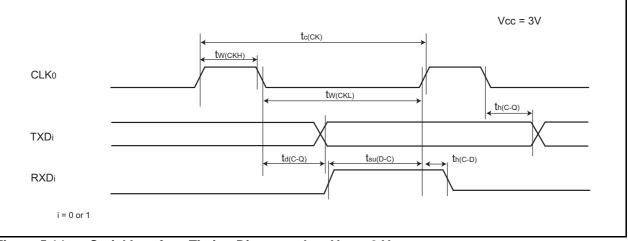
1. Vcc = 4.2 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.15Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), Unless Otherwise Specified.)

Symbol	Parameter		Condition		Standard	k	Unit
				Min.	Тур.	Max.	
lcc	Power supply current (Vcc = 3.3 to 5.5 V) In single-chip mode, the output pins are	High-clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	12.5	25.0	mA
	open and other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	10.0	20.0	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.5	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	6.5	-	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5.0	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	13.0	mA
			XIN clock off High-speed on-chip oscillator on fOCO= 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.2	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	_	150	300	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA20 = 0 VCA26 = VCA27 = 0	_	60	120	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA20 = 0 VCA26 = VCA27 = 0	_	38	76	μA
		Stop mode Topr = 25°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	-	0.8	3.0	μA
		Stop mode Topr = 85°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0		1.2	-	μA
		Stop mode Topr = 125°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	4.0	-	μA

RENESAS

Table 5.21Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), Unless Otherwise Specified.)


Symbol	Parameter		Condition		Standard	k	Unit
,				Min.	Тур.	Max.	
lcc	Power supply current (Vcc = 2.7 to 3.3 V) In single-chip mode, the output pins are	High-clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	11.5	23.0	mA
	open and other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	9.5	19.0	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.0	12.0	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5.5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4.5	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	6.3	12.6	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	_	145	290	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA20 = 0 VCA26 = VCA27 = 0	_	56	112	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA20 = 0 VCA26 = VCA27 = 0	_	35	70	μA
		Stop mode Topr = 25°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.7	3.0	μA
		Stop mode Topr = 85°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	1.1	_	μA
		Stop mode Topr = 125°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	3.8	-	μA

RENESAS

Table 5.24Serial Interface

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tc(CK)	CLK0 input cycle time	300	-	ns	
tW(CKH)	CLK0 input "H" width	150	-	ns	
tW(CKL)	CLK0 input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	-	ns		

i = 0 or 1

Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.25 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter	Stan	Unit	
Symbol	Falanielei	Min.	Max.	Unit
tw(INH)	INTi input "H" width	380(1)	-	ns
tw(INL)	INTi input "L" width	380 ⁽²⁾	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use the INTi input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTi input filter select bit, use the INTi input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

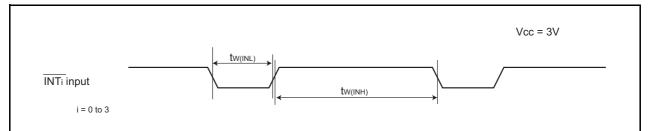
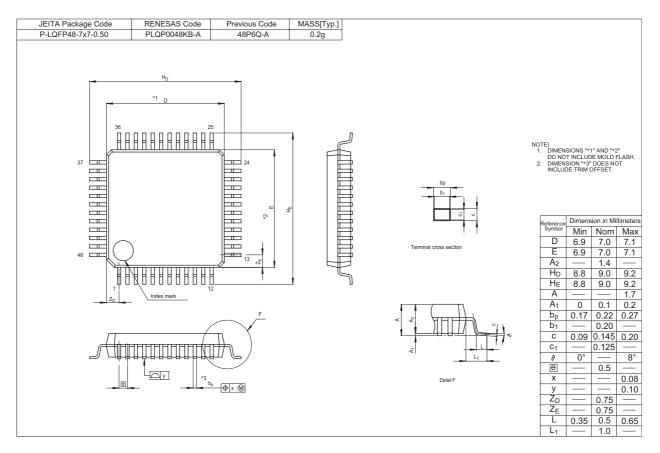



Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V (i = 0 to 3)

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
0.10	Mar 08, 2005	-	First Edition issued
0.20	Sep 29, 2005	_	 Words standardized Clock synchronous serial interface → Clock synchronous serial I/O Chip-select clock synchronous interface(SSU) → Clock synchronous serial I/O with chip select I²C bus interface(IIC) → I²C bus interface
		2, 3	 Table1.1 R8C/22 Group Performance, Table1.2 R8C/23 Group Performance Serial Interface revised: Clock Synchronous Serial Interface: 1 channel I²C bus Interface (3), Clock synchronous serial I/O with chip select Power-On Reset Circuit added Power Consumption value determined
		5, 6	Table 1.3 Product Information of R8C/22 Group, Table 1.4 Product Information of R8C/23 Group Date revised.
		7	Figure 1.4 Pin Assignment Pin name revised: - P3_5/SSCK(/SCL) \rightarrow P3_5/ SCL/SSCK - P3_4/SCS(/SDA) \rightarrow P3_4/ SDA /SCS - VSS \rightarrow VSS/AVSS - VCC \rightarrow VCC/AVCC - P1_5/RXD0/(TRAIO/INT1) \rightarrow P1_5/RXD0/(TRAIO)/(INT1) - P6_6/INT2/(TXD1) \rightarrow P6_6/INT2/TXD1 - P6_7/INT3/(RXD1) \rightarrow P6_7/INT3/RXD1 - NOTE2 added
		8	Table 1.5 Pin Description - Analog Power Supply Input: line added - I^2C Bus Interface (IIC) $\rightarrow I^2C$ Bus Interface - SSU \rightarrow Clock Synchronous Serial I/O with Chip Select
		9	Table 1.6 Pin Name Information by Pin Number revised - Pin Number 1: (SCL) \rightarrow SCL - Pin Number 2: (SDA) \rightarrow SDA - Pin Number 9: VSS \rightarrow VSS/AVSS - Pin Number 11: VCC \rightarrow VCC/AVCC - Pin Number 26: (TXD1) \rightarrow TXD1 - Pin Number 27: (RXD1) \rightarrow RXD1
		15	Table 4.1 SFR Information (1) revised - 0013h: XXXXXX00b \rightarrow 00h
		17	Table 4.3 SFR Information (3) revised - 00BCh: 0000X000b \rightarrow 00h/0000X000b
		18	Table 4.4 SFR Information (4) revised - 00D6h: 00000XXXb → 00h - 00F5h: UART1 Function Select Register added
		19	Table 4.5 SFR Information (5) revised - 0104h: TRATR \rightarrow TRA

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as a such as a such as assumes and application is a the development of additional and different information in the data discovered in this document, but Renesas assumes no liability whatsover for any damages incurred as a such as such as the disclosed through our vebsite. (http://www.renesas.com)
 Renesas has used reasonable care in compling the information in this document, but Renesas assumes no liability whatsover for any damages incurred as a disclosed through provided in this document. Not should evaluate the information control is application, such as the development of create a rank of the such assumes to a size of the integet of the i

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com