

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21228dfp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/22 Group, R8C/23 Group RENESAS MCU

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using the R8C CPU core and is packaged in a 48-pin plastic molded LQFP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of executing instructions at high speed. This MCU is equipped with one CAN module and suited to in-vehicle or FA networking.

Furthermore, the data flash (1 KB x 2 blocks) is embedded in the R8C/23 Group.

The difference between R8C/22 and R8C/23 Groups is only the existence of the data flash. Their peripheral functions are the same.

1.1 Applications

Automotive, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/22 Group and Table 1.2 outlines the Functions and Specifications for R8C/23 Group.

	Item	Specification	
CPU	Number of fundamental instructions		
	Minimum instruction execution time	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)	
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)	
	Operating mode	Single-chip	
	Address space	1 Mbyte	
	Memory capacity	Refer to Table 1.3 Product Information for R8C/22 Group	
Peripheral	Ports	I/O ports: 41 pins, Input port: 3 pins	
Function	Timers	Timer RA: 8 bits x 1 channel,	
		Timer RB: 8 bits x 1 channel	
		(Each timer equipped with 8-bit prescaler)	
		Timer RD: 16 bits x 2 channel	
		(Circuits of input capture and output compare)	
		Timer RE: With compare match function	
	Serial interface	1 channel (UART0)	
		Clock synchronous I/O, UART	
		1 channel (UART1)	
		UART	
	Clock synchronous serial interface		
		I ² C bus interface ⁽²⁾ , Clock synchronous serial I/O with chip	
		select	
	LIN module	Hardware LIN: 1 channel	
		(timer RA, UARTO)	
	CAN module	1 channel with 2.0B specification: 16 slots	
	A/D converter	10-bit A/D converter: 1 circuit, 12 channels	
	Watchdog timer	15 bits x 1 channel (with prescaler)	
		Reset start selectable	
	Interrupt	Internal: 14 sources, External: 6 sources, Software: 4 sources,	
		Priority level: 7 levels	
	Clock generation circuits	2 circuits	
		XIN clock generation circuit (with on-chip feedback resistor)	
		On-chip oscillator (high speed, low speed)	
		High-speed on-chip oscillator has frequency adjustment function.	
	Oscillation stop detection		
	function	Stop detection of XIN clock oscillation	
	Voltage detection circuit	On-chip	
	Power-on reset circuit include	On-chip	
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)(D, J version)	
Characteristics	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)(D, 3 Version) VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz)(K version)	
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)	
	Current consumption	Typ. 12.5 mA (VCC = 5 V, $f(XIN) = 20$ MHz, High-speed on-	
	Current consumption	chip oscillator stopping)	
		Typ. 6.0 mA (VCC = 5 V, f(XIN) = 10 MHz, High-speed on-chip	
		oscillator stopping)	
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V	
aon monory	Programming and erasure	100 times	
	endurance		
Operating Ambi	ent Temperature	-40 to 85°C	
epotating / mbr		-40 to 125°C (option ⁽¹⁾)	
Package		48-pin mold-plastic LQFP	
i acraye		ייט־אוו ווטוט־אומטווט בעו ו	

Table 1.1Functions and Specifications for R8C/22 Group

NOTES:

1. When using options, be sure to inquire about the specification.

2. I²C bus is a registered trademark of Koninklijke Philips Electronics N.V.

RENESAS

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A1 can be combined with A0 to be used a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB, a 20-bit register, indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU status.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation resulted in 0; otherwise, 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation resulted in a negative value; otherwise, 0.

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is 0. The register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when the operation resulted in an overflow; otherwise, 0.

3.2 R8C/23 Group

Figure 3.2 shows a Memory Map of R8C/23 Group. The R8C/23 Group has 1 Mbyte of address space from address 00000h to FFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh and 01300h to 0147Fh (SFR area for CAN). The peripheral function control registers are allocated them. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

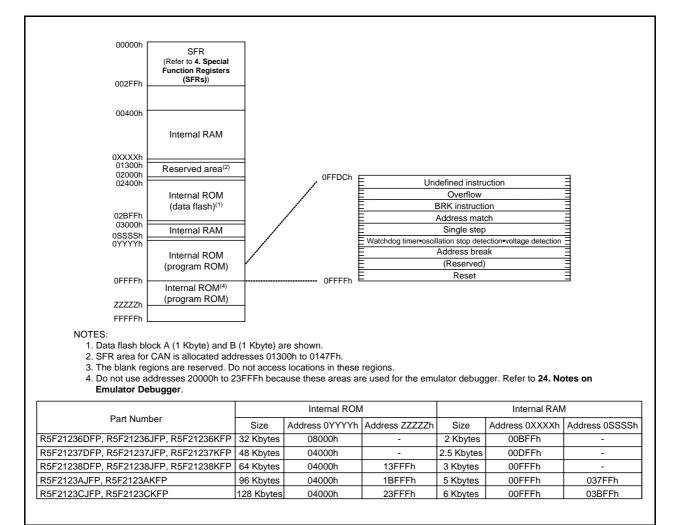


Figure 3.2 M

Memory Map of R8C/23 Group

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Table 4.1 to Table 4.13 list the SFR Information.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protect Mode Register	CSPR	00h
			1000000b ⁽⁸⁾
001Dh		1	
001Eh		1	
001Fh		1	
0020h		1	
0021h		1	
0022h		1	
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽⁶⁾	VCA2	00h ⁽³⁾
			0100000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁷⁾	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h			
0039h			

003Fh

X: Undefined

NOTES:

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. The LVD0ON bit in the OFS register is set to 1.
- 4. Power-on reset, voltage monitor 1 reset or the LVD0ON bit in the OFS register is set to 0.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.
- 6. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b7.
- 7. Software reset, the watchdog timer rest, and the voltage monitor 2 reset do not affect other than the b0 and b6.
- 8. The CSPROINI bit in the OFS register is 0.

Address	Register	Symbol	After reset
0080h			
0081h			
0082h			1
0083h			1
0084h		1	-
0085h			+
0086h		1	+
0087h			+
0088h			
0089h		+	
008Ah			
008Bh			
008Ch			
008Dh			
008Eh			
008Fh			
0090h			
0091h		1	
0092h		1	<u> </u>
0093h			1
0094h		1	†
0095h		1	+
0096h			
0097h		+	+
0097h	<u> </u>	+	+
0098h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UARTO Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Register	U1BRG	XXh
		U1TB	
00AAh	UART1 Transmit Buffer Register		XXh
00ABh		114.00	XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
00AEh	UART1 Receive Buffer Register	U1RB	XXh
00AFh			XXh
00B0h			
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			1
00B6h		1	t
00B7h		1	1
00B8h	SS Control Register H/IIC Bus Control Register 1 ⁽²⁾	SSCRH/ICCR1	00h
00B0h	SS Control Register L/IIC Bus Control Register 2 ⁽²⁾	SSCRL/ICCR2	01111101b
		SSCRL/ICCR2	
00BAh	SS Mode Register/IIC Bus Mode Register 1 ⁽²⁾	· -	00011000b
00BBh	SS Enable Register/IIC Bus Interrupt Enable Register ⁽²⁾	SSER/ICIER	00h
00BCh	SS Status Register/IIC Bus Status Register ⁽²⁾	SSSR/ICSR	00h/0000X000b
00BDh	SS Mode Register 2/Slave Address Register ⁽²⁾	SSMR2/SAR	00h
00BEh	SS Transmit Data Register/IIC Bus Transmit Data Register ⁽²⁾	SSTDR/ICDRT	FFh
	Se manenin bulu regiolorino buo manenin bulu regiolori /		1
00BFh	SS Receive Data Register/IIC Bus Receive Data Register ⁽²⁾	SSRDR/ICDRR	FFh

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 Selected by the IICSEL bit in the PMR register.

Address	Desister	Sumbal	After reach
Address	Register	Symbol	After reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register		00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h			
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h		<u> </u>	
0116h		<u> </u>	
0117h			1
0118h	Timer RE Counter Data Register	TRESEC	00h
0119h	Timer RE Compare Data Register	TREMIN	00h
011Ah			
011Bh			
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h			
0121h			
0122h			
0123h			
0124h			
0125h			
0126h			
0127h			
0128h			
0129h			
012Ah			
012Bh			
012Dh			
012Dh			
012Eh			
012Fh			
0130h			
0131h			
0132h			
0133h			
0134h			
0135h			1
0136h			
0137h	Timer RD Start Register	TRDSTR	11111100b
0138h	Timer RD Mode Register	TRDMR	00001110b
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b
013Ah	Timer RD Function Control Register	TRDFCR	1000000b
013Bh	Timer RD Output Master Enable Register 1	TRDOER1	FFh
013Ch	Timer RD Output Master Enable Register 2	TRDOER2	011111116
013Dh	Timer RD Output Control Register	TRDOCR	00h
013Eh	Timer RD Digital Filter Function Select Register 0	TRDDF0	00h
013Fh	Timer RD Digital Filter Function Select Register 1	TRDDF1	00h
010111	Timor the Digitar Filler Fariotion Deleot Neglater 1		0011

Table 4.5SFR Information (5)⁽¹⁾

X: Undefined

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h	Flack Mamory Control Degister 4		01000006
01B3h	Flash Memory Control Register 4	FMR4	0100000b
01B4h	Flack Manager Organized Daminter 4		4000000V/F
01B5h	Flash Memory Control Register 1	FMR1	1000000Xb
01B6h	Flack Mamory Control Degister 0		0000001h
01B7h	Flash Memory Control Register 0	FMR0	0000001b
01B8h			
01B9h			
01BAh			
01BBh			
0.1 F		i	i
01FDh			
01FEh			
01FFh			

Table 4.7SFR Information (7)⁽¹⁾

X: Undefined

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After reset
	CANO Slot 10: Identifier/DLC	Cymbol	XXh
1401h			XXh
1402h			XXh
1403h			XXh
1404h			XXh
1405h			XXh
	CAN0 Slot 10: Data Field		XXh
1407h			XXh
1408h			XXh
1409h			XXh
140Ah			XXh
140Bh			XXh
140Ch			XXh
140Dh	CANO Slot 10: Time Stamp		XXh XXh
	CAINU Slot 10: Time Stamp		
140Fh 1410h	CANO Slot 11: Identifier/DLC		XXh XXh
1410h			XXh
1412h			XXh
1412h			XXh
1413h			XXh
1415h			XXh
	CAN0 Slot 11: Data Field		XXh
1417h			XXh
1418h			XXh
1419h			XXh
141Ah			XXh
141Bh			XXh
141Ch			XXh
141Dh			XXh
	CAN0 Slot 11: Time Stamp		XXh
141Fh			XXh
	CAN0 Slot 12: Identifier/DLC		XXh
1421h			XXh
1422h			XXh XXh
1423h 1424h			XXh
142411 1425h			XXh
	CANO Slot 12: Data Field		XXh
1420h			XXh
1428h			XXh
1429h			XXh
142Ah			XXh
142Bh			XXh
142Ch			XXh
142Dh			XXh
	CAN0 Slot 12: Time Stamp		XXh
142Fh			XXh
	CAN0 Slot 13: Identifier/DLC		XXh
1431h			XXh
1432h			XXh
1433h			XXh
1434h			XXh
1435h			XXh
	CAN0 Slot 13: Data Field		XXh
1437h			XXh
1438h			XXh
1439h			XXh
143Ah			XXh
143Bh			XXh
143Ch			XXh
143Dh	CANO Slot 12: Time Stamp		XXh
143Eh 143Fh	CAN0 Slot 13: Time Stamp		XXh XXh
143511			

X: Undefined

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Table 4.13	SFR Information (13) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After reset
1440h	CAN0 Slot 14: Identifier/DLC		XXh
1441h			XXh
1442h			XXh
1443h			XXh
1444h			XXh
1445h			XXh
1446h	CAN0 Slot 14: Data Field		XXh
1447h			XXh
1448h			XXh
1449h			XXh
144Ah			XXh
144Bh			XXh
144Ch			XXh
144Dh			XXh
144Eh	CAN0 Slot 14: Time Stamp		XXh
144Fh			XXh
1450h	CAN0 Slot 15: Identifier/DLC		XXh
1451h			XXh
1452h	1		XXh
1453h			XXh
1454h	1		XXh
1455h	1		XXh
1456h	CAN0 Slot 15: Data Field		XXh
1457h			XXh
1458h	1		XXh
1459h			XXh
145Ah			XXh
145Bh			XXh
145Ch			XXh
145Dh			XXh
145Eh	CAN0 Slot 15: Time Stamp		XXh
145Fh			XXh
1460h	CAN0 Global Mask Register	COGMR	XXh
1461h			XXh
1462h			XXh
1463h			XXh
1464h			XXh
1465h	1		XXh
1466h	CAN0 Local Mask A Register	COLMAR	XXh
1467h	Ĭ		XXh
1468h	1		XXh
1469h	1		XXh
146Ah	1		XXh
146Bh	1		XXh
146Ch	CAN0 Local Mask B Register	COLMBR	XXh
146Dh	Ĭ		XXh
146Eh	1		XXh
146Fh	1		XXh
1470h	1		XXh
1471h	1		XXh
1472h			
1473h			
1474h			
1475h			
			·
FFFFh	Option Function Select Register	OFS	(Note 2)

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 The OFS register cannot be changed by a program. Use a flash programmer to write to it.

Symbol	Parameter	Conditions	Standard				
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Unit	
-	Program/erase endurance ⁽²⁾	R8C/22 Group	100 ⁽³⁾	-	-	times	
		R8C/23 Group	1,000(3)	-	-	times	
-	Byte program time		-	50	400	μS	
-	Block erase time		-	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until erase suspend		-	-	97 + CPU clock × 6 cycle	μS	
-	Interval from erase start/restart until following suspend request		650	-	-	μS	
-	Interval from program start/restart until following suspend request		0	-	-	ns	
-	Time from suspend until program/erase restart		-	-	3 + CPU clock × 4 cycle	μS	
-	Program, erase voltage		2.7	_	5.5	V	
_	Read voltage		2.7	-	5.5	V	
-	Program, erase temperature		0	-	60	°C	
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year	

Table 5.4	Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure endurance can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

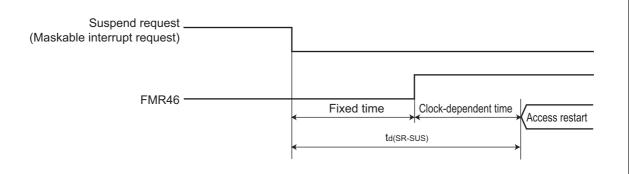


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Faiametei	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ^(3, 4)		2.70	2.85	3.00	V
td(Vdet1-A)	Voltage monitor 1 reset generation time ⁽⁵⁾		-	40	200	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	100	μS
Vccmin	MCU operating voltage minimum value		2.70	-	-	V

NOTES:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2

register to 0. 3. Hold Vdet2 > Vdet1.

- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.
- 5. Time until the voltage monitor 1 reset is generated after the voltage passes V_{det1} when Vcc falls. When using the digital filter, its sampling time is added to td(Vdet1-A). When using the voltage monitor 1 reset, maintain this time until Vcc = 2.0 V after the voltage passes V_{det1} when the power supply falls.

Table 5.7 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level ⁽⁴⁾		3.3	3.6	3.9	V
td(Vdet2-A)	Voltage monitor 2 reset/interrupt request generation time ^(2, 5)		-	40	200	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0V	-	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μs

NOTES:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version).

2. Time until the voltage monitor 2 reset/interrupt request is generated since the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

4. Hold Vdet2 > Vdet1.

5. When using the digital filter, its sampling time is added to td(Vdet2-A). When using the voltage monitor 2 reset, maintain this time until Vcc = 2.0 V after the voltage passes Vdet2 when the power supply falls.

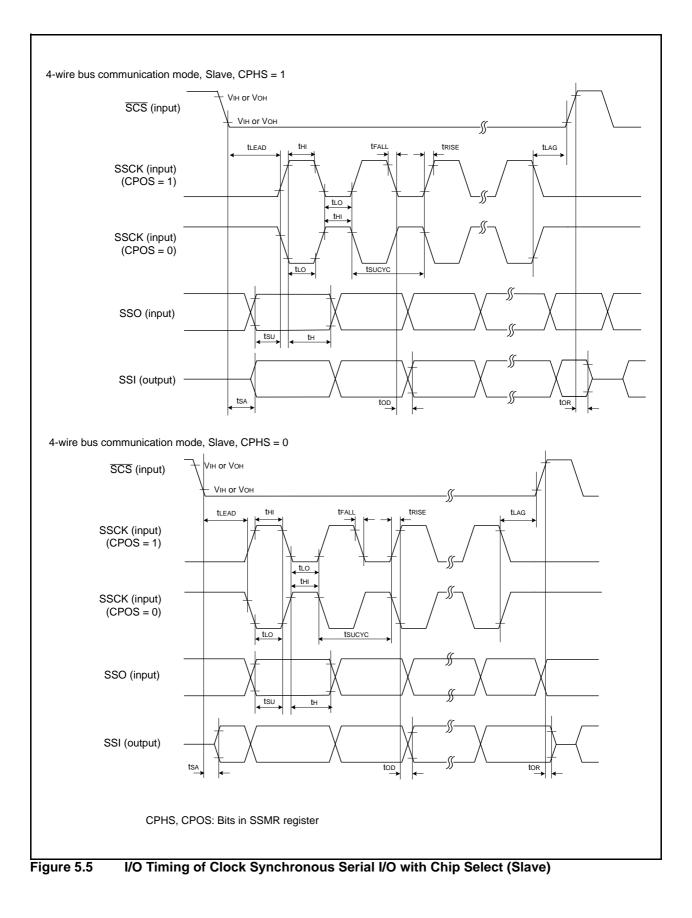

Cumbal	Parameter		Canalitiana		1.1.4.14		
Symbol			Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time			4	-	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width			0.4		0.6	tsucyc
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
t FALL	SSCK clock falling time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
tsu	SSO, SSI data input setup ti	me		100	-	-	ns
tн	SSO, SSI data input hold tim	е		1	-	-	tCYC ⁽²⁾
tlead	SCS setup time	Slave		1tcyc + 50	-	-	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns
tod	SSO, SSI data output delay	time		-	-	1	tCYC ⁽²⁾
tSA	SSI slave access time				_	1tcyc + 100	ns
tor	SSI slave out open time			_	-	1tcyc + 100	ns

Table 5.12 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

NOTES:

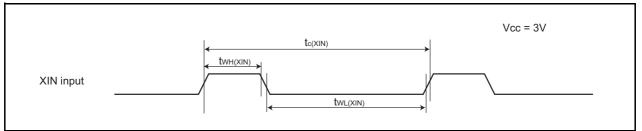
1. Vcc = 2.7 to 5.5 V, Vss = 0 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified. 2. 1tcyc = 1/f1(s)

RENESAS

Cumbol	Doro	meter	Condit	ion	Standard			Unit	
Symbol	Pala	meter	Condi	Condition		Тур.	Max.	Unit	
Vон	Output "H" Voltage	Except XOUT	Iон = -5 mA		Vcc - 2.0	-	Vcc	V	
			Іон = -200 μА		Vcc - 0.3	-	Vcc	V	
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	-	Vcc	V	
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V	
Vol Ou	Output "L" Voltage	Except XOUT	IOL = 5 mA		_	-	2.0	V	
			IoL = 200 μA		-	-	0.45	V	
		XOUT	Drive capacity HIGH	IOL = 1 mA	-	-	2.0	V	
			Drive capacity LOW	ΙΟL = 500 μΑ	-	-	2.0	V	
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLX0, RXD1, CLK0, SSI, SCL, SDA, SSO			0.1	0.5	-	V	
		RESET			0.1	1.0	-	V	
Ін	Input "H" current		VI = 5 V, Vcc = 5 V		-	_	5.0	μΑ	
lı∟	Input "L" current		VI = 0 V, Vcc = 5 V		-	_	-5.0	μΑ	
Rpullup	Pull-Up Resistance		VI = 0 V, Vcc = 5 V		30	50	167	kΩ	
RfXIN	Feedback Resistance	XIN			-	1.0	-	MΩ	
VRAM	RAM Hold Voltage	•	During stop mode		2.0	-	-	V	

Table 5.14 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:


1. Vcc = 4.2 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Timing Requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0V at Topr = 25°C) [Vcc = 3 V]

Table 5.22 XIN Input

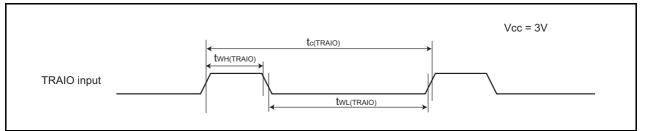

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	

Figure 5.12 XIN Input Timing Diagram when Vcc = 3 V

Table 5.23 TRAIO Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TRAIO)	TRAIO input Cycle time		-	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width	120	-	ns	

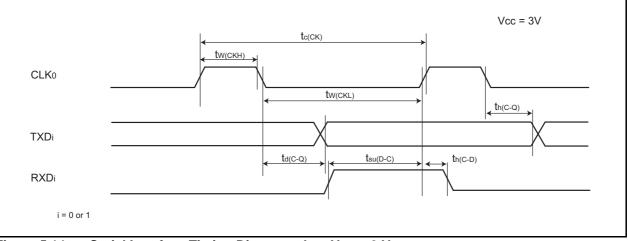

Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.24Serial Interface

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tc(CK)	CLK0 input cycle time		-	ns	
tW(CKH)	CLK0 input "H" width	150	-	ns	
tW(CKL)	CLK0 input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time 0 -		-	ns	
tsu(D-C)	RXDi input setup time 70 -		-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.25 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tw(INH)	INTi input "H" width	380(1)	-	ns	
tw(INL)	INTi input "L" width	380 ⁽²⁾	_	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use the INTi input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTi input filter select bit, use the INTi input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

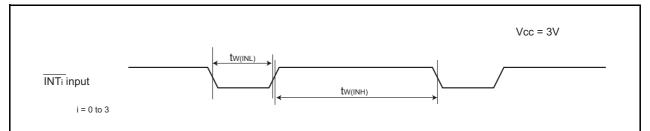


Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V (i = 0 to 3)

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
0.10	Mar 08, 2005	-	First Edition issued
0.20	Sep 29, 2005	_	 Words standardized Clock synchronous serial interface → Clock synchronous serial I/O Chip-select clock synchronous interface(SSU) → Clock synchronous serial I/O with chip select I²C bus interface(IIC) → I²C bus interface
		2, 3	 Table1.1 R8C/22 Group Performance, Table1.2 R8C/23 Group Performance Serial Interface revised: Clock Synchronous Serial Interface: 1 channel I²C bus Interface (3), Clock synchronous serial I/O with chip select Power-On Reset Circuit added Power Consumption value determined
		5, 6	Table 1.3 Product Information of R8C/22 Group, Table 1.4 Product Information of R8C/23 Group Date revised.
		7	Figure 1.4 Pin Assignment Pin name revised: - P3_5/SSCK(/SCL) \rightarrow P3_5/ SCL/SSCK - P3_4/SCS(/SDA) \rightarrow P3_4/ SDA /SCS - VSS \rightarrow VSS/AVSS - VCC \rightarrow VCC/AVCC - P1_5/RXD0/(TRAIO/INT1) \rightarrow P1_5/RXD0/(TRAIO)/(INT1) - P6_6/INT2/(TXD1) \rightarrow P6_6/INT2/TXD1 - P6_7/INT3/(RXD1) \rightarrow P6_7/INT3/RXD1 - NOTE2 added
		8	Table 1.5 Pin Description - Analog Power Supply Input: line added - I^2C Bus Interface (IIC) $\rightarrow I^2C$ Bus Interface - SSU \rightarrow Clock Synchronous Serial I/O with Chip Select
		9	Table 1.6 Pin Name Information by Pin Number revised - Pin Number 1: (SCL) \rightarrow SCL - Pin Number 2: (SDA) \rightarrow SDA - Pin Number 9: VSS \rightarrow VSS/AVSS - Pin Number 11: VCC \rightarrow VCC/AVCC - Pin Number 26: (TXD1) \rightarrow TXD1 - Pin Number 27: (RXD1) \rightarrow RXD1
		15	Table 4.1 SFR Information (1) revised - 0013h: XXXXXX00b \rightarrow 00h
		17	Table 4.3 SFR Information (3) revised - 00BCh: 0000X000b \rightarrow 00h/0000X000b
		18	Table 4.4 SFR Information (4) revised - 00D6h: 00000XXXb → 00h - 00F5h: UART1 Function Select Register added
		19	Table 4.5 SFR Information (5) revised - 0104h: TRATR \rightarrow TRA

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as a such as the development of the purpose of any there military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set experiment on the data discover the purpose of any damages incurred as a disclosed by Renesas state and applications, and proceedures required by the data disclosed through or representations. Were applicable sport on the steed on the data disclosed through the data disclosed through Renesas as subtaints of motion in the document.
 Renesas hall have the data disclosed through Renesas as subtaints of motion and the data disclosed to the reseas assumes no liability thatas descret for any damages incurred as a state and o

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com